
1

Ways to contribute
Stride is a non-profit, community-driven, free and open source project. There are no full-time developers
dedicated solely to Stride's advancement; instead, the engine progresses through the voluntary
contributions of both the core team and the broader community.

In order to thrive, Stride requires the help from other community members. There are various ways you
can help:

Community activity🤝

To make Stride better, just use it and tell others about it in your blogs, videos, and events. Get involved in
discussions on Discord and GitHub Discussion . Being a user and spreading the word is vital for our
engine, as we don't have a big marketing budget and rely on the community to grow.

Make games 🕹

The best way to promote Stride is by creating a cool demo or, even better, a full game. Having people
see and play an actual game made with Stride is the most effective form of advertisement.

Donate 💸
We utilize Open Collective for fundraising. The funds collected are allocated towards bug bounties and
compensating individuals contracted for paid work.

Submit bug reports 🐛
Making Stride more stable greatly improves usability and user satisfaction. So if you encounter a bug
during development, please contribute by reporting it on GitHub .

PR reviews 🔭
Contributing to Pull Requests (PRs) is excellent as it enables active participation without local builds.
Reviewing and offering feedback in this collaborative process enhances code quality and maintains
project standards, fostering a sense of community and knowledge sharing.

Contribute code 🤖
If you're passionate about C# and want to contribute by building features or fixing bugs in Stride, dive
into the source code and get involved! Have a look at the GitHub issues label Good first issue or
funded Open Collective projects

Contribute to Documentation
Enhance the official documentation and tutorials by expanding the manual or creating textual/video
guides. Your contributions will greatly improve accessibility and understanding for users.

https://discord.gg/f6aerfE
https://discord.gg/f6aerfE
https://github.com/stride3d/stride/discussions
https://github.com/stride3d/stride/wiki/Community-Projects
https://github.com/stride3d/stride/issues
https://github.com/stride3d/stride/issues
https://github.com/stride3d/stride/pulls
https://github.com/stride3d/stride/labels/good%20first%20issue
https://opencollective.com/stride3d/projects

2

Contribute to Website 🌐
Enhance the official Stride website. Is design more your thing, or do you have an interesting blog post? It
will all help us spread the word of Stride.

3

Donating to Stride
In order to support our contributors or if we want to finance a specific feature, we collect donations from
individuals as well as organisations.

Open Collective
We gather funding through a website called OpenCollective . This website displays where all the money
is coming from and where it is going to: 100% transparency guaranteed.

Projects
Stride's Open Collective hosts different 'Projects ' — think of them as funding goals for specific features
or contributions. Each project typically has a related GitHub ticket for more details on what's required for
its development. If you're interested in working on or contributing to a particular feature, you can let us
know by either replying:

In each projects related GitHub thread and mention @stride3d/stride-contributors
In the Stride Contributors channel on Discord

https://opencollective.com/stride3d
https://opencollective.com/stride3d/projects
https://discord.gg/bDhMhGVHvD

4

Contribution Workflow for Stride Projects
This guide outlines the fundamental workflow for contributing to various Stride projects, including the
Stride Engine, Stride website, and Stride documentation. Whether you're a seasoned contributor or new
to the project, this workflow ensures your contributions are effectively integrated.

Overview
The contribution process involves several key steps, from forking the repository to having your changes
merged into the main project. This workflow is applicable to contributions to the Stride Engine, Stride
website, and Stride documentation.

5

Yes

No

Yes

Start

Fork the Repository

Create Branch 'X'

Make Updates on Branch 'X'

Has the Upstream Changed?

Sync/Merge Upstream to Forked Main Branch

Sync/Merge Forked Main Branch to Branch 'X'

Test your updates

6

Detailed Steps
1. Fork the Repository: Start by forking the repository of the project you wish to contribute to
2. Create a Branch: Name your branch appropriately and start making your changes
3. Make and Test Updates: Implement your changes and test them within your branch
4. Review and Create a PR: Review your updates and create a Pull Request to the main repository
5. Address Feedback: If there is any feedback on your PR, address it to improve your contribution
6. Final Merging: Once your PR is approved, it will be merged into the main project

Best Practices
1. Ensure your updates align with the project goals and guidelines
2. Keep your fork synchronized with the main repository to avoid conflicts
3. Engage with the Stride community for support and collaboration

For more specific guidelines related to each project, refer to their respective contribution documentation.

No

Create a Pull Request (PR)

Address PR Feedback

Wait for the PR to be Merged

Sync/Merge Upstream to Your Forked Main Branch

Do You Want to Make More Updates?

End

7

Contribute to Stride engine
Here you can find various pages describing building the source locally for different systems. You can also
find information about Stride's architecture.

Contribute code
Want to help out fixing bugs or making new features? Check out how you can do so.

Bug bounties
Here you can learn about the process on our bug bounty process.

Building on Windows
Building and running the Stride engine locally on Windows using Visual Studio or other IDEs.

Localization
Learn how manage translations for the engine.

Hot reloading shaders
Learn about hot reloading shaders.

Source debugging
Learn how to do source debugging.

Visual studio plugin
Learn about the Visual studio plugin for shader development.

Architecture 🧬
Build details
Details on the building process of the Stride engine.

Dependency graph
A graphical overview of Stride's Assemblies, NameSpaces and Core methods.

8

Contribute Code
If you are a developer and you want to help building Stride even more awesome, than you can do so in
various ways.

Check our issue tracker
If you are just getting started with Stride, issues marked with 'good first issue' can be a good entry
point. Please take a look at our issue tracker for other issues.

We also have funded Open Collective Projects in case you want to earn a little extra. These are either
Bug bounties

Notify users
Once you start working on an issue, leave a message on the appropriate issue or create one if none
exists to:

You can always check on Github or Discord if you need to get started somewhere or if you need a
general sense of approaching an issue.
Make sure that no one else is working on that same issue
Lay out your plans and discuss it with collaborators and users to make sure it is properly
architectured and would fit well in the project

Coding style
Please use and follow Stride's .editorconfig when making changes to files.

Submitting Changes
Push your changes to a specific branch in your fork.
Use that branch to create and fill out a pull request to the official repository.
After creating that pull request and if it's your first time contributing a CLA assistant will ask you to
sign the .NET Foundation Contribution License Agreement .

https://github.com/stride3d/stride/labels/good%20first%20issue
https://github.com/stride3d/stride/issues
https://opencollective.com/stride3d/projects/
https://cla-assistant.io/
https://dotnetfoundation.org/docs/default-source/default-document-library/contribution-license-agreement.pdf?sfvrsn=40626e42_3

9

Bug bounties
If you are a developer with solid experience in C#, rendering techniques, or game development, we want
to hire you! We have allocated funds from supporters on OpenCollective and will pay you for your
work on certain issues.

You can find issues with bounties here .

If the issue you want to work on doesn't have a bounty associated to it, feel free to get in touch with us
by creating a new issue or adding your message to an existing one, tagging us with @stride3d/@stride-
contributors and sharing your email address or Discord handle. You can also do it directly through
Discord by sending a message in #github-pr-and-issues with the @Developer tag.

If you are interested in tackling one of those issues:

Reply in the thread and tag @stride3d/@stride-contributors
We'll get back to you and reserve that issue to your name.
You can then create a new pull request and we'll review it.
Once merged in you will receive 60% of the bounty and the other 40% on the next official release of
the engine.

Payment info
Stride uses the Open source collective as our Fiscal host which approves the payments. They process
payouts twice weekly, once they have been approved by the admins of the Collective. They make
payments via PayPal and Wise, and can only make payouts to countries served by these payment
processors.

You can go to the specific bug bounty on Stride's Open Collective for payment:

https://opencollective.com/stride3d
https://github.com/stride3d/stride/labels/bounty
https://opencollective.com/stride3d

10

Building the source to Stride engine
Prerequisites

1. Latest Git with Large File Support selected in the setup on the components dialog.
2. DotNet SDK 6.0

Run dotnet --info in a console or powershell window to see which versions you have installed
3. Visual Studio 2022 with the following workloads:

.NET desktop development with .NET Framework 4.7.2 targeting pack
Desktop development with C++ with

Windows 10 SDK (10.0.18362.0) (it's currently enabled by default but it might change)
MSVC v143 - VS2022 C++ x64/x86 build tools (v14.30) or later version (should be enabled
by default)
C++/CLI support for v143 build tools (v14.30) or later version (not enabled by default)

Optional (to target iOS/Android): Mobile development with .NET and Android SDK setup (API
level 27) individual component, then in Visual Studio go to Tools > Android > Android SDK
Manager and install NDK (version 19+) from Tools tab.

4. FBX SDK 2019.0 VS2015

Build Stride with Visual studio 2022
Here are the steps to build Stride with Visual Studio. If you do not have or want to use Visual Studio, see
building with other IDEs

1. Open a command prompt, point it to a directory and clone Stride to it: git clone
https://github.com/stride3d/stride.git

Note that when you use GitHub -> Code -> Download ZIP, this doesn't support Large File
Support lfs, make sure you use the command above or that your git client does it for you

2. Open <StrideDir>\build\Stride.sln with Visual Studio 2022 and build Stride.GameStudio in the 60-
Editor solution folder (it should be the default startup project) or run it from VS's toolbar.

