
1 / 125

Stride Game Engine Tutorials
These pages contain tutorials to learn more about the Stride game engine 🎮.

New to Stride? Start with these tutorials to get familiar with the basics of the engine and the Game Studio.

1. 🛠 Game Studio - The Stride engine comes with an editor called Game Studio, which is the central
tool for game and application production in Stride.

2. 🌱 C# Beginner - Covering the beginner principles of using C# when working with the Stride game
engine.

3. 📈 C# Intermediate - Diving into intermediate principles of C# programming in Stride, including UI,
collisions, and more.

🛠 Game Studio
12 lessons 1 hour

The Stride engine comes with an editor called
Game Studio, which is the central tool for
game 🕹 and application production in Stride.

Learn about Stride launcher, main interface,
scene management, transforming entities,
asset pipelines and more.

🚀 Jump to the Game Studio tutorials

🌱 C# Beginner
15 lessons 2.5 hours

These tutorials cover the beginner principles
of using C# when working with the Stride
game engine 🎮.

Learn about entities, transform positions,
editor properties, components, delta time,
cloning, keyboard and mouse input and more.

🚀 Jump to the C# beginner tutorials

2 / 125

📈 C# Intermediate
11 lessons 4 hours

These tutorials cover various intermediate
principles of using C# when working with the
Stride game engine 🎮.

Learn more about UI basics, collision triggers,
ray-casting, async scripts, scenes, animations,
audio, camera and navigation.

🚀 Jump to the C# intermediate tutorials

⚡ Quick Tutorials
1 lesson 4 minutes

These quick tutorials provide bite-sized
lessons to help you get up to speed with the
Stride game engine in no time.

Learn about setting up your first project, basic
scripting, simple animations, quick UI tips, and
more.

🚀 Jump to the Quick tutorials

3 / 125

🛠 Game studio
12 lessons 1 hour

The Stride engine comes with an editor called Game Studio. The videos below cover the basics of the UI
and how various concepts work inside the editor.

Playlist

All tutorials
1. Stride launcher
2. Main interface
3. Navigating the scene
4. Scene management
5. Transforming entities
6. Asset pipeline

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride basics #1 - The launcherStride basics #1 - The launcher

https://www.youtube.com/watch?list=PLM8hj-JyVnYr-usNqX5aeXG0IwTY9FVge&v=JO9XusgPi8w

4 / 125

7. Importing resources
8. Textures
9. Materials

10. Models
11. Physics intro
12. Static colliders

5 / 125

Stride Launcher 🚀
This tutorial explains the Stride Launcher.

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride basics #1 - The launcherStride basics #1 - The launcher

https://www.youtube.com/watch?v=JO9XusgPi8w

6 / 125

Main interface
This tutorial explains the main interface of Game studio.

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride editor tutorial #2 - Main interfaceStride editor tutorial #2 - Main interface

https://www.youtube.com/watch?v=lG08Z-dhhCo

7 / 125

Navigating in the scene editor
In this tutorial we learn how to navigate around the scene editor. We also take a look at the various
camera options.

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride editor tutorial #3 - Navigating in the scene editorStride editor tutorial #3 - Navigating in the scene editor

https://www.youtube.com/watch?v=lGQ607bT6gk

8 / 125

Scene management
In this tutorial we learn about scenes, child scenes, hiding and locking scenes and various other concepts
that come with scene management in Stride game studio.

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride editor tutorial #4 - Scene managementStride editor tutorial #4 - Scene management

https://www.youtube.com/watch?v=hgtg3rxiOug

9 / 125

Transforming entities
In this tutorial we learn how to transform entities. There is translating, rotation and scaling. We also learn
about the right handed coordinate system and how we can use snapping.

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride editor tutorial #5 - Transforming entitiesStride editor tutorial #5 - Transforming entities

https://www.youtube.com/watch?v=QNGDsnBn7ec

10 / 125

Asset pipeline
This more theoretical tutorial covers the general terminology of the Stride asset pipeline. We learn the
differences between them and in what stage of the game making process they come up.

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride editor tutorial #6 - The asset pipelineStride editor tutorial #6 - The asset pipeline

https://www.youtube.com/watch?v=cGLg-ocJ9hA

11 / 125

Importing resources
In this tutorial, we will learn how to import resources into Stride game studio using two different
methods:

Creating an asset via the Asset View, or
Dragging and dropping files directly from a folder

We also learn how important it is that we keep our resources in a projects resources folder, rather than
having them scattered across our computer.

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride editor tutorial #7 - Importing resourcesStride editor tutorial #7 - Importing resources

https://www.youtube.com/watch?v=benbkZSHZ8s

12 / 125

Textures
In this tutorial we learn about the different textures types, the options for every texture type and global
texture settings.

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride editor tutorial #8 - TexturesStride editor tutorial #8 - Textures

https://www.youtube.com/watch?v=cl5VHcGrf9k

13 / 125

Materials
In this tutorial we learn the basics of creating material assets in Stride game studio. We create a diffuse
material and a material that used both diffuse and a normal texture. Since there are so many options for
materials we learn about the different properties in a general sense rather than displaying all the
possibilities.

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride editor tutorial #9 - MaterialsStride editor tutorial #9 - Materials

https://www.youtube.com/watch?v=wBNN_uSIJ-E

14 / 125

Models
In this tutorial we learn about models in Stride game studio. We learn about 5 different import scenarios.
Some models have textures which we can automatically apply by importing the right material and
textures files.

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride editor tutorial #10 - ModelsStride editor tutorial #10 - Models

https://www.youtube.com/watch?v=55WSNO3YHos

15 / 125

Physics intro
In this tutorial we learn about the basics of physics with Stride game studio. We learn that there are 3
different types of collider components and how to debug those in game studio as well as in game.

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride editor tutorial #11 - Physics introStride editor tutorial #11 - Physics intro

https://www.youtube.com/watch?v=mgetdOlGiHc

16 / 125

Static colliders
In this tutorial we learn about a specific collider type group in Stride: the static colliders. We take a quick
tour of its common properties and we learn how to define different collider shapes for an entity. In
particular we learn about generated collider hull which can be either convex or concave.

NOTE

These videos were recorded when Stride was called 'Xenko'. Other than the name and logo change,
the UI is almost 100% identical.

Stride editor tutorial #12 - Static collidersStride editor tutorial #12 - Static colliders

https://www.youtube.com/watch?v=IemIKqbR5o8

17 / 125

🌱 C# Beginner
15 lessons 2.5 hours

These tutorials cover the beginner principles of using C# when working with the Stride game engine. Start
here if you are new to Stride.

Note: These tutorials do not serve as an introduction to C# itself. While having some coding experience is
helpful, it is not mandatory to get started with these tutorials.

To create the C# beginner tutorial project:

1. Start the Stride launcher
2. Create a new project
3. Select the template: Tutorials -> C# beginner

Each scene is loaded as a child scene and demonstrates a sample script.

Stride C# beginner YouTube tutorial series
All tutorials are accompanied by a YouTube video. You can watch the entire C# Beginners playlist here.

All tutorials

Stride tutorial | C# beginner #1 | IntroductionStride tutorial | C# beginner #1 | Introduction

https://www.youtube.com/watch?list=PLRZx2y7uC8mNySUMfOQf-TLNVnnHkLfPi&v=Z2kUQhSmdr0

18 / 125

Introduction
Learn about the C# beginners project
template, how entities and components work,
different types of scripts, and more.

📺 Watch the Introduction tutorial

Getting the Entity
Learn how to retrieve the entity, retrieve the
parent entity, print debug text, and more.

📺 Watch the Getting the Entity tutorial

Child entities
Learn how to get a specific child entity,
retrieve children in a list, and access children
of children.

📺 Watch the Child entities tutorial

The transform
Learn how to access the Transform
component, get the local position, and get the
world position.

📺 Watch the transform tutorial

Editor properties
Discover how to define various editor
properties, create lists, and hide public
properties.

Getting a component
Understand how to get a component, remove
a component, and access methods of other
components.

19 / 125

📺 Watch the Editor properties tutorial 📺 Watch the Getting a component tutorial

Adding a component
Explore adding a component, removing all
components of one type, and creating a
component if it doesn't exist.

📺 Watch the Adding a component tutorial

Delta time
Learn how to retrieve delta time, create a
simple timer, and make a simple countdown
timer.

📺 Watch the Delta time tutorial

Cloning an entity
Learn how to clone an entity, add an entity to
the current scene, and add an entity as a child
to a parent entity.

📺 Watch the Cloning an entity tutorial

Removing an entity
Explore cloning new entities using a timer,
removing entities using a timer, and removing
an entity from the scene.

📺 Watch the Removing an entity tutorial

Mouse input Keyboard input

20 / 125

Understand how to manage holding down a
mouse button, clicking or releasing a mouse
button, and using the mouse wheel.

📺 Watch the Mouse input tutorial

Discover how to handle holding down a key,
clicking a key, and releasing a key.

📺 Watch the Keyboard input tutorial

Virtual buttons
Learn how to define a virtual key
configuration, bind input to the configuration,
and use the virtual buttons.

📺 Watch the Virtual buttons tutorial

Linear Interpolation
Explore calculating 'lerp' values, lerping
between `Vector3` values, and using random
values.

📺 Watch the Linear Interpolation tutorial

Loading content
Discover how to load content from code,
unload content, and attach models to entities.

📺 Watch the Loading content tutorial

Instantiating prefabs
Learn how to instantiate a prefab, load a
prefab from content, and parent a prefab
entity.

📺 Watch the Instantiating prefabs tutorial

21 / 125

Introduction
In this tutorial we will learn about the basics of the Stride game engine. We will learn how to setup a new
project, how to create entities and how to add components to them. We will also learn how to create
scripts and how to debug them.

We will cover these topics:

How to setup the C# beginners project template
How entities and components work
The types of script
Logging
Debugging

Stride tutorial | C# beginner #1 | IntroductionStride tutorial | C# beginner #1 | Introduction

https://www.youtube.com/watch?v=Z2kUQhSmdr0

22 / 125

Getting the entity
You can find this sample in the tutorial project: Menu -> Getting an entity

Explanation
This C# Beginner tutorial covers how to get the entity object.

When a script is attached to an entity in the scene, we can access all properties of that Entity by using
the Entity property. We can for instance get the entity's name or we can check if the entity has a parent
in the scene.

23 / 125

Code

Stride tutorial | C# beginner #2 | Getting the entityStride tutorial | C# beginner #2 | Getting the entity

using Stride.Core.Mathematics;
using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script demonstrates how to access the entity where the script is attached to.
 /// We also learn how to access a parent of our entity and how to check if that
entity exists.
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/entity.html
 /// </para>
 /// </summary>
 public class GettingTheEntityDemo : SyncScript
 {
 private string name = string.Empty;
 private string parentName = string.Empty;

 // Executes only once, at the start of the game
 public override void Start()
 {
 // We store the name of the Entity that we are attached to
 name = Entity.Name;

https://www.youtube.com/watch?v=DUmZujopcY8

24 / 125

 // We retrieve the parent entity by using the GetParent() command.
 var parentEntity = Entity.GetParent();

 // It is possible that our entity does not have a parent. We therefore check if
the parent is not null.
 if (parentEntity != null)
 {
 // We store the name of our Parent entity
 parentName = parentEntity.Name;
 }

 // The above code can be shortened to 1 line by using the '?' operator
 parentName = Entity.GetParent()?.Name ?? string.Empty;
 }

 // Updates every frame
 public override void Update()
 {
 // Using the 'DebugText.Print' command, we can quickly print information to
the screen
 // NOTE: DebugText only works when debugging the game. During release it is
automatically disabled
 DebugText.Print(parentName, new Int2(580, 580));
 DebugText.Print(name, new Int2(800, 580));
 }
 }
}

25 / 125

Children of entities
You can find this sample in the tutorial project: Menu → Child entities

Explanation
This C# basics tutorial covers how to get an entities children.

Since those children are also entities, we can retrieve their children too.