Optionally, open and build Stride.Android.sln, Stride.iOS.sln, etc.

If building failed
If you skipped one of the Prerequisites thinking that you already have the latest version, update to
the latest anyway just to be sure.
Visual Studio might have issues properly building if an anterior version is present alongside 2022. If
you want to keep those version make sure that they are up to date and that you are building Stride
through VS 2022.
Your system's PATH should not contain older versions of MSBuild (ex: ...\Microsoft Visual
Studio\2019\BuildTools\MSBuild\Current\Bin should be removed)
Some changes might require a system reboot, try that if you haven't yet.

https://git-scm.com/downloads
https://dotnet.microsoft.com/en-us/download/dotnet/6.0
https://www.visualstudio.com/downloads/
https://www.autodesk.com/developer-network/platform-technologies/fbx-sdk-2019-0

11

Make sure that Git, Git LFS and Visual Studio can access the internet.
Close VS, clear the nuget cache (in your cmd dotnet nuget locals all --clear), delete the hidden
.vs folder inside \build and the files inside bin\packages, kill any msbuild and other vs processes,
build the whole solution then build and run GameStudio.

Do note that test solutions might fail but it should not prevent you from building Stride.GameStudio.

Other IDEs
You are not required to use Visual Studio to build the Stride engine with Visual Studio. You can also build
entirely from command line or other IDE's such as Rider or Visual Studio Code

12

Localization
You can help us translate Stride, by updating existing translations and/or adding new language at
https://hosted.weblate.org/projects/stride/

Translation are manually merged back from weblate branch to master branch.

Activate new language in Game Studio
Once a new language has been added on weblate, it needs to be activated in the Game Studio during
build & startup.

Please check commit https://github.com/stride3d/stride/commit/c70f07f449 for an example on how to
add a new language in Game Studio.

https://hosted.weblate.org/projects/stride/
https://github.com/stride3d/stride/commit/c70f07f449

13

Hot Reloading Engine Shaders in Editor
GameStudio automatically reloads project shaders on every file change, it can also reload engine shaders
but the files the engine is looking at to synchronize those changes are located inside of the nuget
packages C:\Users\[USERNAME]\.nuget\packages\stride.rendering\4.1.0.1-
beta\stride\Assets\Shadows\ShadowMapCommon.sdsl for example.

If you still can't find where it's looking for with a specific file you can put a conditional breakpoint on the
directoryWatcher.Track line with an expression like filePath.Contains("NameOfYourShader") and your
IDE will break whenever that file is tracked, you can then inspect the value for filePath in your
IDE/debugger's locals and it'll contain the full path to that file.

Don't forget to apply back the changes you made to the files in the nuget package to the files in your
repo.

https://github.com/stride3d/stride/blob/master/sources/engine/Stride.Rendering/Rendering/EffectSystem.cs#L232

14

Setting Up Source Debugging in VS
First, make sure source debugging external dependencies is enabled:

Make sure "Debug Just My Code" is disabled , in Tools -> Options -> Debugging.

Stride builds the PDB files right into the normal .nupkg files. When debugging a public release,
SourceLink should cause Visual Studio to download source files right from github when stepping into
them.

Because of the way Visual Studio tracks down source files while stepping, one can't Goto-Definition for
types in dependencies in VS Community . The workaround is to first step into the dependency to get
the source loaded. Alternatively, one can pay for .NET Reflector, VSPro, or Resharper, which fix this in
Visual Studio.

Set symbol (.pdb) and source files in the debugger - Visual Studio | Microsoft Docs

One day it might be nice to support .snupkg or .source.nupkg files, so the base packages could be
smaller. However, it's not a big deal.

Creating SourceLens symbol packages
Source Link and .NET libraries | Microsoft Docs
How to Debug a .NET Core NuGet Package

Related Discussions
https://github.com/stride3d/stride/discussions/1116

https://docs.microsoft.com/en-us/visualstudio/debugger/just-my-code?view=vs-2019
https://stackoverflow.com/questions/13203346/go-to-definition-in-visual-studio-only-brings-up-the-metadata-for-non-project
https://docs.microsoft.com/en-us/visualstudio/debugger/specify-symbol-dot-pdb-and-source-files-in-the-visual-studio-debugger?view=vs-2019
https://docs.microsoft.com/en-us/nuget/create-packages/symbol-packages-snupkg
https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/sourcelink
https://geeklearning.io/how-to-debug-a-net-core-nuget-package/
https://github.com/stride3d/stride/discussions/1116

15

Visual Studio Plugin
The Stride Visual Studio Plugin adds:

syntax highlighting for Stride .sdsl shaders (formerly .xlsl)
generates shader key files (.sdsl.cs) which create type definitions and ParameterKey values for the
shader parameters
generates shader effect files (.sdfx.cs)

Whenever you edit a shader file, the plug-in recompiles the C# key and effect files, so your C# code can
reference elements necessary for your shader.

The code generation happens by looking at your game version loading the Shader Compiler
dependency in the game build, and running the shader compiler.

The Visual Studio Plugin Code lives in:
https://github.com/stride3d/stride/tree/master/sources/tools/Stride.VisualStudio.Package

Install the Stride Visual Studio extension by using the button in the Stride Launcher:

You can check that the Stride Visual Studio plugin is installed in Visual Studio by going to Extensions->
Manage Extensions, and looking for the Stride Extension.

https://github.com/stride3d/stride/tree/master/sources/tools/Stride.VisualStudio.Package

16

Engine architecture
General explanation of Stride engine source

Build details
Details on the building process of the Stride engine.

Dependency graph
A graphical overview of Stride's Assemblies, NameSpaces and Core methods.

Copy and paste
This document outlines the design and implementation of the copy and paste functionality in Stride. The
document details the goals, scope, and current state of the feature, along with the workflow and
implementation details. It explains how the copy and paste operations are handled, the role of the
ICopyPasteService interface, and the use of copy, paste, and post-paste processors. The document also
discusses the handling of data serialization and the use of editor commands for copy and paste
operations.

17

Build details
This is a technical description what happens in our build and how it is organized. This covers mostly the
build architecture of Stride itself.

Targets contains the MSBuild target files used by Games
sources/common/targets (generic) and sources/targets (Stride-specific) contains the MSBuild
target files used to build Stride itself.

Since 3.1, we switched from our custom build system to the new csproj system with one nuget package
per assembly.

We use TargetFrameworks to properly compile the different platforms using a single project (Android,
iOS, etc...).

Also, we use RuntimeIdentifiers to select graphics platform. MSBuild.Sdk.Extras is used to properly
build NuGet packages with multiple RuntimeIdentifiers (not supported out of the box).

Limitations
Dependencies are per TargetFramework and can't be done per RuntimeIdentifier (tracked in
NuGet#1660).

NuGet resolver
Since we want to package tools (i.e. GameStudio, ConnectionRouter, CompilerApp) with a package that
contains only the executable with proper dependencies to other NuGet runtime packages, we use NuGet
API to resolve assemblies at runtime.

The code responsible for this is located in Stride.NuGetResolver .

Later, we might want to take advantage of .NET Core dependency resolving to do that natively. Also, we
might want to use actual project information/dependencies to resolve to different runtime assemblies
and better support plugins.

Versioning
Stride is versioned using SharedAssemblyInfo.cs. For example, assuming version 4.1.3.135+gfa0f5cc4:

4.1 is the Stride major and minor version, as they are grouped in the launcher. Versions inside this
group shouldn't have breaking changes
3 is the asset version. This can be bumped if asset files require some upgrade.
135 is the git height (number of commits since 4.1.3 is set), computed automatically when building
packages. Note: when building packages locally, this will typically be 1. This is the reason why the

https://github.com/stride3d/stride/tree/master/sources/targets
https://github.com/onovotny/MSBuildSdkExtras
https://github.com/NuGet/Home/issues/1660
https://github.com/stride3d/stride/tree/master/sources/shared/Stride.NuGetResolver

18

asset version needs to be bumped when asset changes to keep things ordered (otherwise the git
height version 1 will always be lower than official version).
+gfa0f5cc4 means git commit fa0f5cc4

Assembly processor
Assembly processor is run by both Game and Stride targets.

It performs various transforms to the compiled assemblies:

Generate DataSerializer serialization code (and merge it back in assembly using IL-Repack)
Generate UpdateEngine code
Scan for types or attributes with [ScanAssembly] to quickly enumerate them without needing
Assembly.GetTypes()

Optimize calls to Stride.Core.Utilities
Automatically call methods tagged with ModuleInitializer
Cache lambdas and various other code generation related to Dispatcher
A few other internal tasks

For performance reasons, it is run as a MSBuild Task (avoid reload/JIT-ing). If you wish to make it run the
executable directly, set StrideAssemblyProcessorDev to true.

Dependencies
We want an easy mechanism to attach some files to copy alongside a referenced .dll or .exe, including
content and native libraries.

As a result, <StrideContent> and <StrideNativeLib> item types were added.

When a project declare them, they will be saved alongside the assembly with extension .ssdeps, to
instruct referencing projects what needs to be copied.

Also, for the specific case of <StrideNativeLib>, we automatically copy them in appropriate folders and
link them if necessary.

Note: we don't apply them transitively yet (project output won't contains the .ssdeps file anymore so it is
mostly useful to reference from executables/apps directly)

Native
By adding a reference to Stride.Native.targets, it is easy to build some C/C++ files that will be
compiled on all platforms and automatically added to the .ssdeps file.

Limitations

https://github.com/stride3d/stride/blob/master/sources/core/Stride.Core/Serialization/DataSerializer.cs
https://github.com/stride3d/stride/blob/master/sources/engine/Stride.Engine/Updater/UpdateEngine.cs
https://github.com/stride3d/stride/blob/master/sources/core/Stride.Core/Utilities.cs
https://github.com/stride3d/stride/blob/master/sources/core/Stride.Core/ModuleInitializerAttribute.cs
https://github.com/stride3d/stride/blob/master/sources/core/Stride.Core/Threading/Dispatcher.cs

19

It seems that using those optimization don't work well with shadow copying and probing privatePath .
This forces us to copy the Direct3D11 specific assemblies to the top level Windows folder at startup of
some tools. This is little bit unfortunate as it seems to disturb the MSBuild assembly searching (happens
before $(AssemblySearchPaths)). As a result, inside Stride solution it is necessary to explicitly add
<ProjectReference> to the graphics specific assemblies otherwise wrong ones might be picked up.

This will require further investigation to avoid this copying at all.

Asset Compiler
Both Games and Stride unit tests are running the asset compiler as part of the build process to create
assets.

https://msdn.microsoft.com/en-us/library/823z9h8w(v=vs.110).aspx

20

Dependency graph
Assemblies

Stride.Core

Stride.Core.IO Stride.Core
.MicroThreading

Stride.Core.SerializationStride.Core.Mathematics

Stride.Core.Reflection

Stride.Core.Yaml

Stride.Core.Design

Stride.Core.Translation

Stride.Core.Presentation

Stride.Core.BuildEngine
.Common

Stride.Core.Packages

Stride.Core.Assets
Stride.Core.Quantum

Stride.Core.Presentation
.Quantum

Stride.Core.Translation
.Presentation

Stride.Core.Assets
.Quantum

Stride.Core.Presentation
.Dialogs

Stride.Core.Assets.Editor Stride

Stride.Shaders Stride.Native

Stride.Graphics

Stride.Games

Stride.Rendering

Stride.Irony

Stride.Core.Shaders

Stride.Audio

Stride.Shaders.Parser Stride.Input

Stride.VirtualRealityStride.Shaders.Compiler

Stride.Engine

Stride.Physics

Stride.Navigation

Stride.UI

Stride.Core
.ProjectTemplating Stride.TextureConverter Stride.Video

Stride.Assets

Stride.ConnectionRouterStride.Particles

Stride.Importer.Common

Stride.Importer.Assimp

Stride.Assets.Models

Stride.Editor Stride.VoxelsStride.Core.Presentation
.Graph

Stride.Graphics
.RenderDocPlugin

Stride.Assets
.Presentation

Stride.Debugger

Stride.GameStudio

Stride.ProjectGeneratorStride.Core.Assets
.CompilerApp

Stride
.FixProjectReferences

Stride.Graphics
.Regression

Stride.StorageTool

packageinstall

Stride.Core.Tasks

Stride.Core.Translation
.Extractor

Stride.Samples.Templates

xunit.runner.stride

Stride.NuGetLoader

Namespaces
Stride
.FixProjectReferences

Stride.Graphics
.Regression

Stride.StorageTool

packageinstall

Stride.Core.Tasks

Stride.Core.Translation
.Extractor

Stride.Samples.Templates

xunit.runner.stride

Stride.NuGetLoader

Stride
.FixProjectReferences

Stride.*

{anonymous namespace}

Stride.Core.*

Stride.Graphics
.Regression

Stride

Stride.Core
.DataSerializers

Stride.Core

Stride.StorageTool

Stride.*

Microsoft.VisualStudio
.Setup.Configuration

Stride.Core.VisualStudio

Stride.PackageInstall

Stride.*

Microsoft.VisualStudio.Setup.Configuration

Stride.Core.Assets
.CompilerApp.Tasks

Stride.Core.Tasks

Stride

Stride.Core.*

System.Runtime.CompilerServices

Microsoft.CodeAnalysis

Stride.Core.Translation
.Extractor

Stride.Core.DataSerializers Stride.Core

Stride.Samples.Templates

xunit.runner.stride.*

CompiledAvaloniaXaml

System.Runtime.CompilerServices

Microsoft.CodeAnalysis

xunit.runner.stride
.ViewModels

xunit.runner.stride.Views

xunit.runner.stride

Stride.*

System.Runtime.CompilerServices

Microsoft.CodeAnalysis

Stride.Core.Assets

Stride.NuGetLoader

Stride

Stride.Core

Stride.Core
.MicroThreading

Stride.Core.IO

Stride.Core.Serialization

Stride.Core.ReflectionStride.Core.Yaml

Stride.Core.Mathematics

Stride.Core.Design
Stride.Core.Translation

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

Stride.Core.*

Stride

Stride.Core
.Serialization.*

Stride.Core.DataSerializers

Stride.Core.Annotations

Stride.Core.Collections

Stride.Core.Diagnostics

Stride.Core.Extensions

Stride.Core.ReferenceCounting

Stride.Core.Reflection

Stride.Core.Settings

Stride.Core.Storage

Stride.Core.Threading Stride.Core

Stride.Core.Serialization
.Serializers

Stride.Core.Serialization

Stride.*

System.Runtime.CompilerServices Microsoft.CodeAnalysisStride.Core.*

Stride

Stride.Core
.MicroThreading

Stride.Core

Stride.Core.*

Stride

Stride.Core.IO

Stride.Core.Serialization Stride.Core

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

Stride.Core.*

Stride

Stride.Core
.Serialization.*

Stride.Core.DataSerializers

Stride.Core.Assets

Stride.Core.IO Stride.Core.LZ4

Stride.Core.StorageStride.Core.Streaming

Stride.Core

Stride.Core.Serialization.AssemblyScan

Stride.Core
.Serialization.Contents

Stride.Core.Serialization.Serializers

Stride.Core.Serialization

Stride.Core.*

Stride

Stride.Core.Yaml
.Serialization

Stride.Core.Reflection

Stride.Core.Yaml.*

Stride

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

Stride.Core.Yaml
.Serialization.*

Stride.Core.Yaml.Events

Stride.Core.Yaml.Schemas

Stride.Core.Yaml.Tokens

Stride.Core.Yaml

Stride.Core.Yaml
.Serialization
.Serializers

Stride.Core.Yaml
.Serialization

Stride.Core.*

Stride

Stride.Core
.DataSerializers

Stride.Core.MathematicsStride.Core

Stride.*

System.Runtime
.CompilerServices

Microsoft.VisualStudio
.Setup.Configuration

Microsoft.CodeAnalysisStride.Core.*

Stride

Stride.Core.Serialization.AssemblyScan

Stride.Core.DataSerializers Stride.Core.Annotations

Stride.Core.Collections Stride.Core.Extensions

Stride.Core.IO

Stride.Core.Design

Stride.Core.Reflection

Stride.Core.Settings

Stride.Core.Threading

Stride.Core.Transactions

Stride.Core
.TypeConverters

Stride.Core.VisualStudio
Stride.Core.Windows

Stride.Core.Yaml

Stride.Core

Stride.Core.*

Stride

Stride.Core.Translation.*

Stride.Core.DataSerializers Stride.Core

Stride.Core.Translation.Annotations

Stride.Core.Translation
.Providers

Stride.Core.Translation

Stride.Core.Presentation

Stride.Core.BuildEngine
.Common Stride.Core.Packages

Stride.Core.Assets
Stride.Core.Quantum

Stride.Core.Presentation
.Quantum

Stride.Core.Assets
.Quantum

Stride.Core.Translation
.Presentation

Stride.Core.Presentation
.Dialogs

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

Stride.Core.*

Stride

Stride.Core.Presentation
.*

Stride.Core
.DataSerializers

Stride.Core

Stride.Core.Presentation.Interop Stride.Core.Presentation.Dirtiables Stride.Core.Presentation.Collections