26 / 125

Code

Stride tutorial | C# beginner #3 | Child entitiesStride tutorial | C# beginner #3 | Child entities

using Stride.Core.Mathematics;
using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script is used to demonstrate how we can get child entities of an entity
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/child-entities.html
 /// </para>
 /// </summary>
 public class ChildEntitiesDemo : SyncScript
 {
 private Entity child0;
 private Entity child1;

 public override void Start()
 {
 // We can get a child by using GetChild(). This takes an index number starting
at 0
 child0 = Entity.GetChild(0);
 child1 = Entity.GetChild(1);

https://www.youtube.com/watch?v=jf9x__cbiqI

27 / 125

 // If we would try to get Child 3 (which doesn't exist), we would get
an exception
 // var nonExistingChild = Entity.GetChild(2);
 }

 public override void Update()
 {
 // We store some drawing positions
 int drawX = 350, drawY = 230, increment = 70;

 // We print the name of the our entity
 DebugText.Print(Entity.Name, new Int2(drawX, drawY));

 // We loop over all the children of our entity using GetChildren()
 // NOTE: This does not include any subchildren of those children
 foreach (var child in Entity.GetChildren())
 {
 // We print the name of the child
 drawY += increment;
 DebugText.Print(child.Name, new Int2(drawX + increment, drawY));

 // It is possible that this child, also has children. We now loop over these
'subchildren' and print their name too
 foreach (var subChild in child.GetChildren())
 {
 drawY += increment;
 DebugText.Print(subChild.Name, new Int2(drawX + (increment *
2), drawY));
 }
 }
 }
 }
}

28 / 125

Transform Position
You can find this sample in the tutorial project: Menu → Transform Position

Explanation
This C# Beginner tutorial covers the Transform component of an entity.

The Transform component is such a commonly used component, that you can quick access it via
Entity.Transform.

The transform contains all kinds of properties and methods for Position, Rotation and Scale. In this
example we learn the difference between local and world position.

29 / 125

Code

Stride tutorial | C# beginner #4 | Transform positionStride tutorial | C# beginner #4 | Transform position

using Stride.Core.Mathematics;
using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script demonstrates how to access the entity's local and world position and
displays them on screen.
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/transform-position.html
 /// </para>
 /// </summary>
 public class TransformPositionDemo : SyncScript
 {
 public override void Start() { }

 public override void Update()
 {
 // We store the local and world position of our entity's tranform in a
Vector3 variable
 Vector3 localPosition = Entity.Transform.Position;
 Vector3 worldPosition = Entity.Transform.WorldMatrix.TranslationVector;

https://www.youtube.com/watch?v=2N6NhijZuJk

30 / 125

 // We display the entity's name and its local and world position on screen
 DebugText.Print(Entity.Name + " - local position: " + localPosition, new
Int2(400, 450));
 DebugText.Print(Entity.Name + " - world position: " + worldPosition, new
Int2(400, 470));
 }
 }
}

31 / 125

Editor properties
You can find this sample in the tutorial project: Menu → Editor properties

Explanation
This C# Beginner tutorial covers how to expose editor properties for Stride Game Studio.

By creating a public variable at the top of our script, we can create editor properties. Some of the most
common properties are demonstrated. We can also create public variables that are not shown in the
editor.

32 / 125

33 / 125

Code

Stride tutorial | C# beginner #5 | PropertiesStride tutorial | C# beginner #5 | Properties

using System.Collections.Generic;
using Stride.Core;
using Stride.Core.Annotations;
using Stride.Core.Mathematics;
using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script demonstrates the most common properties you can expose to the editor.
 /// When we add the public keyword to the variables, they show up as properties in
the editor.
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/editor-properties.html
 /// </para>
 /// </summary>
 public class PropertiesDemo : SyncScript
 {
 // By default public properties are ordered alphabetically
 public string SomeString = "Hello Stride";
 public int SomeInteger = 10;

 // Use DataMember followed by a number to order properties by number

https://www.youtube.com/watch?v=GPiWbfsG5F0

34 / 125

 [DataMember(5)]
 public bool SomeBoolean = true;

 // Instead of using the name of the variable, you can also define your own text
 [DataMember(4, "My custom text")]
 public float SomeFloat = 5.6f;

 // Vectors
 public Vector2 SomeVector2; // Is the same as = new Vector2(0, 0);
 public Vector3 SomeVector3 = new Vector3(1, 2, 3);
 public Vector4 SomeVector4 = new Vector4(5); // All 4 float value get the value of 5
 public Color SomeColor = Color.Red;

 // Turns a float in to a range slider
 // Dragging the slider uses the smallstep value
 // Clicking the slider uses the bigstep value
 [DataMemberRange(1, 100, 0.1, 1, 3)]
 public float RangedFloat = 10.0f;

 // Entities and components
 public Entity ASingleEntity;
 public CameraComponent ASingleCameraComponent;

 // If we want a list of objects like strings, entities or specific components,
 // we have to initialize the new List<> right away
 public List<string> StringList = new List<string>();
 public List<Entity> EntityList = new List<Entity>();
 public List<CameraComponent> CameraList = new List<CameraComponent>();

 // Dictionaries also need to be initialized. The first value needs to be a primitive
type like string
 public Dictionary<string, int> aSimpleDictionary = new Dictionary<string, int>();

 // If we dont want a public property to be visible in the editor we can
use '[DataMemberIgnore]'
 [DataMemberIgnore]
 public string HideMe;

 // Enums can be used for dropdowns
 public CharacterType Character;
 public enum CharacterType
 {
 Warrior,
 Archer,
 Mage
 }

35 / 125

The code above will result in the following properties inside Stride game studio.

 /// <userdoc>This is a super long description. Use it to help the people that use
your components, understand what a propery does.</userdoc>
 /// The text above is displayed in game studio when a property is selected and also
shows up when you hover over the property
 public string Explanation;

 public override void Update()
 {
 var x = 400;
 DebugText.Print("Integer: " + SomeInteger, new Int2(x, 200));
 DebugText.Print("Float: " + SomeFloat, new Int2(x, 220));
 DebugText.Print("Boolean: " + SomeBoolean, new Int2(x, 240));
 DebugText.Print("String: " + SomeString, new Int2(x, 260));
 DebugText.Print("Vector2: " + SomeVector2, new Int2(x, 280));
 DebugText.Print("Vector3: " + SomeVector3, new Int2(x, 300));
 DebugText.Print("Vector4: " + SomeVector4, new Int2(x, 320));
 DebugText.Print("Color: " + SomeColor, new Int2(x, 340));
 DebugText.Print("String list count: " + StringList.Count, new Int2(x, 360));
 DebugText.Print("Entity list count: " + EntityList.Count, new Int2(x, 380));
 DebugText.Print("Camera list count: " + CameraList.Count, new Int2(x, 400));
 }
 }
}

36 / 125

37 / 125

Getting a component
You can find this sample in the tutorial project: Menu → Getting a component

Explanation
This C# beginner tutorial covers how to get and remove components.

Components are one of the most important concepts in Stride. Every entity in the scene has a list of
components. The transform for instance is also a component.

When we make custom scripts that inherit from SyncScript or AsyncScript, they turn into Components
that we can attach to entities. We can attach these components to entities by using the editor or we can
attach them by code.

38 / 125

Code
AmmoComponent
This is the first component that we attach to an entity. In the second script, we will try to get this
AmmoComponent.

Stride tutorial | C# beginner #6 | Getting componentsStride tutorial | C# beginner #6 | Getting components

using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script is used in combination with the GettingAComponent.cs script
 /// </summary>
 public class AmmoComponent : StartupScript
 {
 private readonly int maxBullets = 30;
 private readonly int currentBullets = 12;

 public override void Start() { }

 public int GetRemainingAmmo()
 {
 return maxBullets - currentBullets;
 }

https://www.youtube.com/watch?v=qRZG8qXkvDQ

39 / 125

Getting A Component
This component script, will retrieve the AmmoComponent script above and use its public method.

 }
}

using Stride.Core.Mathematics;
using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script demonstrates how to get and remove components that are attached to
an entity.
 /// Try not to Get a component every frame as this will have negative
performance impact.
 /// Instead try to cache a component in the start method or when an object
is initialized/triggered
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/get-component.html
 /// </para>
 /// </summary>
 public class GettingAComponentDemo : SyncScript
 {
 private int ammoCount1 = 0;
 private int ammoCount2 = 0;

 public override void Start()
 {
 // We retrieve the Ammo component that is also attached to the current entity
 var ammoComponent1 = Entity.Get<AmmoComponent>();

 // We can now access public methods and properties of the retrieve component
 ammoCount1 = ammoComponent1.GetRemainingAmmo();

 // We now remove the AmmoComponent from our entity. If we try to retrieve it
again, null will be returned
 Entity.Remove<AmmoComponent>();
 var ammoComponent2 = Entity.Get<AmmoComponent>();

 // Now that 'ammoComponent' is null, we will never be able to retrieve the
total ammo
 if (ammoComponent2 != null)
 {

40 / 125

 // This line will never happen
 ammoCount2 = ammoComponent2.GetRemainingAmmo();
 }

 // Add the component again so that it doesn't crash next run
 Entity.Add(ammoComponent1);
 }

 public override void Update()
 {
 // We display the stored ammo count on screen
 DebugText.Print("Ammo count 1: " + ammoCount1.ToString(), new Int2(300, 200));
 DebugText.Print("Ammo count 2: " + ammoCount2.ToString(), new Int2(300, 220));
 }
 }
}

41 / 125

Adding a component
You can find this sample in the tutorial project: Menu → Adding a component

Explanation
This C# Beginner tutorial covers how to add and remove components.

In the previous tutorial we learned how we can retrieve components that are already attached to an
entity through the editor. This tutorial shows that we can accomplish the same thing by code.

We can add the same component several times to the same entity. We also learn how to remove all of
components of the same type again.

42 / 125

Code
AmmoComponent
This is the AmmoComponent. We will not attach it to the entity in the editor. Instead we will add it
ourselves in the AddingAComponent script.

Stride tutorial | C# beginner #7 | Adding componentsStride tutorial | C# beginner #7 | Adding components

using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script is used in combination with the GettingAComponent.cs script
 /// </summary>
 public class AmmoComponent : StartupScript
 {
 private readonly int maxBullets = 30;
 private readonly int currentBullets = 12;

 public override void Start() { }

 public int GetRemainingAmmo()
 {
 return maxBullets - currentBullets;
 }

https://www.youtube.com/watch?v=KGuBSRyRmVo

43 / 125

Adding A Component
This component script, will add the AmmoComponent script to the entity. We then add another
component (of the same type) before we remove all components of that type.

Finally we learn how to automatically create a component, attach it to the entity and get a reference all
in 1 line of code. This only works if the entity doesn't have any components of the given attached yet.

 }
}

using Stride.Core.Mathematics;
using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script demonstrates how to add a component to an entiy.
 /// We also learn a way to automically create and attach a component to our entity.
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/add-component.html
 /// </para>
 /// </summary>
 public class AddingAComponentDemo : SyncScript
 {
 private AmmoComponent ammoComponent1;
 private AmmoComponent ammoComponent2;
 private AmmoComponent ammoComponent3;

 public override void Start()
 {
 // We can add a new component to an entity using the 'Add' method.
 ammoComponent1 = new AmmoComponent();
 Entity.Add(ammoComponent1);

 // We can even add the component a second time
 ammoComponent2 = new AmmoComponent();
 Entity.Add(ammoComponent2);

 // Lets remove all components of type AmmoComponent
 Entity.RemoveAll<AmmoComponent>();

 // When there is no AmmoComponent of attached, but we like there to be one, we
can create it automatically

44 / 125

 // NOTE: when a component is created this way,
 // the 'Start' method of the AmmoComponent will be called after this script's
Update method has executed
 ammoComponent3 = Entity.GetOrCreate<AmmoComponent>();
 }

 public override void Update()
 {
 DebugText.Print("Remaining ammo: " +
ammoComponent3.GetRemainingAmmo().ToString(), new Int2(440, 200));
 }
 }
}

45 / 125

Delta Time
You can find this sample in the tutorial project: Menu → Delta Time

Explanation
This C# Beginner tutorial covers the retrieval and usage of delta time.

A game tries to update itself as often as possible. The amount of times it updates in a single second is
called 'Frames Per Second' or shortened to 'FPS'.

If we wanted to update a timer value, we would need a value that takes into account what the current
amount of frames per second is. That is what delta time is used for. So whether your game runs 30 FPS
or 120 FPS: you always want to have the same time scale.

46 / 125

Code

Stride tutorial | C# beginner #8 | Delta timeStride tutorial | C# beginner #8 | Delta time

using Stride.Core.Mathematics;
using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// DeltaTime is used to calculate frame independent values.
 /// DeltaTime can also be used for creating Timers.
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/delta-time.html
 /// </para>
 /// </summary>
 public class DeltaTimeDemo : SyncScript
 {
 private float rotationSpeed = 0.6f;

 // In this variable we keep track of the total time the game runs
 private float totalTime = 0;

 // We use these variable for creating a simple countdown timer
 private float countdownStartTime = 5.0f;
 private float countdownTime = 0;

https://www.youtube.com/watch?v=WMGY8JOqzeE

47 / 125

 public override void Start()
 {
 // We start the countdown timer at the initial countdown time of 5 seconds
 countdownTime = countdownStartTime;
 }

 public override void Update()
 {
 /// We can access Delta time through the static 'Game' object.
 var deltaTime = (float)Game.UpdateTime.Elapsed.TotalSeconds;

 // We update the total time
 totalTime += deltaTime;

 // Since we have a countdown timer, we subtract the delta time from the count
down time
 countdownTime -= deltaTime;

 // If the repeatTimer, reaches 0, we reset the countdownTime back to the count
down start time
 if (countdownTime < 0)
 {
 countdownTime = countdownStartTime;
 rotationSpeed *= -1;
 }

 Entity.Transform.Rotation *= Quaternion.RotationY(deltaTime * rotationSpeed);

 // We display the total time and the countdown time on screen
 DebugText.Print("Total time: " + totalTime, new Int2(480, 540));
 DebugText.Print("Countdown time: " + countdownTime, new Int2(480, 560));
 }
 }
}

48 / 125

Cloning an entity
You can find this sample in the tutorial project: Menu → Cloning entities

Explanation
This C# Beginner tutorial covers how to clone an existing entity and how to add that clone to the scene.

A cloned entity is an exact copy of an entity, which means that the Transform and all other components
with their set values are copied too.

49 / 125

Code

Stride tutorial | C# beginner #9 | Cloning entitiesStride tutorial | C# beginner #9 | Cloning entities

using Stride.Core.Mathematics;
using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script demonstrates how to clone an existing entity.
 /// Cloned entities can be added to the scene hierarchy.
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/cloning-entities.html
 /// </para>
 /// </summary>
 public class CloneEntityDemo : SyncScript
 {
 public Entity MasterSword;

 private Entity clone1;
 private Entity clone2;
 private Entity clone3;

 public override void Start()
 {
 // Clone 0

https://www.youtube.com/watch?v=klcTyUDI1yg

50 / 125

 // The Clone method clones an existing entity, including all of its components
 // However, if we don't add it to the scene, we will never get to see it.
 var clone0 = MasterSword.Clone();
 clone0.Transform.Position += new Vector3(0, 1, 0);

 // Clone 1
 // We can add Clone1 to the same scene that the current entity is part of
 clone1 = MasterSword.Clone();
 Entity.Scene.Entities.Add(clone1);
 // The cloned entity will be at the same worldposition as the original
Sword entity
 // Move it to the right so that we can see it
 clone1.Transform.Position += new Vector3(-1, 0, 0);
 clone1.Transform.Scale *= new Vector3(0.8f);

 // Clone 2
 // We can also add a cloned entity as a child of an existing entity.
 clone2 = MasterSword.Clone();
 Entity.AddChild(clone2);
 clone2.Transform.Position += new Vector3(1, 0, 0);
 clone2.Transform.Scale = new Vector3(0.6f);

 // Clone 3
 // We can also add a cloned entity as a child of an existing entity by setting
the parent
 // That means it will use the parent's world position + parent's local position
 clone3 = MasterSword.Clone();
 clone3.Transform.Parent = Entity.Transform; // Or
Entity.SetParent(Entity.Transform)
 clone3.Transform.Position += new Vector3(0, 0, -0.5f);
 clone3.Transform.Scale = new Vector3(0.4f);
 }

 public override void Update()
 {
 DebugText.Print("This is the MasterSword, with a Z of 1", new Int2(500, 320));
 DebugText.Print("Clone 0 has not been added to the scene and is therefore not
visible", new Int2(600, 250));

 DebugText.Print("Clone 1 is placed in the same scene as the entity with the
script", new Int2(700, 600));
 DebugText.Print("Clone 1 got the same world position as the 'MasterSword'...",
new Int2(700, 620));

51 / 125

 DebugText.Print("... and was then moved to the right", new Int2(700, 640));

 DebugText.Print("Clone 2 and 3 are a child of 'MasterSword'.", new
Int2(330, 600));
 }
 }
}

52 / 125

Removing entities
You can find this sample in the tutorial project: Menu → Removing entities

Explanation
This C# Beginner tutorial covers how to remove existing entities from the scene and how to remove an
entity that is a child of another entity.

When we add entities to the Scene root we can remove that entity again by accessing the scene.Entities
property. Entities that are added as children of other entities can be removed by accessing the children
of an entity.

53 / 125

Code

Stride tutorial | C# beginner #10 | Removing entitiesStride tutorial | C# beginner #10 | Removing entities

using Stride.Core.Mathematics;
using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script demonstrates how to remove an existing entity from the scene hierarchy.
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/removing-entities.html
 /// </para>
 /// </summary>
 public class RemoveEntitiesDemo : SyncScript
 {
 public Entity EntityToClone;

 private Entity clonedEntity1;
 private Entity clonedEntity2;
 private float timer = 0;

 private float currentTimer = 0;
 private float existTime = 4;
 private float goneTime = 2;

https://www.youtube.com/watch?v=TzwGe4RzAb4

54 / 125

 private bool entitiesExist = false;

 public override void Start()
 {
 CloneEntityAndAddToScene();
 CloneEntityAndAddAsChild();
 entitiesExist = true;
 }

 /// This method clones an entity, adds it as a child of the current entity
 private void CloneEntityAndAddAsChild()
 {
 clonedEntity1 = EntityToClone.Clone();
 clonedEntity1.Transform.Position = new Vector3(0);
 Entity.AddChild(clonedEntity1);
 }

 /// This method clones an entity, adds it to the scene root
 private void CloneEntityAndAddToScene()
 {
 clonedEntity2 = EntityToClone.Clone();
 clonedEntity2.Transform.Position += new Vector3(0, 0, -0.5f);
 Entity.Scene.Entities.Add(clonedEntity2);
 }

 public override void Update()
 {
 // We use a simple timer
 timer += (float)Game.UpdateTime.Elapsed.TotalSeconds;
 if (timer > currentTimer)
 {
 // If the entities exist, we remove them from the scene
 if (entitiesExist)
 {
 // We remove the cloned entity that is a child of the current entity
 Entity.RemoveChild(clonedEntity1); // Alternative:
clonedEntity1.Transform.Parent = null;

 // We remove the cloned entity from the scene root
 Entity.Scene.Entities.Remove(clonedEntity2);

 // We also need to set the clones to null, otherwise the clones
still exist
 clonedEntity1 = null;
 clonedEntity2 = null;

55 / 125

 entitiesExist = false;
 currentTimer = goneTime;
 }
 else // If the entities don't exist, we create new clones
 {
 CloneEntityAndAddToScene();
 CloneEntityAndAddAsChild();
 entitiesExist = true;

 currentTimer = existTime;
 }

 // Reset timer
 timer = 0;
 }

 DebugText.Print("For " + existTime.ToString() + " seconds: ", new
Int2(860, 240));
 DebugText.Print("- Clone 1 is a child of the script entity", new
Int2(860, 260));
 DebugText.Print("- Clone 2 is a child of the scene root", new Int2(860, 280));
 DebugText.Print("For " + goneTime.ToString() + " seconds, the cloned entities
are gone", new Int2(860, 300));

 if (entitiesExist)
 {
 DebugText.Print("Cloned entity 1 is a child of the Script entity", new
Int2(450, 350));
 DebugText.Print("Cloned entity 2 is in the scene root", new Int2(450, 600));
 }
 else
 {
 DebugText.Print("Cloned entity 1 and 2 have been removed", new
Int2(450, 600));
 }
 }
 }
}

56 / 125

Mouse input
You can find this sample in the tutorial project: Menu → Mouse input

Explanation
This C# Beginner tutorial covers how to handle mouse input.

We can check for the existence of a mouse and then we can use various methods to check if a mouse
buttons are clicked, held down or released.

We can also check for the mouse wheel (middle mouse) being clicked. We can use the mouse wheel
delta to determine if the mouse wheel has been scrolled in a frame.

And finally we learn how to use the absolute mouse position to draw text at the position of the mouse
on the screen.

57 / 125

Code

Stride tutorial | C# beginner #11 | Mouse inputStride tutorial | C# beginner #11 | Mouse input

using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Input;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script demonstrates how to check for any mouse input.
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/mouse-input.html
 /// </para>
 /// </summary>
 public class MouseInputDemo : SyncScript
 {
 public Entity BlueTeapot;
 public Entity YellowTeapot;
 public Entity GreenTeapot;
 public Entity PinkTeapot;

 private float currentScrollIndex = 0;

 public override void Start() { }

https://www.youtube.com/watch?v=HuA80JIZ8hA

58 / 125

 public override void Update()
 {
 // First lets check if we have a mouse.
 if (Input.HasMouse)
 {
 // Key down is used for when a key is being held down.
 DebugText.Print("Hold the left mouse button down to rotate the blue teapot",
new Int2(400, 600));
 if (Input.IsMouseButtonDown(MouseButton.Left))
 {
 var deltaTime = (float)Game.UpdateTime.Elapsed.TotalSeconds;
 BlueTeapot.Transform.Rotation *= Quaternion.RotationY(0.4f * deltaTime);
 }

 // Use 'IsMouseButtonPressed' for a single mouse click event.
 DebugText.Print("Click the right mouse button to rotate the yellow teapot",
new Int2(400, 620));
 if (Input.IsMouseButtonPressed(MouseButton.Right))
 {
 YellowTeapot.Transform.Rotation *= Quaternion.RotationY(-0.4f);
 }

 // 'IsMouseButtonReleased' is used for when you want to know when a mouse
button is released after being either held down or pressed.
 DebugText.Print("Press and release the scrollwheel to rotate the green
teapot", new Int2(400, 640));
 if (Input.IsMouseButtonReleased(MouseButton.Middle))
 {
 GreenTeapot.Transform.Rotation *= Quaternion.RotationY(0.4f);
 }

 // We can use the mousewheel delta do determine if a mousewheel has rotated.
 // Scrolling forward gives a mousewheel delta of 1, and scrolling backwards
gives a mousewheel delta of -1.
 // If in the next frame the mousewheel is not scrolled, the mouse wheel
delta is 0 again.
 currentScrollIndex += Input.MouseWheelDelta;
 DebugText.Print("Scroll the mouse wheel to rotate the pink teapot. Scroll
index: " + currentScrollIndex, new Int2(400, 660));
 PinkTeapot.Transform.Rotation = Quaternion.RotationY(0.02f
* currentScrollIndex);

 // We can draw some text at the position of our mouse by getting the
absolute mouse position
 var mousePos = Input.AbsoluteMousePosition;
 DebugText.Print("Mouse position: " + mousePos, new Int2(mousePos));

59 / 125

 }
 }
 }
}

60 / 125

Keyboard input
You can find this sample in the tutorial project: Menu → Keyboard input

Explanation
This C# Beginner tutorial covers how to handle keyboard input.

We can check for the existence of a keyboard and then we can use various methods to check if a key is
pressed, held down or released.