Stride.Core.Presentation.Extensions

Stride.Core.Presentation.Drawing

Stride.Core.Presentation.InternalStride.Core.Presentation

Stride.Core.Presentation.Core

Stride.Core.Presentation.WindowsStride.Core.Presentation.View

Stride.Core.Presentation.Services

Stride.Core.Presentation.ViewModel

Stride.Core.Presentation.Commands

Stride.Core.Presentation
.Controls.*

Stride.Core.Presentation.ValueConverters

Stride.Core.Presentation.Controls.Commands

Stride.Core.Presentation
.Controls

Stride.Core.Presentation.Themes.*Stride.Core.Presentation.MarkupExtensions

Stride.Core.Presentation.Interactivity

Stride.Core.Presentation.Diagnostics

Stride.Core.Presentation.AdornersStride.Core.Presentation
.Behaviors

Stride.Core.Presentation.Themes.OverridesStride.Core.Presentation.Themes

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysisStride.Core.*

Stride

Stride.Core.DataSerializers

Stride.Core.BuildEngineStride.Core

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysisStride.Core.*

Stride

Stride.Core.DataSerializers

Stride.Core.PackagesStride.Core

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

{anonymous namespace}Stride.Core.*

Stride

Stride.Core.Assets.*

Stride.Core.Serialization.AssemblyScan

Stride.Core
.DataSerializers

Stride.Core.Yaml
Stride.Core.Reflection

Stride.Core

Stride.Core.Assets
.Analysis

Stride.Core.Assets
.Compiler

Stride.Core.Assets.Diagnostics

Stride.Core.Assets.IO

Stride.Core.Assets.Selectors

Stride.Core.Assets.Serializers Stride.Core.Assets.Templates

Stride.Core.Assets.TextAccessors

Stride.Core.Assets.Tracking

Stride.Core.Assets.Visitors

Stride.Core.Assets.Yaml

Stride.Core.Assets

Stride.Core.*

Stride

Stride.Core.Quantum.*

Stride.Core
.DataSerializers

Stride.Core

Stride.Core.Quantum
.References

Stride.Core.Quantum

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

Stride.Core.*

Stride

Stride.Core.Presentation
.Quantum.*

Stride.Core.DataSerializers

Stride.Core

Stride.Core.Presentation
.Quantum.Presenters

Stride.Core.Presentation
.Quantum.ViewModels

Stride.Core.Presentation.Quantum.View Stride.Core.Presentation.Quantum

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

Stride.Core.*

Stride

Stride.Core.Assets
.Quantum.*

Stride.Core.DataSerializers

Stride.Core

Stride.Core.Assets
.Quantum.Internal

Stride.Core.Assets.Quantum.Visitors

Stride.Core.Assets
.Quantum

Stride.Core.*

Stride

Stride.Core.Translation
.Presentation.*

Stride.Core.DataSerializers Stride.Core

Stride.Core.Translation
.Presentation
.MarkupExtensions

Stride.Core.Translation.Presentation.ValueConverters

Stride.Core.Translation.Presentation

Stride.Core.*

Stride

Stride.Core.Presentation
.Dialogs

Stride.Core

Stride.Core
.ProjectTemplating

Stride.TextureConverter

Stride.Video

Stride.Assets

Stride.ConnectionRouter

Stride.Particles

Stride.Importer.Common

Stride.Importer.Assimp

Stride.Assets.Models

Stride.Core.*

System.Runtime.CompilerServices

Microsoft.CodeAnalysis

Stride.Core.DataSerializers

Stride.Core
.ProjectTemplating

Stride.Core

Stride.* FreeImageAPI.*

TextureTools.TexLibraries

Stride.TextureConverter.*

Stride

Stride.TextureConverter.Backend.Requests Stride.TextureConverter
.Requests

Stride.TextureConverter
.TexLibraries

Stride.TextureConverter
.DxtWrapper

Stride.TextureConverter
.PvrttWrapper

Stride.TextureConverter FreeImageAPI.Plugins

FreeImageAPI.IO

FreeImageAPI.Metadata

FreeImageAPI

Stride.*

{anonymous namespace}

Stride.Core.*

Stride.Video.*

Stride

Stride.Core.Serialization.AssemblyScan

Stride.Core.DataSerializers

Stride.Core

Stride.Video.FFmpegStride.Video.Rendering

Stride.Video

Stride.*
System.Runtime
.CompilerServices Microsoft.CodeAnalysis{anonymous namespace}

Stride.Core.*

Stride.Assets.*

Stride

Stride.Core.Serialization.AssemblyScan

Stride.Core
.DataSerializers

Stride.Core

Stride.Assets.Entities.*

Stride.Assets.SpriteFont
.*

Stride.Assets.Textures.*
Stride.Assets.Effect

Stride.Assets.Materials

Stride.Assets.Media

Stride.Assets.Navigation

Stride.Assets.Physics Stride.Assets.Rendering

Stride.Assets.Scripts

Stride.Assets.Skyboxes

Stride.Assets.Sprite

Stride.Assets.UI

Stride.Assets.Serializers

Stride.Assets.Templates

Stride.Assets

Stride.Assets.Entities.ComponentChecks

Stride.Assets.Entities

Stride.Assets.SpriteFont.Compiler

Stride.Assets.SpriteFont

Stride.Assets.Textures.Packing

Stride.Assets.Textures

Stride.*

System.Runtime.CompilerServices Microsoft.CodeAnalysis

Stride.ConnectionRouter.*

Stride.Core.*

Stride.NuGetResolver

Stride

Stride.ConnectionRouter.Properties

Stride.ConnectionRouter

Stride.Core.Assets

Stride.Core

Stride.*

System.Runtime
.CompilerServices

Microsoft.CodeAnalysis

{anonymous namespace}

Stride.Core.*

Stride.Particles.*

Stride.Rendering

Stride

Stride.Core
.DataSerializers

Stride.Core Stride.Particles
.ShapeBuilders.*

Stride.Particles.Updaters.*

Stride.Particles.BoundingShapes

Stride.Particles.Components

Stride.Particles.DebugDraw

Stride.Particles
.Initializers

Stride.Particles.Materials

Stride.Particles.Rendering

Stride.Particles.SortersStride.Particles.SpawnersStride.Particles.Modules Stride.Particles.VertexLayouts

Stride.Particles

Stride.Particles.ShapeBuilders.Tools

Stride.Particles
.ShapeBuilders

Stride.Particles.Updaters.FieldShapes

Stride.Particles.Updaters

Stride.*

{anonymous namespace}

Stride.Core.*

Stride.Importer.Common

Stride

Stride.Core.DataSerializers

Stride.Core

Stride.*

{anonymous namespace}

Stride.Core.*

Stride.Importer.Assimp.*

Stride

Stride.Core.DataSerializers

Stride.Core

Stride.Importer.Assimp
.Material

Stride.Importer.Assimp

Stride.*

System.Runtime
.CompilerServices

Microsoft.CodeAnalysis

{anonymous namespace}

Stride.Core.*

Stride.Assets.ModelsStride

Stride.Core.Serialization.AssemblyScan

Stride.Core
.DataSerializers

Stride.Core

Stride.Audio

Stride.Shaders.Parser

Stride.Input
Stride.VirtualReality

Stride.Shaders.Compiler

Stride.Engine

Stride.Physics

Stride.Navigation

Stride.UI

Stride.*

System.Runtime
.CompilerServices

Microsoft.CodeAnalysis

Stride.Core.*

Stride.AudioStride

Stride.Core.Serialization.AssemblyScan

Stride.Core
.DataSerializers

Stride.Core

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

{anonymous namespace}

Stride.Core.*

Stride.Shaders.Parser.*

Stride

Stride.Core
.DataSerializers

Stride.Core

Stride.Shaders.Parser
.Analysis

Stride.Shaders.Parser
.Mixins

Stride.Shaders.Parser
.Performance

Stride.Shaders.Parser.Utility

Stride.Shaders.Parser

Stride.*

System.Runtime
.CompilerServices

Microsoft.CodeAnalysis

Stride.Core.*

Stride.Input Stride

Stride.Core
.DataSerializers

Stride.Core

Stride.*

Valve.VR

Stride.Core.*

Stride.VirtualReality Stride

Stride.Core
.DataSerializers

Stride.Core

Stride.*

System.Runtime.CompilerServices Microsoft.CodeAnalysis

{anonymous namespace}

Stride.Shaders.Compiler.*

Stride.Core Stride

Stride.Shaders.Compiler.Direct3D Stride.Shaders.Compiler.OpenGL

Stride.Shaders.Compiler

Stride.*

Sockets.Plugin.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis{anonymous namespace}