61 / 125

Code

Stride tutorial | C# beginner #12 | Keyboard inputStride tutorial | C# beginner #12 | Keyboard input

using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Input;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script demonstrates how to check for keyboard input.
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/keyboard-input.html
 /// </para>
 /// </summary>
 public class KeyboardInputDemo : SyncScript
 {
 public Entity BlueTeapot;
 public Entity YellowTeapot;
 public Entity GreenTeapot;

 public override void Start() { }

 public override void Update()
 {
 // First lets check if we have a keyboard.

https://www.youtube.com/watch?v=UvKizPFAego

62 / 125

 if (Input.HasKeyboard)
 {
 // Key down is used for when a key is being held down.
 DebugText.Print("Hold the 1 key down to rotate the blue teapot", new
Int2(340, 500));
 if (Input.IsKeyDown(Keys.D1))
 {
 var deltaTime = (float)Game.UpdateTime.Elapsed.TotalSeconds;
 BlueTeapot.Transform.Rotation *= Quaternion.RotationY(0.3f * deltaTime);
 }

 // Use 'IsKeyPressed' for a single key press event.
 DebugText.Print("Press F to rotate the yellow teapot (and to pay respects)",
new Int2(340, 520));
 if (Input.IsKeyPressed(Keys.F))
 {
 YellowTeapot.Transform.Rotation *= Quaternion.RotationY(-0.4f);
 }

 // 'IsKeyReleased' is used for when you want to know when a key is released
after being either held down or pressed.
 DebugText.Print("Press and release the Space bar to rotate the green
teapot", new Int2(340, 540));
 if (Input.IsKeyReleased(Keys.Space))
 {
 GreenTeapot.Transform.Rotation *= Quaternion.RotationY(0.6f);
 }
 }
 }
 }
}

63 / 125

Virtual buttons
You can find this sample in the tutorial project: Menu → Virtual buttons

Explanation
This C# Beginner tutorial covers how to create virtual buttons.

Lets say that you want a player to jump when a key is pressed. The space bar is a common option, but
what if a gamer wants to have a different key bind to this 'Jump' action?

The answer here is the 'Virtual button'. Virtual buttons allow the mapping of one or more keyboard keys,
mouse buttons or joystick buttons to a single 'Virtual button'. We can check for the name of that virtual
button to see if any of the virtual buttons are triggered.

64 / 125

Code

Stride tutorial | C# beginner #13 | Virtual buttonsStride tutorial | C# beginner #13 | Virtual buttons

using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Input;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script demonstrates how to create virtual buttons and how to use them.
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/virtual-buttons.html
 /// </para>
 /// </summary>
 public class VirtualButtonsDemo : SyncScript
 {
 public Entity BlueTeapot;

 public override void Start()
 {
 // Create a new VirtualButtonConfigSet if none exists.
 Input.VirtualButtonConfigSet = Input.VirtualButtonConfigSet ??
new VirtualButtonConfigSet();

 // Bind the "W" key and "Up arrow" to a virtual button called "Forward".

https://www.youtube.com/watch?v=uWgson2IIhs

65 / 125

 var forwardW = new VirtualButtonBinding("Forward", VirtualButton.Keyboard.W);
 var forwardUpArrow = new VirtualButtonBinding("Forward",
VirtualButton.Keyboard.Up);
 var forwardLeftMouse = new VirtualButtonBinding("Forward",
VirtualButton.Mouse.Left);
 var forwardLeftTrigger = new VirtualButtonBinding("Forward",
VirtualButton.GamePad.LeftTrigger);

 // Create a new virtual button configuration and add the virtual button bindings
 var virtualButtonForward = new VirtualButtonConfig
 {
 forwardW,
 forwardUpArrow,
 forwardLeftMouse,
 forwardLeftTrigger
 };

 // Add the virtual button binding to the virtual button configuration
 Input.VirtualButtonConfigSet.Add(virtualButtonForward);
 }

 public override void Update()
 {
 // We retrieve a float value from the virtual button.
 // When the value is higher than 0, we know that we have at least one of the
keys or mouse pressed
 // Keyboard and mouse return a value of 1 if they are being pressed.
 // Gamepads can have a more accurate value between 0 and 1 depending on how far
a trigger is being pressed
 var forward = Input.GetVirtualButton(0, "Forward");

 // Note: Gamepad sticks can be a negative value. For this example we only check
if the value is higher than 0
 if (forward > 0)
 {
 var deltaTime = (float)Game.UpdateTime.Elapsed.TotalSeconds;
 BlueTeapot.Transform.Rotation *= Quaternion.RotationY(0.6f * forward
* deltaTime);
 }

 DebugText.Print("Hold down W, the Up arrow the left mouse button or the Left
trigger on a gamepad", new Int2(600, 200));
 DebugText.Print("Virtual button 'Forward': " + forward, new Int2(600, 220));
 }
 }
}

66 / 125

Linear Interpolation
You can find this sample in the tutorial project: Menu → Linear Iterpolation

Explanation
This C# Beginner tutorial covers linear interpolation which is often shortened to 'Lerp'.

Sometimes you want to gradually change a value from a start value to a target value. This process is
called linear interpolation.

Stride exposes several Lerp functions for various types. Among them are Vector2, Vector3 and Vector4.

67 / 125

Code
The example consists of a simple timer that resets after a couple seconds. When the timer starts, a start
position and a randomly generated target position are stored. A box will move between these two
positions.

Every frame a 'Lerp value' is calculated. The lerp value is used to determined what the current position of
a moving box should be. Once the timer is done, the current position will become the start position and
a new target position is again randomly generated.

Stride tutorial | C# beginner #14 | Linear interpolationStride tutorial | C# beginner #14 | Linear interpolation

using System;
using Stride.Core.Mathematics;
using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// Liniear interpolation or in short 'Lerp' can be used to graduatly change a value
from a start value to a target value
 /// This is used during animation of models, ui elements, camera movements and many
other scenarios
 /// This example uses Lerp to graduatly move from a start vector3 coordinate to target
Vector3 coordinate
 /// The same thing can be done with Vector2 and Vector4
 /// <para>

https://www.youtube.com/watch?v=jBXGvLBwXqI

68 / 125

 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/linear-
interpolation.html
 /// </para>
 /// </summary>
 public class LerpDemo : SyncScript
 {
 public float AnimationTimer = 5.0f;

 private float elapsedTime = 0;
 private Random random = new Random();
 private Vector3 startPosition;
 private Vector3 targetPosition;

 public override void Start()
 {
 SetNewLerpTargetAndResetTimer();
 }

 public override void Update()
 {
 // Keep track of elapsed time
 var deltaTime = (float)Game.UpdateTime.Elapsed.TotalSeconds;
 elapsedTime += deltaTime;

 // In order to make use of the lerp method, we need to calculate the
'interpolation value': a value going from 0 to 1.
 var lerpValue = elapsedTime / AnimationTimer;

 // The Vector3 class exposes a 'Lerp' method that requires a start and target
position. The third argument is the lerp value.
 Entity.Transform.Position = Vector3.Lerp(startPosition,
targetPosition, lerpValue);

 // If the elapsedTime passes the animation timer we reset the timer and set a
new target
 if (elapsedTime > AnimationTimer)
 {
 SetNewLerpTargetAndResetTimer();
 }

 DebugText.Print("Elapsed time: " + elapsedTime, new Int2(480, 120));
 DebugText.Print("Lerp value: " + lerpValue, new Int2(480, 140));
 DebugText.Print("Start position: " + startPosition, new Int2(480, 160));
 DebugText.Print("Target position: " + targetPosition, new Int2(480, 180));
 }

69 / 125

 /// <summary>
 /// Resets timer, stores the current position and randomly sets a new
target position
 /// </summary>
 private void SetNewLerpTargetAndResetTimer()
 {
 elapsedTime = 0;
 startPosition = Entity.Transform.Position;
 targetPosition = new Vector3(random.Next(-2, 2), random.Next(0, 3),
random.Next(-1, 1));
 }
 }
}

70 / 125

Loading content
You can find this sample in the tutorial project: Menu → Loading content from code

Explanation
This C# Beginner tutorial covers how to load content from code.

Assets like models, textures, sound etc can be loaded from during runtime. At that point we no longer
speak of assets but of 'content'.

This tutorial specifically loads content of the Model type. Loaded content that is no longer required in
your scene, should be unloaded again so save up memory. For more information on assets see Manage
assets.

71 / 125

Code
With the L and U key you can either Load or Unload the model of a mannequin. If there is a model
loaded, you can use the S key to spawn a new entity with the loaded mannequin model.

The C clears all of the spawned entities in the scene. This demo demonstrates that when models are
unloaded, any entities that reference the model are still existing in the scene.

Stride tutorial | C# beginner #15 | Loading content from codeStride tutorial | C# beginner #15 | Loading content from code

using System;
using System.Collections.Generic;
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Input;
using Stride.Rendering;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script demonstrates how we can load contect from code, and attach it to
an entity
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/loading-content.html
 /// </para>
 /// </summary>
 public class LoadingContentDemo : SyncScript

https://www.youtube.com/watch?v=_c4Cv4k3YyI

72 / 125

 {
 private Model loadedMannequinModel = null;
 private Stack<Entity> spawnedEntities = new Stack<Entity>();
 private Random random = new Random();

 public override void Start() { }

 public override void Update()
 {
 // To load any content we use the Load method. First we need to specify the type
between the '< >'. The we provide the URL
 if (Input.IsKeyPressed(Keys.L))
 {
 loadedMannequinModel = Content.Load<Model>("Models/mannequinModel");
 }

 // To remove loaded content we use the unload method to remove all existing
models from the scene.
 // Note: when we remove content, we can no longer see the model, but the entity
still exists in the scene
 if (Input.IsKeyPressed(Keys.U))
 {
 Content.Unload(loadedMannequinModel);
 loadedMannequinModel = null;
 }

 // If the model has been loaded, create a new entity and randomly place it in
the scene
 if (Input.IsKeyPressed(Keys.S))
 {
 CreateEntityWithModelAndRandomlyPositionInScene();
 }

 // Clear all entities from the tutorial scene. This does not unload the model
 if (Input.IsKeyPressed(Keys.C))
 {
 while (spawnedEntities.Count > 0)
 {
 Entity.Scene.Entities.Remove(spawnedEntities.Pop());
 }
 }

 DebugText.Print("Model is " + (loadedMannequinModel == null ? "not loaded" :
"loaded"), new Int2(340, 580));
 DebugText.Print("Press L to load the manequin model", new Int2(340, 600));
 DebugText.Print("Press U to unload the mannequin model", new Int2(340, 620));

73 / 125

 DebugText.Print("Press S to spawn an entity if the model has been loaded", new
Int2(340, 660));
 DebugText.Print("Press C to clear all spawned entities", new Int2(340, 680));
 DebugText.Print("Spawned entities count: " + spawnedEntities.Count, new
Int2(340, 700));
 }

 private void CreateEntityWithModelAndRandomlyPositionInScene()
 {
 if (loadedMannequinModel != null)
 {
 // Create a new model component that references the loaded mannequin model
 var modelComponent = new ModelComponent(loadedMannequinModel);

 // Get a random position near the center of the scene
 var randomPosition = new Vector3(random.Next(-2, 4), 0, random.Next(-2, 2));

 // Create a new entity and attach a model component
 var entity = new Entity("My new entity with a model
component", randomPosition);
 entity.Add(modelComponent);

 // Add the new entity to the current tutorial scene
 Entity.Scene.Entities.Add(entity);

 // We add the spawned entities to a stack to keep track of them
 spawnedEntities.Push(entity);
 }
 }
 }
}

74 / 125

Instantiating Prefabs
You can find this sample in the tutorial project: Menu → Instantiating prefabs

Explanation
This C# Beginner tutorial covers how to instantiate prefabs.

A prefab is a "master" version of an object that you can reuse wherever you need. When you change the
prefab, every instance of the prefab changes too.

A prefab that is instantiated by code does not give you a new prefab object, but instead gives you a list
of entities. As long as these entities are not added to the scene, they wont be visible and attached scripts
will not be executed.

75 / 125

Code

Stride tutorial | C# beginner #16 | Instantiating prefabsStride tutorial | C# beginner #16 | Instantiating prefabs

using Stride.Core.Mathematics;
using Stride.Engine;

namespace CSharpBeginner.Code
{
 /// <summary>
 /// This script demonstrates how we can instantiate prefabs
 /// <para>
 /// https://doc.stride3d.net/latest/en/tutorials/csharpbeginner/instantiating-
prefabs.html
 /// </para>
 /// </summary>
 public class InstantiatingPrefabsDemo : SyncScript
 {
 public Prefab PileOfBoxesPrefab;
 public override void Start()
 {
 // A prefab can be instantiated. Is does not give you a new prefab, but instead
gives you a list of entities
 var pileOfBoxesInstance = PileOfBoxesPrefab.Instantiate();

 // An instantiated prefab does nothing and isn't visible untill we add it to
the scene

https://www.youtube.com/watch?v=19u2QACzdAk

76 / 125

 Entity.Scene.Entities.AddRange(pileOfBoxesInstance);

 // We can also load a prefab by using the Content.Load method
 var pileOfBoxesPrefabFromContent = Content.Load<Prefab>("Prefabs/Pile
of boxes");
 var pileOfBoxesInstance2 = pileOfBoxesPrefabFromContent.Instantiate();

 // We add the entities to a new entity that we can use a parent
 // We can easily position and rotate the parent entity
 var pileOfBoxesParent = new Entity("PileOfBoxes2", new Vector3(0, 0, -2));
 pileOfBoxesParent.Transform.Rotation = Quaternion.RotationY(135);
 foreach (var entity in pileOfBoxesInstance2)
 {
 pileOfBoxesParent.AddChild(entity);
 }
 Entity.Scene.Entities.Add(pileOfBoxesParent);
 }

 public override void Update()
 {
 DebugText.Print("The original prefab", new Int2(310, 320));
 DebugText.Print("The prefab instance PileOfBoxes", new Int2(560, 370));
 DebugText.Print("The prefab instance PileOfBoxes2 with custom parent", new
Int2(565, 650));
 }
 }
}

77 / 125

📈 C# Intermediate
11 lessons 4 hours

These tutorials cover various intermediate principles of using C# when working with the Stride game
engine.

It is recommended that you complete all the C# Beginner tutorials before moving on to the intermediate
tutorials.

To create the C# intermediate tutorial project:

1. Start the Stride launcher
2. Create a new project
3. Select the template: Tutorials -> C# intermediate

Each tutorial has a 'Start' and a 'Completed' scene.

You can view the Completed scenes to see what the end result of each tutorial will roughly look like. If you
are following along with the videos, the Start scenes serve as a good starting point. These scenes contain
only the bare minimum setup.

Stride C# intermediate YouTube tutorial series

All tutorials

Stride tutorials | Introduction to intermediate C# tutorialsStride tutorials | Introduction to intermediate C# tutorials

https://www.youtube.com/watch?list=PLRZx2y7uC8mOE6_L0ZiFxNBE7HmzU2dP7&v=-IXw64hZAqg

78 / 125

Introduction
A brief introduction to the C# intermediate
tutorials for the Stride game engine.

📺 Watch the Introduction tutorial

UI Basics
Learn about the UI editor, hooking up events,
and creating UI by code.

📺 Watch the UI Basics tutorial

Collision triggers
Explore colliders, trigger events, and colliding
entities.

📺 Watch the Collision triggers tutorial

Raycasting
Understand raycasting, collision groups, and
penetrative raycasting.

📺 Watch the Raycasting tutorial

Project and Unproject
Dive into projecting, unprojecting, and
working with viewports.

Async scripts
Discover asynchronous scripts, async collision
triggers, and async web API usage.

79 / 125

📺 Watch the Project and Unproject tutorial 📺 Watch the Async scripts tutorial

Scenes
Get familiar with child scenes, removing a
scene, and (re)loading a scene.

📺 Watch the Scenes tutorial

Animation basics
Master animation clips, playing and pausing,
and cross-fading animations.

📺 Watch the Animation basics tutorial

Audio
Learn about sounds and music, spatialized
sound, and streaming music.

📺 Watch the Audio tutorial

First person camera
Explore mouse movement, applying rotation,
and limited camera angles.

📺 Watch the First person camera tutorial

Third person camera
Understand third person offset, wall clamping,
and first person fallback.

Navigation
Dive into navigation meshes, navigation
settings, and pathfinding.

80 / 125

📺 Watch the Third person camera tutorial 📺 Watch the Navigation tutorial

81 / 125

Introduction
This is a brief introduction to the C# intermediate tutorials for the Stride game engine. We will cover how
to set up the C# tutorials project, as well as the layout of the project and how it works.

Stride tutorials | Introduction to intermediate C# tutorialsStride tutorials | Introduction to intermediate C# tutorials

https://www.youtube.com/watch?v=-IXw64hZAqg

82 / 125

UI Basics
This first C# intermediate tutorial covers the basics of creating UI with Stride.

Explanation
We will learn about the UI editor, accessing UI page elements and even how to setup UI entirely by code.
The Stride editor comes with a UI editor which we can utilize to create UI pages. We can then add UI
elements to these pages, like buttons and textfields.

Those UI elements can be referenced in code, so that can set up events like button-clicked or text-
changed.

Stride tutorial | C# intermediate #1 | UI basics - part 1Stride tutorial | C# intermediate #1 | UI basics - part 1

https://www.youtube.com/watch?v=rB5duwfs1mU

83 / 125

Stride editor UI pages
The code below will look for a Page component that has been added to the current entity. On that page
we search for UI elements like buttons and textfields. We than tell those UI elements what happens when
we click on them, or that something needs to be done when a text value changes.

Stride tutorial | C# intermediate #1 | UI basics - part 2Stride tutorial | C# intermediate #1 | UI basics - part 2

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using Stride.Engine;
using Stride.Graphics;
using Stride.UI;
using Stride.UI.Controls;
using Stride.UI.Events;

namespace CSharpIntermediate.Code
{
 public class UIByEditor : StartupScript
 {
 public SpriteFont Font;

 private TextBlock textBlock;
 private EditText editText;

https://www.youtube.com/watch?v=NnnbHn9LQUU

84 / 125

UI pages made entirely by code
This script will create everything from scratch: a UI page, a stackpanel, a button, a textfield and the
interactive logic behind it.

 public override void Start()
 {
 // Retrieve the page property from the UI component
 var page = Entity.Get<UIComponent>().Page;

 // Retrieve UI elements by Type and name
 textBlock = page.RootElement.FindVisualChildOfType<TextBlock>("MyTextBlock");
 editText = page.RootElement.FindVisualChildOfType<EditText>("MyEditText");

 // When the text changes, update the textblock
 editText.TextChanged += (s, e) =>
 {
 textBlock.Text = "My name is: " + editText.Text;
 };

 // When the button is clicked, we execute a method that clears the textbox
 var button = page.RootElement.FindVisualChildOfType<Button>("MyButton");
 button.Click += ButtonClicked;
 }

 private void ButtonClicked(object sender, RoutedEventArgs e)
 {
 // Changing the text triggers the TextChanged event again
 editText.Text = "";

 // We also want to reset the text in the textblock
 textBlock.Text = "...";
 }
 }
}

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using System;
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Graphics;
using Stride.UI;

85 / 125

using Stride.UI.Controls;
using Stride.UI.Panels;

namespace CSharpIntermediate.Code
{
 public class UIByCode : StartupScript
 {
 private SpriteFont font;
 private Button button;
 private TextBlock textBlock;

 public override void Start()
 {
 font = Content.Load<SpriteFont>("UI/OpenSans-font");
 button = CreateButton("Show me the time!");
 textBlock = CreateTextBlock("...");

 //We get or create a UI component and create a page with various elements
 var uiComponent = Entity.GetOrCreate<UIComponent>();

 uiComponent.Page = new UIPage
 {
 RootElement = new StackPanel
 {
 Height = 200,
 Width = 400,
 Margin = new Thickness(0, 0, 10, 10),
 VerticalAlignment = VerticalAlignment.Bottom,
 HorizontalAlignment = HorizontalAlignment.Right,
 BackgroundColor = new Color(0, 1, 0, 0.1f),
 Children =
 {
 button,
 textBlock
 }
 }
 };
 }

 private Button CreateButton(string buttonText)
 {
 // We create a new button. The content of the button is a TextBlock
 var button = new Button
 {
 Name = "ButtonByCode",
 HorizontalAlignment = HorizontalAlignment.Center,

86 / 125

 BackgroundColor = Color.DarkKhaki,
 Content = new TextBlock {
 Text = buttonText,
 Font = font,
 TextSize = 16,
 TextColor = Color.Black,
 VerticalAlignment = VerticalAlignment.Center
 }
 };

 // We send up the click event of the button
 button.Click += (sender, args) =>
 {
 textBlock.Text = $"Date: {DateTime.Now.ToShortTimeString()}";
 };

 return button;
 }

 private TextBlock CreateTextBlock(string defaultText)
 {
 var textBlock = new TextBlock
 {
 Name = "TextBlockByCode",
 Text = defaultText,
 Font = font,
 TextColor = Color.Yellow,
 BackgroundColor = Color.OrangeRed,
 HorizontalAlignment = HorizontalAlignment.Center
 };

 return textBlock;
 }
 }
}

87 / 125

Collision triggers
This C# intermediate tutorial covers the use of collision triggers. It teaches about rigid bodies and how to
set those up in the editor.

Explanation
Rigid bodies determine how entities in our scene behave on gravity, whether they collide with other
objects or in the case of this tutorial": trigger collision events in our code. We do this by setting up a
collider box in our scene and letting a sphere roll through this object. The events that are triggered are
then processed by the script that we will make for it.

Rigidbodies and collisions
The code below looks for the rigidbody component that is attached to our entity. The rigidbody
component contains all information we need for setting up triggers. The IsTrigger property determines
that our collider doesn't stop other physics objects, but that it does trigger events in code (if they are set
up at least).

We spawn a sphere which also has a rigidbody. This sphere has a mass and is affected by gravity. The
sphere will fall down and eventually roll through our collider box. In our update loop we check if there
are collisions happening. If there are collisions, we get the colliding object and print out some text on
screen. Once the sphere leaves the trigger box, our update loop sees that we no longer have collisions.

Stride tutorial | C# intermediate #2 | Collision triggersStride tutorial | C# intermediate #2 | Collision triggers

https://www.youtube.com/watch?v=SIy3pfoXfoQ

88 / 125

Instead of using our update loop, we can also use collision events.

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using System.Collections.Specialized;
using Stride.Core.Collections;
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Physics;

namespace CSharpIntermediate.Code
{
 public class CollisionTriggerDemo : SyncScript
 {
 StaticColliderComponent staticCollider;
 string collisionStatus = "";

 public override void Start()
 {
 // Retrieve the Physics component of the current entity
 staticCollider = Entity.Get<StaticColliderComponent>();

 // When the 'CollectionChanged' event occurs, execute the
CollisionsChanged method
 staticCollider.Collisions.CollectionChanged += CollisionsChanged;
 }

 private void CollisionsChanged(object sender, TrackingCollectionChangedEventArgs
args)
 {
 // Cast the argument 'item' to a collision object
 var collision = (Collision)args.Item;

 // We need to make sure which collision object is not the Trigger collider
 // We perform a little check to find the ballCollider
 var ballCollider = staticCollider == collision.ColliderA ? collision.ColliderB
: collision.ColliderA;

 if (args.Action == NotifyCollectionChangedAction.Add)
 {
 // When a collision has been added to the collision collection, we know an
object has 'entered' our trigger
 collisionStatus = ballCollider.Entity.Name + " entered "
+ staticCollider.Entity.Name;

89 / 125

 }
 else if (args.Action == NotifyCollectionChangedAction.Remove)
 {
 // When a collision has been removed from the collision collection, we know
an object 'left' our trigger
 collisionStatus = ballCollider.Entity.Name + " left "
+ staticCollider.Entity.Name;
 }
 }

 public override void Update()
 {
 // The trigger collider can have 0, 1, or multiple collision going on in a
single frame
 int drawX = 500, drawY = 300;
 foreach (var collision in staticCollider.Collisions)
 {
 DebugText.Print("ColliderA: " + collision.ColliderA.Entity.Name, new
Int2(drawX, drawY += 20));
 DebugText.Print("ColliderB: " + collision.ColliderB.Entity.Name, new
Int2(drawX, drawY += 20));
 }

 DebugText.Print(collisionStatus, new Int2(500, 400));
 }
 }
}

90 / 125

Raycasting
This C# Intermediate tutorial covers raycasting.

Explanation
Raycasting is an essential subject in 3D games. With raycasts we can detect if and what kinds of objects
are in our line of sight. This can be used for detecting enemies or how far an object really is.

Raycast
This script sends out a raycast from the weapons barrel and sends it to an endpoint a little further. We
check if we hit something along the way. If we do, we calculate the distance between the weapon barrel
and the hit point. We then scale a laser to that distance to visualize the actual raycast. Depending on the
collision group and filters, some objects are ignored.