Stride.Core.*

Stride.Engine.*

Stride.Rendering.*

Stride.Shaders.Compiler.*

Stride.AnimationsStride.Audio

Stride.Internals

Stride.Profiling Stride.UpdaterStride.InternalStride

Stride.Core.Serialization.AssemblyScan

Stride.Core
.DataSerializers

Stride.Core

Stride.Engine.Design

Stride.Engine.Events

Stride.Engine.Network

Stride.Engine.Processors

Stride.Engine

Stride.Rendering.BackgroundStride.Rendering
.Compositing

Stride.Rendering.LightProbes

Stride.Rendering.Lights

Stride.Rendering.Skyboxes

Stride.Rendering.Sprites

Stride.Rendering

Stride.Shaders.Compiler.Internals

Stride.Shaders.Compiler

Sockets.Plugin
.Abstractions

Sockets.Plugin

Stride.*

System.Runtime
.CompilerServices

Microsoft.CodeAnalysis

{anonymous namespace}

Stride.Core.*

Stride.Physics.*

Stride.Engine

Stride

Stride.Core.Serialization.AssemblyScan

Stride.Core
.DataSerializers

Stride.Core

Stride.Physics
.Constraints

Stride.Physics.Engine

Stride.Physics.Shapes

Stride.Physics

Stride.*

{anonymous namespace}

Stride.Core.*

Stride.Navigation.*

Stride

Stride.Core.Serialization.AssemblyScan

Stride.Core
.DataSerializers

Stride.Core

Stride.Navigation
.Processors

Stride.Navigation

Stride.*

System.Runtime
.CompilerServices

Microsoft.CodeAnalysis

{anonymous namespace}

Stride.Core.*

Stride.UI.*

Stride.Engine.*
Stride.Rendering.UI

Stride

Stride.Core.Serialization.AssemblyScan

Stride.Core
.DataSerializers

Stride.Core

Stride.UI.Attributes

Stride.UI.Controls

Stride.UI.Events

Stride.UI.Panels Stride.UI.Renderers

Stride.UI

Stride.Engine.Design Stride.Engine.Processors

Stride.Engine

Stride.Core.Assets.Editor

Stride

Stride.Shaders

Stride.Native

Stride.Graphics

Stride.Games

Stride.Rendering

Stride.Irony

Stride.Core.Shaders

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

Stride.Core.*

Stride

Stride.Core.Assets.*

Stride.Core.Presentation
.Themes

Stride.Core
.DataSerializers

Stride.Core
.MostRecentlyUsedFiles

Stride.Core

Stride.Core.Assets
.Editor.*

Stride.Core.Assets

Stride.Core.Assets.Editor.Components.*

Stride.Core.Assets.Editor.Quantum.*

Stride.Core.Assets.Editor.Resources.*

Stride.Core.Assets.Editor.Settings.*

Stride.Core.Assets.Editor.ViewModel.*

Stride.Core.Assets.Editor.View.*

Stride.Core.Assets.Editor.Extensions

Stride.Core.Assets.Editor.Services

Stride.Core.Assets.Editor

Stride.Core.Assets.Editor.Components.TemplateDescriptions.* Stride.Core.Assets.Editor.Components.FixReferences Stride.Core.Assets.Editor.Components.PropertiesStride.Core.Assets.Editor.Components.TemplateDescriptions.ViewModels

Stride.Core.Assets.Editor.Quantum.NodePresenters.* Stride.Core.Assets.Editor.QuantumStride.Core.Assets.Editor.Quantum.NodePresenters.Commands

Stride.Core.Assets.Editor.Quantum.NodePresenters.Updaters

Stride.Core.Assets.Editor.Quantum.NodePresenters

Stride.Core.Assets.Editor.Resources.StringsStride.Core.Assets.Editor.Resources

Stride.Core.Assets.Editor.Settings.ViewModelsStride.Core.Assets.Editor.Settings

Stride.Core.Assets.Editor.ViewModel.CopyPasteProcessors

Stride.Core.Assets.Editor.ViewModel.Logs Stride.Core.Assets.Editor.ViewModel.Progress

Stride.Core.Assets.Editor.ViewModel

Stride.Core.Assets.Editor.View.Behaviors

Stride.Core.Assets.Editor.View.Controls

Stride.Core.Assets.Editor.View.DebugTools

Stride.Core.Assets.Editor.View.TemplateProviders

Stride.Core.Assets.Editor.View.ValueConverters

Stride.Core.Assets.Editor.View

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

Stride.Core.*

Stride.Rendering.*

Stride.Graphics.*

Stride.Data

Stride.Media
Stride

Stride.Core.DataSerializers

Stride.Core

Stride.Rendering.Data

Stride.Rendering

Stride.Graphics.Font

Stride.Graphics

Stride.Core.*

Stride.Shaders.*

Stride

Stride.Core
.DataSerializers

Stride.Core

Stride.Shaders.Compiler

Stride.Shaders

Stride.Core.*

Stride.Native.*

StrideStride.Core
.DataSerializers

Stride.Core

Stride.Native.DirectInput

Stride.Native

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

{anonymous namespace}

Stride.Core.*

Stride.Graphics.*
Stride.Games

Stride.Rendering

Stride.Internal

Stride

Stride.Core.Serialization.AssemblyScan

Stride.Core
.DataSerializers

Stride.Core

Stride.Graphics.Data

Stride.Graphics.Font

Stride.Graphics
.GeometricPrimitives

Stride.Graphics.SDL

Stride.Graphics

Stride.Games.*

Stride.CoreStride

Stride.Games.Time

Stride.Games

Stride.*

System.Runtime
.CompilerServices

Microsoft.CodeAnalysis

{anonymous namespace}

Stride.Core.*

Stride.Rendering.*

Stride.Shaders.Compiler

Stride.Extensions

Stride.Engine

Stride.Streaming

Stride

Stride.Core.Serialization.AssemblyScan

Stride.Core
.DataSerializers

Stride.Core

Stride.Rendering.ComputeEffect.*

Stride.Rendering.Images.*

Stride.Rendering
.Materials.*

Stride.Rendering.Background

Stride.Rendering.Colors

Stride.Rendering.Compositing

Stride.Rendering.FontsStride.Rendering.SubsurfaceScattering

Stride.Rendering.LightProbes

Stride.Rendering.Lights

Stride.Rendering.ProceduralModels

Stride.Rendering.RenderTextures

Stride.Rendering.Shadows

Stride.Rendering.Skyboxes

Stride.Rendering.Sprites

Stride.Rendering.TessellationStride.Rendering.Utils

Stride.Rendering

Stride.Rendering.ComputeEffect.GGXPrefilteringStride.Rendering.ComputeEffect.LambertianPrefiltering Stride.Rendering.ComputeEffect