Stride tutorial | C# intermediate #3 | RaycastingStride tutorial | C# intermediate #3 | Raycasting

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using CSharpIntermediate.Code.Extensions;
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Physics;

https://www.youtube.com/watch?v=uIM6jxM7OyE

91 / 125

namespace CSharpIntermediate.Code
{
 public class RaycastDemo : SyncScript
 {
 public CollisionFilterGroupFlags CollideWithGroup;
 public bool CollideWithTriggers = false;
 public Entity HitPoint;

 private const float maxDistance = 4.0f;
 private Entity laser;
 private Simulation simulation;

 public override void Start()
 {
 //Store the physics simulation object
 simulation = this.GetSimulation();
 laser = Entity.FindChild("Laser");
 }

 public override void Update()
 {
 int drawX = 340;
 int drawY = 80;
 DebugText.Print("Press Q and E to raise/lower weapons", new Int2(drawX, drawY));

 var raycastStart = Entity.Transform.Position;
 var raycastEnd = Entity.Transform.Position + new Vector3(0, 0, maxDistance);

 drawY += 40;

 // Send a raycast from the start to the endposition
 if (simulation.Raycast(raycastStart, raycastEnd, out HitResult hitResult,
CollisionFilterGroups.DefaultFilter, CollideWithGroup, CollideWithTriggers))
 {
 // If we hit something, calculate the distance to the hitpoint and scale the
laser to that distance
 HitPoint.Transform.Position = hitResult.Point;
 var distance = Vector3.Distance(hitResult.Point, raycastStart);
 laser.Transform.Scale.Z = distance;

 DebugText.Print("Hit a collider", new Int2(drawX, drawY));
 DebugText.Print($"Raycast hit distance: {distance}", new Int2(drawX, drawY
+ 20));
 DebugText.Print($"Raycast hit point: {hitResult.Point.Print()}", new
Int2(drawX, drawY + 40));

92 / 125

Penetrative raycast
In our first script, the raycast returns to us as soon as it hits the first object along its path. We can also
send out a raycast to an endpoint, and let it return to us when it has reached its endpoint. It gives us
back a list of objects that it has hit along the way. This list can be empty but also exists out of various
objects. Depending on the collision group and filters, some objects are ignored.

 DebugText.Print($"Raycast hit entity: {hitResult.Collider.Entity.Name}", new
Int2(drawX, drawY + 60));
 }
 else
 {
 // If we didn't hit anything, scale the laser to match the distance between
start and end
 HitPoint.Transform.Position = raycastEnd;
 laser.Transform.Scale.Z = Vector3.Distance(raycastStart, raycastEnd);
 DebugText.Print("No collider hit", new Int2(drawX, drawY));
 }
 }
 }
}

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using System.Collections.Generic;
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Physics;

namespace CSharpIntermediate.Code
{
 public class RaycastPenetratingDemo : SyncScript
 {
 public CollisionFilterGroupFlags CollideWithGroup;
 public bool CollideWithTriggers = false;

 private Entity laser;
 private const float maxDistance = 3.0f;
 private Simulation simulation;

 public override void Start()
 {
 simulation = this.GetSimulation();

93 / 125

 laser = Entity.FindChild("Laser");
 }

 public override void Update()
 {
 int drawX = 700;
 int drawY = 80;
 DebugText.Print("Raycast penetration demo", new Int2(drawX, drawY));

 var raycastStart = Entity.Transform.Position;
 var raycastEnd = Entity.Transform.Position + new Vector3(0, 0, -maxDistance);

 var distance = Vector3.Distance(raycastStart, raycastEnd);
 laser.Transform.Scale.Z = distance;

 var hitResults = new List<HitResult>();
 simulation.RaycastPenetrating(raycastStart, raycastEnd, hitResults,
CollisionFilterGroups.DefaultFilter, CollideWithGroup, CollideWithTriggers);

 drawY += 40;
 if (hitResults.Count > 0)
 {
 DebugText.Print($"Raycast has hit {hitResults.Count} object(s)", new
Int2(drawX, drawY));

 foreach (var hitResult in hitResults)
 {
 drawY += 20;
 DebugText.Print($"- Raycast has hit: {hitResult.Collider.Entity.Name}",
new Int2(drawX, drawY));
 }
 }
 else
 {
 DebugText.Print("No collider hit", new Int2(drawX, drawY));
 }
 }
 }
}

94 / 125

Project and Unproject
This C# Intermediate tutorial covers projecting and unprojecting coordinates from 3D to 2D and vice
versa.

Explanation
When we want to 'convert' 3D coordinates to a 2D screen, we speak 'Projecting'. The other way around is
called 'Unprojecting'. Both scenarios are fairly common in 3D games.

The 3D to 2D or projecting happens for instance when you have a 3d quest marker. When the target you
need to travel to is somewhere in front of you in the world, then you want to draw a 2D quest marker on
screen that gives you an indication of where in the 3D world that target is located.

From 2D to 3D is often used to convert a mouse coordinate into the looking direction of the camera.
This can be used for firing a weapon or setting a target on a map when playing a strategy game.

Project

Stride tutorial | C# intermediate #4 | Project and UnprojectStride tutorial | C# intermediate #4 | Project and Unproject

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using Stride.Core.Mathematics;

https://www.youtube.com/watch?v=r2sMWGPidis

95 / 125

Unproject

using Stride.Engine;
using Stride.Graphics;

namespace CSharpIntermediate.Code
{
 public class ProjectDemo : SyncScript
 {
 public Entity projectSphere;
 public Entity projectSphereChild;
 private CameraComponent camera;

 public override void Start()
 {
 camera = Entity.Get<CameraComponent>();
 }

 public override void Update()
 {
 var backBuffer = GraphicsDevice.Presenter.BackBuffer;
 var sphereProjection =
Vector3.Project(projectSphere.Transform.WorldMatrix.TranslationVector, 0, 0,
backBuffer.Width, backBuffer.Height,0, 8, camera.ViewProjectionMatrix);
 var sphereChildProjection =
Vector3.Project(projectSphereChild.Transform.WorldMatrix.TranslationVector, 0, 0,
backBuffer.Width, backBuffer.Height,0, 8, camera.ViewProjectionMatrix);

 // Similar method using Viewports
 //var viewport = new Viewport(0, 0, backBuffer.Width, backBuffer.Height);
 //var sphereProjection =
viewport.Project(projectSphere.Transform.WorldMatrix.TranslationVector,
camera.ProjectionMatrix, camera.ViewMatrix, Matrix.Identity);
 //var sphereChildProjection =
viewport.Project(projectSphereChild.Transform.WorldMatrix.TranslationVector,
camera.ProjectionMatrix, camera.ViewMatrix, Matrix.Identity);

 DebugText.Print($"Parent", new Int2(sphereProjection.XY()));
 DebugText.Print($"Child", new Int2(sphereChildProjection.XY()));
 }
 }
}

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)

96 / 125

// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Graphics;
using Stride.Input;
using Stride.Physics;

namespace CSharpIntermediate.Code
{
 public class UnprojectDemo : SyncScript
 {
 private CameraComponent camera;
 public Entity sphereToClone;

 public override void Start()
 {
 camera = Entity.Get<CameraComponent>();
 }

 public override void Update()
 {
 if (Input.IsMouseButtonPressed(MouseButton.Left))
 {
 var backBuffer = GraphicsDevice.Presenter.BackBuffer;
 var viewport = new Viewport(0, 0, backBuffer.Width, backBuffer.Height);

 var nearPosition = viewport.Unproject(new
Vector3(Input.AbsoluteMousePosition, 0.0f), camera.ProjectionMatrix,
camera.ViewMatrix, Matrix.Identity);
 var farPosition = viewport.Unproject(new
Vector3(Input.AbsoluteMousePosition, 1.0f), camera.ProjectionMatrix,
camera.ViewMatrix, Matrix.Identity);

 var hitResult = this.GetSimulation().Raycast(nearPosition, farPosition);

 // If there is a hitresult, clone the sphere and place it on that position
 if (hitResult.Succeeded)
 {
 var sphereClone = sphereToClone.Clone();
 sphereClone.Transform.Position = hitResult.Point;
 Entity.Scene.Entities.Add(sphereClone);
 }
 }
 }

97 / 125

 }
}

98 / 125

Async scripts
This C# Intermediate tutorial covers the usage of asynchronous scripts or async scripts.

Explanation
Up until this point every tutorial has been using sync scripts. That means that those scripts are executed
right after each other. If one particular sync script would take 1 second to complete, our game would
freeze that 1 second, until the update loop is complete. All of the previously made Sync scripts can be
made into an Async script.

With Async scripts we can perform heavy duty operations or reach out to an api without it freezing our
application. A game can be made entirely with either Sync or Async scripts, or a combination of them
both.

Retrieving data from a web api
A common use case for async scripts is retrieving data from a web API. Depending on the speed of the
API and the amount of data to be retrieved, this can take up to somewhere between 20 milliseconds and
2 seconds.

Stride tutorial | C# intermediate #5 | Async scriptsStride tutorial | C# intermediate #5 | Async scripts

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for

https://www.youtube.com/watch?v=xWozou1AJGM

99 / 125

more information.
using System.Collections.Generic;
using System.Net.Http;
using System.Text.Json;
using System.Threading.Tasks;
using Stride.Core.Mathematics;
using Stride.Engine;

namespace CSharpIntermediate.Code
{
 public class AsyncWebApi : AsyncScript
 {
 private List<OpenCollectiveEvent> openCollectiveEvents;

 public override async Task Execute()
 {
 openCollectiveEvents = new List<OpenCollectiveEvent>();

 while (Game.IsRunning)
 {
 int drawX = 500, drawY = 600;
 DebugText.Print($"Press A to get Api data from
https://opencollective.com/stride3d", new Int2(drawX, drawY));

 if (Input.IsKeyPressed(Stride.Input.Keys.G))
 {
 await RetrieveStrideRepos();
 await Script.NextFrame();
 }

 foreach (var openCollectiveEvent in openCollectiveEvents)
 {
 drawY += 20;
 DebugText.Print(openCollectiveEvent.Name, new Int2(drawX, drawY));
 }

 // We have to await the next frame. If we don't do this, our game will be
stuck in an infinite loop
 await Script.NextFrame();
 }
 }

 private async Task RetrieveStrideRepos()
 {
 // We can use an HttpClient to make requests to web api's
 var client = new HttpClient();

100 / 125

Async Collision trigger
In a previous tutorial we made a collision trigger script that would notify the user once an object is
passing through it. We can make a similar script using Async script.

 HttpResponseMessage response = await
client.GetAsync("https://opencollective.com/stride3d/events.json?limit=4");

 if (response.StatusCode == System.Net.HttpStatusCode.OK)
 {
 // We store the contents of the response in a string
 string responseContent = await response.Content.ReadAsStringAsync();

 // We deserialze the string into an object
 openCollectiveEvents = JsonSerializer.Deserialize<List<OpenCollectiveEvent>>
(responseContent);
 }
 }

 public class OpenCollectiveEvent
 {
 public string Name { get; set; }

 public string StartsAt { get; set; }
 }
 }
}

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using System.Threading.Tasks;
using Stride.Engine;
using Stride.Physics;
using Stride.Rendering;

namespace CSharpIntermediate.Code
{
 public class AsyncCollisionTriggerDemo : AsyncScript
 {
 private Material yellowMaterial;
 private Material redMaterial;

 public override async Task Execute()

101 / 125

 {
 // Store the collider component
 var staticCollider = Entity.Get<StaticColliderComponent>();

 //Preload some materials
 yellowMaterial = Content.Load<Material>("Materials/Yellow");

 while (Game.IsRunning)
 {
 // Wait for an entity to collide with the trigger
 var collision = await staticCollider.NewCollision();
 var ballCollider = staticCollider == collision.ColliderA ?
collision.ColliderB : collision.ColliderA;

 // Store current material
 var modelComponent = ballCollider.Entity.Get<ModelComponent>();
 var originalMaterial = modelComponent.Materials[0];

 // Change the material on the entity
 modelComponent.Materials[0] = yellowMaterial;

 // Wait for the entity to exit the trigger
 await staticCollider.CollisionEnded();

 // Alternative
 // await collision.Ended(); //This checks for the end of any collision on
the actual collision object

 // Change the material back to the original one
 modelComponent.Materials[0] = originalMaterial;
 }
 }

 public override void Cancel()
 {
 Content.Unload(yellowMaterial);
 Content.Unload(redMaterial);
 }
 }
}

102 / 125

Scenes
This C# Intermediate tutorial covers the concept of Scenes in Stride.

Explanation
Stride allows Scenes to have an infinite amount of child scenes which on their terms also can load an
infinite amount of child scenes. However, every scene loaded is unique. A scene can not be loaded twice
at the same time. Both the editor and when loading scenes through code, will prevent a scene from
being loaded twice at the same time.

Loading a child scene
This script loads in a child scene by pressing a defined key. Pressing that same key again, will unload the
loaded child scene. Every time we load the child scene again, we offset it a little in the Y direction to
demonstrate the offsetting option for child scenes.

Stride tutorial | C# intermediate #6 | Scene loadingStride tutorial | C# intermediate #6 | Scene loading

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using Stride.Core.Mathematics;
using Stride.Core.Serialization;
using Stride.Engine;

https://www.youtube.com/watch?v=G7OvA-9erpE

103 / 125

using Stride.Input;

namespace CSharpIntermediate
{
 public class LoadChildScene : SyncScript
 {
 // We can load a scene by name, however if the scene would be renamed, this property
would not update
 //public string childSceneToLoad;

 public UrlReference<Scene> childSceneToLoad;
 private int loaded = 0;
 private Scene loadedChildScene;

 public override void Update()
 {
 DebugText.Print("Press C to load/unload child scene", new Int2(20, 60));
 if (Input.IsKeyPressed(Keys.C))
 {
 if (loadedChildScene == null)
 {
 // loadedChildScene = Content.Load<Scene>(childSceneToLoad);
 // Or
 loadedChildScene = Content.Load(childSceneToLoad);
 loadedChildScene.Offset = new Vector3(0, 0.5f * loaded, 0);
 loaded++;

 // Entity.Scene.Children.Add(loadedChildScene);
 // Or
 loadedChildScene.Parent = Entity.Scene;
 }
 else
 {
 // Entity.Scene.Children.Remove(loadedChildScene);
 // Or
 loadedChildScene.Parent = null;

 Content.Unload(loadedChildScene);
 loadedChildScene = null;
 }
 }
 }
 }
}

104 / 125

(Re)loading a scene
We can get the top most scene in our world which is called the RootScene. If we unload that scene, we
can then load in a completely new scene in order to swap or switch to a new scene. That same script can
also be used to reload the same scene in case you want to restart your scene,

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using Stride.Core.Mathematics;
using Stride.Core.Serialization;
using Stride.Engine;
using Stride.Input;

namespace CSharpIntermediate
{
 public class LoadScene : SyncScript
 {
 public UrlReference<Scene> SceneToLoad;
 public int DrawY = 20;
 public string Info = "Info text";
 public Keys KeyToPress;

 public override void Update()
 {
 DebugText.Print($"{Info}: {KeyToPress}", new Int2(20, DrawY));

 if (Input.IsKeyPressed(KeyToPress))
 {
 Content.Unload(SceneSystem.SceneInstance.RootScene);
 SceneSystem.SceneInstance.RootScene = Content.Load(SceneToLoad);
 }
 }
 }
}

105 / 125

Animation basics
This C# Intermediate tutorial covers the basics of animation with Stride.

Explanation
All animations exist as animation clips assets in your project. From there on we can start, pause and fade
animations by using Stride's animation component.

Code

Stride tutorial | C# intermediate #7 | Animations basicsStride tutorial | C# intermediate #7 | Animations basics

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using System;
using Stride.Animations;
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Input;

namespace CSharpIntermediate.Code
{
 public class AnimationBasics : SyncScript
 {

https://www.youtube.com/watch?v=o924grDYDjU

106 / 125

 public float AnimationSpeed = 1.0f;
 private AnimationComponent animation;
 private PlayingAnimation latestAnimation;

 public override void Start()
 {
 animation = Entity.Get<AnimationComponent>();

 // Set the default animation
 latestAnimation = animation.Play("Idle");
 }

 public override void Update()
 {
 int drawX = 800, drawY = 600;

 StopOrResumeAnimations(drawX, drawY += 20);

 AdjustAnimationSpeed(drawX, drawY += 20);

 DebugText.Print("I to start playing Idle", new Int2(drawX, drawY += 20));
 if (Input.IsKeyPressed(Keys.I))
 {
 latestAnimation = animation.Play("Idle");
 latestAnimation.TimeFactor = AnimationSpeed;
 }

 DebugText.Print("R to crossfade to Run", new Int2(drawX, drawY += 20));
 if (Input.IsKeyPressed(Keys.R))
 {
 latestAnimation = animation.Crossfade("Run", TimeSpan.FromSeconds(0.5));
 latestAnimation.TimeFactor = AnimationSpeed;
 }

 // We can crossfade to a punch animation, but only if it is not already playing
 DebugText.Print("P to crossfade to Punch and play it once", new Int2(drawX,
drawY += 20));
 if (Input.IsKeyPressed(Keys.P) && !animation.IsPlaying("Punch"))
 {
 latestAnimation = animation.Crossfade("Punch", TimeSpan.FromSeconds(0.1));
 latestAnimation.RepeatMode = AnimationRepeatMode.PlayOnce;
 latestAnimation.TimeFactor = AnimationSpeed;
 }

 // When the punch animation is the latest animation, but it is no longer
playing, we set a new animation

107 / 125

 if (latestAnimation.Name == "Punch" && !animation.IsPlaying("Punch"))
 {
 latestAnimation = animation.Play("Idle");
 latestAnimation.RepeatMode = AnimationRepeatMode.LoopInfinite;
 latestAnimation.TimeFactor = AnimationSpeed;
 }
 }

 private void StopOrResumeAnimations(int drawX, int drawY)
 {
 DebugText.Print($"S to pause or resume animations", new Int2(drawX, drawY));
 if (Input.IsKeyPressed(Keys.S))
 {
 foreach (var playingAnimation in animation.PlayingAnimations)
 {
 playingAnimation.Enabled = !playingAnimation.Enabled;
 }
 }
 }

 private void AdjustAnimationSpeed(int drawX, int drawY)
 {
 DebugText.Print($"Q and E for speed {AnimationSpeed:0.0}", new
Int2(drawX, drawY));
 if (Input.IsKeyPressed(Keys.E))
 {
 AnimationSpeed += 0.1f;
 latestAnimation.TimeFactor = AnimationSpeed;
 }
 if (Input.IsKeyPressed(Keys.Q))
 {
 AnimationSpeed -= 0.1f;
 latestAnimation.TimeFactor = AnimationSpeed;
 }
 }
 }
}

108 / 125

Audio
This C# Intermediate tutorial covers the basics of audio in your game.

Explanation
We learn about the various types of audio formats and settings. We cover how to use 3d spatialized
audio and we also look at streaming audio.

Audio sounds and spatial sounds

Stride tutorial | C# intermediate #8 | AudioStride tutorial | C# intermediate #8 | Audio

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.

using Stride.Audio;
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Input;

namespace CSharpIntermediate.Code
{
 public class AudioDemo : SyncScript
 {

https://www.youtube.com/watch?v=Guf7PESCwnc

109 / 125

Streaming sounds

 public Sound UkuleleSound;

 private SoundInstance ukuleleInstance;
 private AudioEmitterComponent audioEmitterComponent;
 private AudioEmitterSoundController gunSoundEmitter;

 public override void Start()
 {
 // We need to create an instance of Sound object in order to play them
 ukuleleInstance = UkuleleSound.CreateInstance();

 audioEmitterComponent = Entity.Get<AudioEmitterComponent>();
 gunSoundEmitter = audioEmitterComponent["Gun"];
 }

 public override void Update()
 {
 // Play a sound
 DebugText.Print($"U to play the Ukelele once", new Int2(200, 580));
 if (Input.IsKeyPressed(Keys.U))
 {
 ukuleleInstance.Stop();
 ukuleleInstance.Play();
 }

 // Press right mouse button for gun fire sound
 DebugText.Print($"Press right mouse button fire gun", new Int2(200, 640));
 if (Input.IsMouseButtonPressed(MouseButton.Right))
 {
 gunSoundEmitter.Play();
 }
 }
 }
}

 // Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.

using System;
using System.Threading.Tasks;
using Stride.Audio;

110 / 125

using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Input;
using Stride.Media;

namespace CSharpIntermediate.Code
{
 public class LoadMusic : AsyncScript
 {
 public Sound BackgroundMusic;

 private SoundInstance musicInstance;

 public override async Task Execute()
 {
 musicInstance = BackgroundMusic.CreateInstance();

 // Wait till the music is done loading
 await musicInstance.ReadyToPlay();

 while (Game.IsRunning)
 {
 // Play or pause
 DebugText.Print($"Space to play/pause. Currently:
{musicInstance.PlayState}", new Int2(800, 580));
 if (Input.IsKeyPressed(Keys.Space))
 {
 if (musicInstance.PlayState == PlayState.Playing)
 {
 musicInstance.Pause();
 }
 else
 {
 musicInstance.Play();
 }
 }

 // Volume
 DebugText.Print($"Up/Down to change volume: {musicInstance.Volume:0.0}", new
Int2(800, 600));
 if (Input.IsKeyPressed(Keys.Up))
 {
 musicInstance.Volume = Math.Clamp(musicInstance.Volume + 0.1f, 0, 2);
 }
 if (Input.IsKeyPressed(Keys.Down))
 {

111 / 125

 musicInstance.Volume = Math.Clamp(musicInstance.Volume - 0.1f, 0, 2);
 }

 // Panning
 DebugText.Print($"Left/Right to change panning: {musicInstance.Pan:0.0}",
new Int2(800, 620));
 if (Input.IsKeyPressed(Keys.Left))
 {
 musicInstance.Pan = Math.Clamp(musicInstance.Pan - 0.1f, -1, 1);
 }
 if (Input.IsKeyPressed(Keys.Right))
 {
 musicInstance.Pan = Math.Clamp(musicInstance.Pan + 0.1f, -1, 1);
 }

 // Wait for next frame
 await Script.NextFrame();
 }
 }
 }
}

112 / 125

First person camera
This C# Intermediate tutorial covers the implementation of first person camera.

Explanation
You learn about mouse movement and how to convert that into a 3d rotation. We set up camera angle
limits and finally we apply movement to a first person character controller.

Camera controller

Stride tutorial | C# intermediate #9 | First person cameraStride tutorial | C# intermediate #9 | First person camera

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Input;
using Stride.Physics;

namespace CSharpIntermediate.Code
{
 public class FirstPersonCamera : SyncScript
 {
 public float MouseSpeed = 0.6f;

https://www.youtube.com/watch?v=MSFXydzbtuE

113 / 125

 public float MaxLookUpAngle = -50;
 public float MaxLookDownAngle = 50;
 public bool InvertMouseY = false;

 private Entity firstPersonCameraPivot;
 private Vector3 camRotation;
 private bool isActive = false;
 private Vector2 maxCameraAnglesRadians;
 private CharacterComponent character;

 public override void Start()
 {
 firstPersonCameraPivot = Entity.FindChild("CameraPivot");

 // Convert the Max camera angles from Degress to Radions
 maxCameraAnglesRadians = new Vector2(MathUtil.DegreesToRadians(MaxLookUpAngle),
MathUtil.DegreesToRadians(MaxLookDownAngle));

 // Store the initial camera rotation
 camRotation = Entity.Transform.RotationEulerXYZ;

 // Set the mouse to the middle of the screen
 Input.MousePosition = new Vector2(0.5f, 0.5f);

 isActive = true;
 Game.IsMouseVisible = false;

 character = Entity.Get<CharacterComponent>();
 }

 public override void Update()
 {
 if (Input.IsKeyPressed(Keys.Escape))
 {
 isActive = !isActive;
 Game.IsMouseVisible = !isActive;
 Input.UnlockMousePosition();
 }

 if (isActive)
 {
 Input.LockMousePosition();
 var mouseMovement = Input.MouseDelta * MouseSpeed;

 // Update camera rotation values

114 / 125

Character movement

 camRotation.Y += -mouseMovement.X;
 camRotation.X += InvertMouseY ? -mouseMovement.Y : mouseMovement.Y;
 camRotation.X = MathUtil.Clamp(camRotation.X, maxCameraAnglesRadians.X,
maxCameraAnglesRadians.Y);

 // Apply Y rotation to character entity
 character.Orientation = Quaternion.RotationY(camRotation.Y);
 // Entity.Transform.Rotation = Quaternion.RotationY(camRotation.Y);

 // Apply X camera rotation to the existing camera rotations
 firstPersonCameraPivot.Transform.Rotation =
Quaternion.RotationX(camRotation.X);
 }
 }
 }
}

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Input;
using Stride.Physics;

namespace CSharpIntermediate.Code
{
 public class CharacterMovement : SyncScript
 {
 public Vector3 MovementMultiplier = new Vector3(3, 0, 4);
 private CharacterComponent character;

 public override void Start()
 {
 character = Entity.Get<CharacterComponent>();
 }

 public override void Update()
 {
 var velocity = new Vector3();
 if (Input.IsKeyDown(Keys.W))
 {

115 / 125

 velocity.Z++;
 }
 if (Input.IsKeyDown(Keys.S))
 {
 velocity.Z--;
 }

 if (Input.IsKeyDown(Keys.A))
 {
 velocity.X++;
 }
 if (Input.IsKeyDown(Keys.D))
 {
 velocity.X--;
 }

 velocity.Normalize();
 velocity *= MovementMultiplier;
 velocity = Vector3.Transform(velocity, Entity.Transform.Rotation);
 character.SetVelocity(velocity);
 }
 }
}

116 / 125

Third person camera
This C# Intermediate tutorial covers the implementation of a third person camera.