Stride.Rendering.Images.Dither Stride.Rendering.Images.SphericalHarmonics

Stride.Rendering.Images

Stride.Rendering.Materials.ComputeColors

Stride.Rendering
.Materials

Irony.Parsing.*

Irony

Irony.Parsing
.Construction

Irony.Parsing

Stride.*

GoldParser

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

Stride.Core.*

Stride

Stride.Core.Shaders.*

Stride.Core
.DataSerializers

Stride.Core

Stride.Core.Shaders.Analysis.*

Stride.Core.Shaders.Ast.*

Stride.Core.Shaders
.Grammar.*

Stride.Core.Shaders.Parser.*

Stride.Core.Shaders.Writer.*

Stride.Core.Shaders
.Convertor

Stride.Core.Shaders.Properties Stride.Core.Shaders.Utility

Stride.Core.Shaders
.Visitor

Stride.Core.Shaders Stride.Core.Shaders.Analysis.Hlsl

Stride.Core.Shaders.Analysis

Stride.Core.Shaders.Ast.Glsl Stride.Core.Shaders.Ast.Hlsl

Stride.Core.Shaders.Ast.Stride

Stride.Core.Shaders.Ast

Stride.Core.Shaders.Grammar.Hlsl

Stride.Core.Shaders.Grammar.Stride

Stride.Core.Shaders.Grammar

Stride.Core.Shaders.Parser.Hlsl

Stride.Core.Shaders.Parser

Stride.Core.Shaders.Writer.Hlsl

Stride.Core.Shaders.Writer

Stride.Editor

Stride.Voxels

Stride.Graphics
.RenderDocPlugin

Stride.Core.Presentation
.Graph

Stride.Assets
.Presentation

Stride.Debugger

Stride.GameStudio

Stride.ProjectGenerator

Stride.Core.Assets
.CompilerApp

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis{anonymous namespace}

Stride.Core.*

Stride.Editor.*

Stride

Stride.Core
.DataSerializers

Stride.Core

Stride.Editor.EditorGame
.*

Stride.Editor.Preview.*

Stride.Editor.Build

Stride.Editor.Engine

Stride.Editor.Extensions

Stride.Editor.Resources

Stride.Editor.Thumbnails

Stride.Editor

Stride.Editor.EditorGame
.ContentLoader

Stride.Editor.EditorGame.GameStride.Editor.EditorGame.ViewModels

Stride.Editor.Preview.ViewModel

Stride.Editor.Preview.View

Stride.Editor.Preview

Stride.*

{anonymous namespace}

Stride.Core.*

Stride.Rendering.*
Stride.Engine.Processors

Stride.Voxels

Stride

Stride.Core
.DataSerializers

Stride.Core

Stride.Rendering.Voxels.*

Stride.Rendering

Stride.Rendering.Voxels.Debug

Stride.Rendering.Voxels.VoxelGI

Stride.Rendering.Voxels

Stride.Graphics

Stride.Core.*

Stride

Stride.Core.Presentation
.Graph.*

Stride.Core
.DataSerializers

Stride.Core

Stride.Core.Presentation
.Graph.Behaviors

Stride.Core.Presentation
.Graph.Controls

Stride.Core.Presentation.Graph.Helper

Stride.Core.Presentation.Graph.ViewModel

Stride.Core.Presentation.Graph

Stride.*

StrideEffects System.Runtime
.CompilerServices

Microsoft.CodeAnalysis

{anonymous namespace}

Stride.Core.*

Stride.Assets
.Presentation.*

Stride.Samples.Templates

Stride
Stride.Core.Serialization.AssemblyScan

Stride.Core
.DataSerializers

Stride.Core

Stride.Assets
.Presentation
.AssetEditors.*

Stride.Assets
.Presentation
.CurveEditor.*

Stride.Assets.Presentation.NodePresenters.*

Stride.Assets
.Presentation.Preview.*

Stride.Assets.Presentation.Resources.*

Stride.Assets.Presentation.SceneEditor.*

Stride.Assets
.Presentation.ViewModel.*

Stride.Assets.Presentation.View.*

Stride.Assets.Presentation.AssemblyReloading

Stride.Assets.Presentation.DebugShapes

Stride.Assets.Presentation.Extensions

Stride.Assets.Presentation.Properties

Stride.Assets.Presentation.Quantum

Stride.Assets.Presentation.TemplateProviders

Stride.Assets
.Presentation.Templates

Stride.Assets.Presentation.Test

Stride.Assets.Presentation.Thumbnails

Stride.Assets.Presentation.ValueConverters

Stride.Assets
.Presentation

Stride.Assets.Presentation.AssetEditors.AssetCompositeGameEditor.*

Stride.Assets.Presentation.AssetEditors.EntityHierarchyEditor.*

Stride.Assets.Presentation.AssetEditors.GameEditor.*

Stride.Assets.Presentation.AssetEditors.GraphicsCompositorEditor.*

Stride.Assets.Presentation.AssetEditors.PrefabEditor.*

Stride.Assets.Presentation.AssetEditors.SceneEditor.*

Stride.Assets.Presentation.AssetEditors.ScriptEditor.*

Stride.Assets.Presentation.AssetEditors.SpriteEditor.*

Stride.Assets.Presentation.AssetEditors.UIEditor.*

Stride.Assets.Presentation.AssetEditors.UILibraryEditor.*

Stride.Assets.Presentation.AssetEditors.UIPageEditor.*

Stride.Assets.Presentation.AssetEditors.VisualScriptEditor.*

Stride.Assets.Presentation.AssetEditors.AssetHighlighters

Stride.Assets.Presentation.AssetEditors.Gizmos

Stride.Assets.Presentation.AssetEditors

Stride.Assets.Presentation.AssetEditors.AssetCompositeGameEditor.ViewModels

Stride.Assets.Presentation.AssetEditors.EntityHierarchyEditor.EntityFactories Stride.Assets.Presentation.AssetEditors.EntityHierarchyEditor.Game

Stride.Assets.Presentation.AssetEditors.EntityHierarchyEditor.ViewModels

Stride.Assets.Presentation.AssetEditors.EntityHierarchyEditor.Views

Stride.Assets.Presentation.AssetEditors.GameEditor.Game

Stride.Assets.Presentation.AssetEditors.GameEditor.Services

Stride.Assets.Presentation.AssetEditors.GameEditor.ViewModels

Stride.Assets.Presentation.AssetEditors.GraphicsCompositorEditor.ViewModels

Stride.Assets.Presentation.AssetEditors.GraphicsCompositorEditor.Views

Stride.Assets.Presentation.AssetEditors.SceneEditor.ViewModels

Stride.Assets.Presentation.AssetEditors.ScriptEditor

Stride.Assets.Presentation.AssetEditors.SpriteEditor.ViewModels

Stride.Assets.Presentation.AssetEditors.UIEditor.Adorners

Stride.Assets.Presentation.AssetEditors.UIEditor.Game

Stride.Assets.Presentation.AssetEditors.UIEditor.Services

Stride.Assets.Presentation.AssetEditors.UIEditor.ViewModels

Stride.Assets.Presentation.AssetEditors.VisualScriptEditor

Stride.Assets.Presentation.CurveEditor.Views.*

Stride.Assets.Presentation.CurveEditor.ViewModels

Stride.Assets.Presentation.CurveEditor

Stride.Assets.Presentation.CurveEditor.Views.Behaviors

Stride.Assets.Presentation.CurveEditor.Views

Stride.Assets.Presentation.NodePresenters.Commands Stride.Assets.Presentation.NodePresenters.Keys

Stride.Assets.Presentation.NodePresenters.Updaters

Stride.Assets.Presentation.Preview.Views

Stride.Assets.Presentation.Preview

Stride.Assets.Presentation.Resources.Strings

Stride.Assets.Presentation.Resources.Thumbnails

Stride.Assets.Presentation.SceneEditor.Services

Stride.Assets.Presentation.SceneEditor

Stride.Assets.Presentation.ViewModel.CommandsStride.Assets.Presentation.ViewModel.CopyPasteProcessors

Stride.Assets.Presentation.ViewModel.Preview

Stride.Assets.Presentation.ViewModel

Stride.Assets.Presentation.View.Behaviors

Stride.Assets.Presentation.View

Stride.*

System.Runtime
.CompilerServices

Microsoft.CodeAnalysis{anonymous namespace}

Stride.Core.*

Stride.Debugger.*

StrideStride.Core.Serialization.AssemblyScan

Stride.Core.DataSerializers

Stride.Core

Stride.Debugger.Target

Stride.Debugger

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

Stride.GameStudio.*

Stride.Core.*

Stride.Editor.CrashReport Stride.PrivacyPolicy

Stride.NuGetResolver

Stride

Stride.GameStudio.Resources.Strings

Stride.GameStudio
.Debugging

Stride.GameStudio.Logs

Stride.GameStudio.Services

Stride.GameStudio.View

Stride.GameStudio

Stride.Core.IO

Stride.Core.Assets

Stride.Core

Stride.ProjectGenerator

Stride.*

System.Runtime
.CompilerServices Microsoft.CodeAnalysis

{anonymous namespace}

Stride.Core.*

Stride

Stride.Core.Assets.*

Stride.Core.DataSerializers Stride.Core

Stride.Core.Assets
.CompilerApp.*

Stride.Core.Assets

Stride.Core.Assets.CompilerApp.Tasks

Stride.Core.Assets
.CompilerApp

Stride.Core methods

21

Copy and paste
Introduction
Rationale
Any good editing software has some kind of copy/paste system and Stride is no exception. Copy/paste
should be intuitive and work in a lot of cases: any situation that make sense for a user.

Goals
From a usability point of view, the capabilities of the copy/paste system should be:

Copy anything.
Paste anywhere.

Scope
The copy/paste system should at term support all those cases:

copy/paste of assets
copy/paste of properties of assets
copy/paste of parts of assets (e.g. entities in a scene or prefab)
copy/paste of settings
support for copy/paste between different instances of the GameStudio

Current state (October 2017)
[x] copy/paste of assets
[-] copy/paste of properties of assets

[x] support for primitives
[x] support for collections
[-] partial support for dictionaries
[x] support for asset references and asset part references
[x] support for structures and class instances
[] no support for virtual properties (copy works in some cases, paste doesn't)

[-] copy/paste of parts of assets
[x] support for entities in scene or prefab
[x] support for UI elements, but need more testing, especially regarding attached properties
[x] support for sprites in spritesheet

[] copy/paste of settings (should be easy to add)
[-] support for copy/paste between different instances of the GameStudio

there is no technical obstacle as copying use the clipboard
already working, but need more testing, especially regarding identifiers and references

22

might need to introduce a unique Guid per project (or even per GameStudio instance) to detect
and solve potential conflicts

Workflow
From the user point of view, the entry points in the GameStudio are context menus (property grid, assets
in asset view, entities in scene and prefab editors, etc.). Keyboard shortcuts ("Ctrl+C" and "Ctrl+V") also
work in the same location.

Copy
The order of events when the user copies "something" are:

1. keyboard or context menu
2. copy command in the corresponding editor or viewmodel
3. eventually, some preparation code specific to the editor or asset
4. call to one of ICopyPasteService copy methods

1. encapsulation into a CopyPasteData container
2. collection of necessary metadata
3. serialization to string

5. save to clipboard

Paste
The order of events when the user pastes "something" are:

1. get text from clipboard and check that data is valid
2. call ICopyPasteService.DeserializeCopiedData() method

1. deserialization from string
2. find a valid IPasteProcessor for the data
3. call IPasteProcessor.ProcessDeserializedData() method
4. apply metadata overrides

3. actual paste
either use the result directly (simple case)
or call IPasteProcessor.Paste() (more complex scenario such as entities)

Implementation details
The copy/paste API is exposed by the ICopyPasteService interface. It is available by consumers through
the ServiceProvider (see ViewModelBase class).

Implementation details are hidden from the API as only interfaces are exposed: ICopyPasteService,
IPasteResult, IPasteItem, IPasteProcessor. This makes integration easier and allows extensibility for the
future.