Explanation
Since it reuses a large portion of the First person camera, it is recommended that you watch that tutorial
first.

This tutorial teaches about how to use raycasting to position the camera behind the player. If the player
is to close any walls, the camera will be moved closer to the player. Too close to the player? We simply
switch to first person mode.

Third person camera

Stride tutorial | C# intermediate #10 | Third person cameraStride tutorial | C# intermediate #10 | Third person camera

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Input;
using Stride.Physics;

namespace CSharpIntermediate.Code

https://www.youtube.com/watch?v=qSFZ4ISFcrE

117 / 125

{
 public class ThirdPersonCamera : SyncScript
 {
 public bool InvertMouseY = false;
 public Vector2 MouseSpeed = new Vector2(0.6f, 0.5f);
 public float MaxLookUpAngle = -40;
 public float MaxLookDownAngle = 40;
 public float MinimumCameraDistance = 1.5f;
 public Vector3 CameraOffset = new Vector3(0, 0, -3);

 private Entity firstPersonPivot;
 private Entity thirdPersonPivot;

 private Vector2 maxCameraAnglesRadians;
 private Vector3 camRotation;
 private bool isActive = false;
 private Simulation simulation;
 private CharacterComponent character;

 public override void Start()
 {
 Game.IsMouseVisible = false;
 isActive = true;

 firstPersonPivot = Entity.FindChild("FirstPersonPivot");
 thirdPersonPivot = Entity.FindChild("ThirdPersonPivot");

 maxCameraAnglesRadians = new Vector2(MathUtil.DegreesToRadians(MaxLookUpAngle),
MathUtil.DegreesToRadians(MaxLookDownAngle));
 camRotation = Entity.Transform.RotationEulerXYZ;
 Input.MousePosition = new Vector2(0.5f, 0.5f);
 simulation = this.GetSimulation();
 character = Entity.Get<CharacterComponent>();
 }

 public override void Update()
 {
 if (Input.IsKeyPressed(Keys.Escape))
 {
 isActive = !isActive;
 Game.IsMouseVisible = !isActive;
 Input.UnlockMousePosition();
 }

 if (isActive)
 {

118 / 125

 Input.LockMousePosition();
 var mouseMovement = -Input.MouseDelta * MouseSpeed;

 // Update rotation values with the mouse movement
 camRotation.Y += mouseMovement.X;
 camRotation.X += InvertMouseY ? mouseMovement.Y : -mouseMovement.Y;
 camRotation.X = MathUtil.Clamp(camRotation.X, maxCameraAnglesRadians.X,
maxCameraAnglesRadians.Y);

 // Apply Y rotation to character entity
 character.Orientation = Quaternion.RotationY(camRotation.Y);

 // Apply X rotation the existing first person pivot
 firstPersonPivot.Transform.Rotation = Quaternion.RotationX(camRotation.X);

 // The third person pivot gets the same position and rotation as the first
person pivot + the camera offset
 thirdPersonPivot.Transform.Position = new Vector3(0);
 thirdPersonPivot.Transform.Position += CameraOffset;

 // Make sure that the WorldMatrix of the thirdperson pivot is up to date
 thirdPersonPivot.Transform.UpdateWorldMatrix();

 // Raycast from first person pivot to third person pivot
 var raycastStart = firstPersonPivot.Transform.WorldMatrix.TranslationVector;
 var raycastEnd = thirdPersonPivot.Transform.WorldMatrix.TranslationVector;

 if (simulation.Raycast(raycastStart, raycastEnd, out HitResult hitResult))
 {
 // If we hit something along the way, calculate the distance
 var hitDistance = Vector3.Distance(raycastStart, hitResult.Point);

 if (hitDistance >= MinimumCameraDistance)
 {
 // If the distance is larger than the minimum distance, place the
camera at the hitpoint
 thirdPersonPivot.Transform.Position.Z = -(hitDistance - 0.1f);
 }
 else
 {
 // If the distance is lower than the minimum distance, place the
camera at first person pivot
 thirdPersonPivot.Transform.Position = new Vector3(0);
 }
 }
 }

119 / 125

Character movement

 }
 }
}

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Input;
using Stride.Physics;

namespace CSharpIntermediate.Code
{
 public class CharacterMovement : SyncScript
 {
 public Vector3 MovementMultiplier = new Vector3(3, 0, 4);
 private CharacterComponent character;

 public override void Start()
 {
 character = Entity.Get<CharacterComponent>();
 }

 public override void Update()
 {
 var velocity = new Vector3();
 if (Input.IsKeyDown(Keys.W))
 {
 velocity.Z++;
 }
 if (Input.IsKeyDown(Keys.S))
 {
 velocity.Z--;
 }

 if (Input.IsKeyDown(Keys.A))
 {
 velocity.X++;
 }
 if (Input.IsKeyDown(Keys.D))
 {

120 / 125

 velocity.X--;
 }

 velocity.Normalize();
 velocity *= MovementMultiplier;
 velocity = Vector3.Transform(velocity, Entity.Transform.Rotation);
 character.SetVelocity(velocity);
 }
 }
}

121 / 125

Navigation
This C# Intermediate tutorial covers the basics of the navigation system in Stride.

Explanation
In our world we can have so called 'navigation meshes'. These are meshes that are generated around
your level geometry. The navigation mesh is used to calculate the quickest path to a destination.

We learn about the editors Navigation mesh settings, navigation bounding boxes and in code we learn
how to move an object to a destination using the Navigation component that comes with the Stride
engine.

Code

Stride tutorial | C# intermediate #11 | NavigationStride tutorial | C# intermediate #11 | Navigation

// Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/
& https://stride3d.net)
// Distributed under the MIT license. See the LICENSE.md file in the project root for
more information.
using System;
using System.Collections.Generic;
using CSharpIntermediate.Code.Extensions;
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Graphics;

https://www.youtube.com/watch?v=_r7RAM-3neY

122 / 125

using Stride.Input;
using Stride.Navigation;
using Stride.Physics;

namespace CSharpIntermediate.Code
{
 public class NavigateCharacter : SyncScript
 {
 public Entity RegularCharacter;
 public Entity PathSphere;
 public float MovementSpeed;

 private NavigationComponent navigationComponent;
 private List<Vector3> waypoints = new();
 private List<Entity> wayPointSpheres = new();
 private int waypointIndex = 0;

 public override void Start()
 {
 navigationComponent = RegularCharacter.Get<NavigationComponent>();
 }

 public override void Update()
 {
 DebugText.Print($"Left click to set Regular character target", new
Int2(200, 20));
 if (Input.IsMouseButtonPressed(MouseButton.Left))
 {
 CleanupExistingPath();
 SetTarget();
 }

 UpdateMovement();
 }

 private void UpdateMovement()
 {
 if (waypoints.Count == 0)
 {
 DebugText.Print($"No target", new Int2(200, 60));
 return;
 }

 var deltaTime = (float)Game.UpdateTime.Elapsed.TotalSeconds;
 var curPosition = RegularCharacter.Transform.WorldMatrix.TranslationVector;
 var nextWaypointPosition = waypoints[waypointIndex];

123 / 125

 var distanceToWaypoint = Vector3.Distance(curPosition, nextWaypointPosition);

 DebugText.Print($"Distance to waypoint {distanceToWaypoint.ToString("0.0")} ",
new Int2(200, 60));

 // When the distance between the character and the next waypoint is large
enough, move closer to the waypoint
 if (distanceToWaypoint > 0.1)
 {
 var direction = nextWaypointPosition - curPosition;
 direction.Normalize();
 direction *= MovementSpeed * deltaTime;

 RegularCharacter.Transform.Position += direction;
 }
 else
 {
 // If we are close enough to the waypoint, set the next waypoint or we are
done and we do a final cleanup
 if(waypointIndex+1 < waypoints.Count)
 {
 waypointIndex++;
 }
 else
 {
 CleanupExistingPath();
 }
 }
 }

 private void SetTarget()
 {
 // Determine the 3d position in our scene, based on were our mouse is
 var backBuffer = GraphicsDevice.Presenter.BackBuffer;
 var viewport = new Viewport(0, 0, backBuffer.Width, backBuffer.Height);
 var camera = Entity.Get<CameraComponent>();
 var nearPosition = viewport.Unproject(new Vector3(Input.AbsoluteMousePosition,
0.0f), camera.ProjectionMatrix, camera.ViewMatrix, Matrix.Identity);
 var farPosition = viewport.Unproject(new Vector3(Input.AbsoluteMousePosition,
1.0f), camera.ProjectionMatrix, camera.ViewMatrix, Matrix.Identity);

 var hitResult = this.GetSimulation().Raycast(nearPosition, farPosition);

 if (hitResult.Succeeded)
 {
 // Try to find the path to the hit point and store the path in the

124 / 125

Waypoints variable
 if (navigationComponent.TryFindPath(hitResult.Point, waypoints))
 {
 waypointIndex = 0;

 // For each waypoint create a waypoint sphere and add it to the scene
 foreach (var waypoint in waypoints)
 {
 var waypointSphere = PathSphere.Clone();
 waypointSphere.Transform.Position = waypoint;

 wayPointSpheres.Add(waypointSphere);
 Entity.Scene.Entities.Add(waypointSphere);
 }
 }
 }
 }

 // Cleans up the waypoints in the scene and the waypoint information in mememory
 private void CleanupExistingPath()
 {
 foreach (var waypointSphere in wayPointSpheres)
 {
 Entity.Scene.Entities.Remove(waypointSphere);
 }
 wayPointSpheres.Clear();
 waypoints.Clear();
 }
 }
}

125 / 125

⚡ Quick Tutorials
1 lesson 4 minutes

These tutorials provide bite-sized lessons to help you get up to speed with the Stride game engine in no
time.

Stride Quick tutorials YouTube series

Stride tutorial | Quicktip #1 | Custom dropdown propertiesStride tutorial | Quicktip #1 | Custom dropdown properties

https://www.youtube.com/watch?list=PLRZx2y7uC8mMUf0W02IzQl5UcaB--vfft&v=hjScw6Xp2gY

	🎓 Tutorials
	🛠️ Game studio (1 hour)
	Stride launcher
	Main interface
	Navigating the scene
	Scene management
	Transforming entities
	Asset pipeline
	Importing resources
	Textures
	Materials
	Models
	Physics intro
	Static colliders

	🌱 C# Beginner (2.5 hours)
	Introduction
	Getting the entity
	Child entities
	Transform position
	Editor properties
	Getting a component
	Adding a component
	DeltaTime
	Cloning an entity
	Removing an entity
	Mouse input
	Keyboard input
	Virtual buttons
	Linear Interpolation
	Loading content
	Instantiating prefabs

	📈 C# Intermediate (4 hours)
	Introduction
	UI basics
	Collision triggers
	Raycasting
	Project and Unproject
	Async scripts
	Scenes
	Animation
	Audio
	First person camera
	Third person camera
	Navigation

	⚡ Quick Tutorials
	Custom dropdown properties