23

Service
ICopyPasteService interface
This interface is the main entry point for the copy/paste API. It exposes the copy and paste method as
well as the registration (or unregistration) of processors.

CopyFromAsset() and CopyFromAssets() methods
Those methods create a serialized version of an asset or part of an asset that can then be put into the
clipboard.

CopyMultipleAssets() method
This is a legacy method that is only used to copy a collection of AssetItem. Ideally it should be reworked
so that CopyFromAssets() could be used instead. That implies modifying the call-site of this method (see
AssetCollectionViewModel.CopySelection()) as well as the corresponding paste process (see
AssetItemPasteProcessor and AssetCollectionViewModel.Paste()).

CanPaste() method
This method allows to quickly check if the serialized data can be pasted given the expected types of the
target.

DeserializeCopiedData() method
This method attempts to deserialize the string data into a object compatible with the target. The object
returned (IPasteResult see below) contains the data (if the process was successful) and a reference to
the paste processors that were used.

CopyPasteService class
Internal implementation of the ICopyPasteService interface. it doesn't expose more functionalities than
the interface.

Data and serialization
When the copy service is asked to copy some objects, it first put them in a container before serialization.
The container has some additional properties and metadata that gives some context to the copied
objects. These metadata will then be used when pasting to help resolve some situations.

CopyPasteData class
It is the top container of copied data. In the serialized YAML it is the root of the document.

ItemType property

24

This string property contains the type of the copied items, serialized as a YAML tag. Having the type
available as a top property allows before pasting to quickly check the type of the data without
deserializing the whole document.

Items property
The copy/paste feature supports copying more than one object at a time, provided that the object types
are all compatible (either same type or share a common base type). This property holds the list of copied
items.

Overrides property
Objects that are copied from the property grid can override their base (e.g. in case of an archetype or
prefab). Before serialization, the overrides metadata are collected for the copied objects and put into this
property.

CopyPasteItem class
Each item is also put inside a container in order to attach per-item contextual metadata.

Data property
The copied data itself.

SourceId property
Identifier to the asset from which the data was copied. This will be used later by the paste processors to
determine whether the pasted data must be cloned or used as-is depending on some conditions.

IsRootObjectReference property
Indicates if the copied data is a reference to another object.

PasteResult class
(implements IPasteResult interface) Similarly to the copy step, pasted data (i.e. copied data that has
been deserialized and processed by a paste processor) is returned by the service inside a container. The
paste result is itself a collection of items as each CopyPasteItem from the copied data is processed
separately.

PasteItem class
(implements IPasteItem interface) Represents one item of the resulting paste data. It also contains a
reference to the processor that was used to process the deserialized data.

Copy processors
(implement ICopyProcessor)

25

A copy processor processes the data before it is serialized. At the moment there is only one such
processor.

Remark: copy processors are registered as plugins (see AssetsPlugin.RegisterCopyProcessors()).

EntityComponentCopyProcessor

This copy processor is applied when copying a TransformComponent or an EntityComponentCollection
containing one or more TransformComponent. In such cases, the list of children of the transform is cleared
so that only the transform properties (position, rotation and scale) are copied.

Paste processors
(implement IPasteProcessor)

A paste processor has two roles:

first, it processed the data just after it has been deserialized. That step prepares the data before it
can be applies to the target. This usually involves converting to match certain types and resolving
references.
if the data could be processed, it then paste it into the final target object. Only during that step is an
actual asset modified.

Paste processors are registered as plugins (see AssetsPlugin.RegisterPasteProcessors()). The order of
registration matters: when looking for a matching processor, the service will iterate through the list of
registered processors in reverse order (last registered first) and return the first one than can process the
data (i.e. the first one which Accept() method returns true). At the moment it is working fine but when
plugins will be more widely supported it might cause some conflicts. An explicit priority order could be
given to each processor.

Currently the registration order is:

1. AssetPropertyPasteProcessor
2. AssetItemPasteProcessor
3. EntityComponentPasteProcessor
4. EntityHierarchyPasteProcessor
5. UIHierarchyPasteProcessor

AssetPropertyPasteProcessor class
This is the default paste processor with the lowest priority (registered first, see above). It supports the
following features:

pasting a value into a target property

26

pasting a single item into a target collection (appending or adding one item depending on the
index)
pasting a collection into a target collection (appending or inserting items depending on the index)
replacing a target collection with a single item or a collection

It will also try to convert the pasted value into the type or the target (see TypeConverterHelper helper
class).

AssetItemPasteProcessor class
This processor only accepts single object or collection of AssetItem. It is used when copying and pasting
assets in the asset view.

EntityComponentPasteProcessor class
(inherits AssetPropertyPasteProcessor)

This processor extends the behavior of AssetPropertyPasteProcessor in the case of EntityComponent. It
adds some special rules specific to components:

the TransformComponent cannot be removed from an EntityComponentCollection
the TransformComponent cannot be replaced by a different type of component
when replacing the TransformComponent, instead manually replace its properties (position, rotation
and scale)
multiple instances of component are allowed only if the component class is decorated with a
AllowMultipleComponentAttribute.

AssetCompositeHierarchyPasteProcessor class
This processor supports pasting hierarchical data (AssetCompositeHierarchyData<TAssetPartDesign,
TAssetPart>) into a hierarchical asset composite (AssetCompositeHierarchy<TAssetPartDesign,
TAssetPart>). Typically used for prefab, scene or UI assets.

The tricky part is actually handling all the part references (hierarchy) and the inheritance from the base
(composite). There is a lot of cloning and remapping of identifiers involved in that process.

EntityHierarchyPasteProcessor class
(inherits AssetCompositeHierarchyPasteProcessor)

This processor is dedicated to hierarchy of entities (i.e. scene or prefab assets). It handles the actual
pasting into the target asset.

UIHierarchyPasteProcessor class
(inherits AssetCompositeHierarchyPasteProcessor)

27

This processor is dedicated to hierarchy of UI elements (i.e. UI page or library assets). It handles the
actual pasting into the target asset.

Post-paste processors
(implement IAssetPostPasteProcessor)

Small hack to apply special case when a scene asset is copied/pasted in the asset view. This should be
reworked to allow more general cases.

Remark: post-paste processors are registered as plugins (see
AssetsPlugin.RegisterPostPasteProcessors()).

ScenePostPasteProcessor class
Because scene asset are also hierarchical (a scene can contain child scenes), when creating a copy of a
scene those relationship must be cleared.

Editor commands
In the property grid, the copy, paste and replace capabilities are available through the context menu of
the properties and keyboard shortcuts. There are implemented by node commands.

CopyPropertyCommand class
This command assumes that data can always be copied and thus is available on all asset nodes. It
basically asks the ICopyService to serialize the node value and then sets the clipboard.

PastePropertyCommandBase class
This command implements the paste capability in the property grid. It is always attached to all asset
nodes. However it is disabled, when pasting is not possible: readonly property, incompatible data.

When pasting, the command automatically creates a transaction to enable undo and redo.

This abstract class is inherited by PastePropertyCommand and ReplacePropertyCommand where the only
difference is that the latter will set the AssetPropertyPasteProcessor.IsReplaceKey property key to true.
Depending on the value, paste processors will either paste or replace. It is only meaningful in the context
of collection, as pasting a value to a single property is the same as replacing it.

Others
SafeClipboard class
The System.Windows.Clipboard can sometimes throw COMException when the clipboard is not available
(only one process can access the clipboard at a given time). This class is a tiny wrapper that silently
ignores (catches) those exceptions.

28

Documentation and references
The only user documentation currently existing can be found in one blog post
(https://stride3d.net/blog/copy-paste/) and the release notes of the 1.9-beta version
(http://doc.stride3d.net/latest/en/ReleaseNotes/ReleaseNotes-1.9.html).

https://stride3d.net/blog/copy-paste/
http://doc.stride3d.net/latest/en/ReleaseNotes/ReleaseNotes-1.9.html

29

Contributing to documentation
This documentation serves as a comprehensive guide to help you navigate and contribute to the Stride
Docs website.

If you're looking to make minor changes, such as adding or updating a manual, tutorial or page, or fixing
a typo, feel free to jump straight to the Content Updates section.

For more extensive updates 🤯� or for a deeper understanding of the docs website project, we
recommend exploring all the sections provided. Happy browsing and contributing!

Here are the technologies we use to build our website:

Docfx (static site generator)
A specific version of Docfx is utilized in GitHub Actions, one that has been thoroughly tested.
Should you wish to upgrade this version, please ensure it is properly tested before
implementation.

Markdown
Mustache template engine (Docfx dropped Liquid template engine support)
Bootstrap
Emojis (because why not? 😎)
HTML, JavaScript, CSS, JSON
PowerShell scripts
GitHub Actions (CI/CD)

Our GitHub Actions are already configured for deploying to both staging and release
environments.
For personal testing or demonstration purposes, you may need to set up your own GitHub
Actions. This is especially useful for showcasing proposed changes to maintainers for their
approval. For guidance on this, refer to our Deployment to GitHub Pages guide.

Dependencies
Various Stride systems rely on content fetched and processed from either the Stride website or the Stride
Docs website. It's crucial to ensure that the following links remain active and accessible. Please refrain
from removing or altering these links unless the dependent systems have been updated accordingly to
accommodate any changes.

1. https://doc.stride3d.net/latest/en/index.json
This JSON file is crucial for integrating the Stride Docs search functionality with the Stride
Website. It ensures that search results are comprehensive, including relevant information from
both the Stride website and Stride Docs.

2. https://doc.stride3d.net/latest/en/ReleaseNotes/ReleaseNotes.md
The Stride Launcher utilizes this file when you click a release notes button.

https://dotnet.github.io/docfx/index.html
https://mustache.github.io/
https://github.com/stride3d/stride-docs/tree/master/.github/workflows
https://doc.stride3d.net/latest/en/index.json
https://doc.stride3d.net/latest/en/ReleaseNotes/ReleaseNotes.md

30

3. https://doc.stride3d.net/latest/en/diagnostics/index.html
Diagnostic warnings in the Stride IDE reference pages in the Stride Docs - Diagnostics section.
This ensures that users can quickly find detailed explanations and potential solutions for any
issues encountered.

4. https://doc.stride3d.net/latest/en/studio_getting_started_links.txt
The Stride Launcher is using this file in Urls.Designer.cs.

https://doc.stride3d.net/latest/en/diagnostics/index.html
https://doc.stride3d.net/latest/en/studio_getting_started_links.txt

31

Generation Pipeline
Introduction
As of now, Docfx does not natively support the generation of multi-language and multi-version
documentation. To address this limitation, the Stride team has developed a PowerShell script. Initially,
separate scripts were created for each language; however, these have since been consolidated into a
single script named BuildDocs.ps1 . This unified script is capable of generating documentation in all
supported languages.

The script serves two main purposes:

It features a non-interactive mode, utilized by the Continuous Integration/Continuous Deployment
(CI/CD) pipeline to automatically generate documentation for all languages and the most recent
version, eliminating the need for user intervention.
It also offers an interactive command-line UI, allowing users to select which languages they wish to
generate documentation for.

A Simplified Overview
Here's a straightforward explanation of how the documentation generation process works.

The /en folder serves as the repository for the primary documentation files. When documentation for
another language (e.g., Japanese) is built, the files from /en are copied over to a temporary folder, for
example, /jp-tmp. This ensures that the non-English versions will contain all the files present in the /en
folder. Files that have been translated (found in folders like /jp) will overwrite their English counterparts
in the temp folder /jp-tmp.

Docfx is invoked multiple times, once for each language, to create the documentation. The generated
documents are stored in the _site folder, organized according to the latest version information obtained
from version.json. For example:

Docfx Files Processed
This section outlines the file processing carried out by Docfx during the documentation generation:

Table of Contents (TOC) Files: 7 files processed
Assets: 1620 items (images, videos, etc.) included
Conceptual Files: 358 files processed, resulting in 304 HTML files
Warnings (No API Metadata): 44 instances encountered

/_site/4.1/en
/_site/4.1/jp

https://github.com/stride3d/stride-docs/blob/staging/BuildDocs.ps1

32

Warnings (API Metadata): 200 instances of missing or incorrect references
API Files: 2825 files processed, resulting in 2133 HTML files

Docs Build Workflow
In this part, we elaborate on the individual steps involved in the documentation build workflow for the
Stride Docs project.

Start
Initiates the workflow by reading the $BuildAll parameter.

If set to 'Yes', it proceeds to generate all languages and the Stride API automatically, which
is particularly useful for CI/CD.
If set to 'No', it will prompt the user to select languages through an interactive command-
line UI.

Sets the $Version parameter based on the -Version command-line argument or fetches it from
version.json if the argument is not provided.

Read-LanguageConfigurations
Reads languages.json to identify which languages should be generated.

BuildAll
Pre-configures some variables for non-interactive mode, effectively skipping the Get-UserInput
step.

Get-UserInput
In interactive mode, this step prompts the user to choose the languages to generate, as well as
whether to launch a local web server.

Ask-IncludeAPI
Further queries if the user wants the Stride API included in the documentation build.

Ask-UseExistingAPI
Queries if the user wants to re-use already generated Stride API yml files.

Start-LocalWebsite
If selected, launches a local web server to host the generated website.

Generate-APIDoc
Executes docfx.exe to generate the metadata needed for the Stride API documentation.

Remove-APIDoc
Removes the generated API metadata.

Build-EnglishDoc
Uses docfx.exe to build the English documentation, incorporating the Stride API documentation
if metadata is available.

PostProcessing Steps
PostProcessing-FixingSitemap

Adjusts the sitemap.xml to use '/latest/en' paths, allowing the most current version to
maintain a consistent URL.

33

PostProcessing-Fixing404AbsolutePath
Modifies asset (CSS, JS,) paths in 404.html to be absolute, as required by IIS for 404 page.

Copy-ExtraItems
Copies additional items like versions.json, web.config, ReleaseNotes.md and robots.txt,
while also updating the %deployment_version% parameter in the web.config file.

Build-AllLanguagesDocs
Iterates over all selected languages and triggers the Build-NonEnglishDoc function for each.

Build-NonEnglishDoc
Executes docfx.exe to compile non-English documentation, incorporating Stride API
documentation if metadata is present.

PostProcessing-DocFxDocUrl
Adjusts HTML tags and GitHub links, removing any _tmp suffixes. Also updates GitHub links to
English if the translation is unavailable.

Workflow Diagram

34

Documentation Generation

User Interaction

Yes

No

Yes No

No

Yes

Generate-APIDoc

Ask-IncludeAPI

Get-UserInput

Ask-UseExistingAPI Remove-APIDoc docfx serve

Start-LocalWebsite

Cancel

Start

Read-LanguageConfigurations

BuildAll

End

35

Yes

No

Yes

No

isEnLanguage or isAllLanguages

docfx metadata

Build-EnglishDoc

isAllLanguages

Copy-ExtraItems

PostProcessing-Fixing404AbsolutePath

PostProcessing-FixingSitemap

docfx build

Build-AllLanguagesDocs

36

Nou ld ll a guages ocs

Build-NonEnglishDoc

docfx build

docfx pdf

PostProcessing-DocFxDocUrl

End

37

Local installation
This guide will walk you through the steps to install the Stride Docs website on your local machine for
development purposes. Although we use the Windows operating system for development, the steps
should be similar for other operating systems.

Minor updates can be made directly on GitHub. However, for more significant updates that affect
multiple pages, we recommend using a local development environment so you can see the impact of
your changes beforehand. This is because we use the Docfx static site generator, and in some cases, all
pages need to be regenerated. This approach helps you assess your changes before submitting a pull
request.

This guide assumes you have a basic understanding of the technologies used in the Stride docs website.

Prerequisites
Before updating the Stride Docs, ensure you are familiar with the following prerequisites:

1. Familiarity with the command line
2. .NET SDK 8.0 or higher: You can download the installer from the .NET SDK website

If .NET SDK is already installed, ensure you have version 8.0 or higher. You can check your
version by running dotnet --info in a terminal.

3. Git installed: You will need Git for version control. If you don't have Git installed, you can download
it from the Git website

4. Development IDE of choice: Choose an Integrated Development Environment (IDE) that you're
comfortable with for development. Although there are various popular choices, such as Visual
Studio, Visual Studio Code, and others, this guide will focus on using Visual Studio, as it is the
primary IDE for the Stride project, and as of writing, we use Visual Studio 2022. You can download
the free Community edition from the Visual Studio website

Installation Steps
1. ❓You might want to create an issue so we can track your contribution and avoid duplicate work. If

you're unsure whether your contribution is needed, feel free to create an issue and ask
2. 🍴 Fork the repository by navigating to the Stride Docs repository and clicking the Fork button in

the top-right corner
3. 📥 Clone your forked repository using the following command, replacing your-username with your

GitHub username: git clone https://github.com/your-username/stride-docs.git
💡Tip: It's a good idea to create a new branch for each feature or bug fix you work on. This
helps keep your forked repository organized and makes it easier to manage multiple pull
requests

4. Make sure you have also Stride repo cloned on the same level as stride-docs, read more about it
here

https://dotnet.github.io/docfx/index.html
https://dotnet.microsoft.com/en-us/download
https://git-scm.com/downloads
https://visualstudio.microsoft.com/downloads/
https://github.com/stride3d/stride-docs
https://github.com/stride3d/stride

38

This repo is needed for API documentation generation
5. 📁 Go to the project folder cd stride-docs
6. 🚀 Let's start with the Docfx

Enter the following command to install the latest docfx

Or check the installed version is at least 2.74.1

Other options

Update to the latest Docfx

Install a specific version of Docfx

Uninstall Docfx if you need to downgrade

Running the Development Server
We've created a PowerShell script BuildDocs.ps1 with a context menu where you can select the
language, include the API build, and run the development server.

1. 🚀 Run run.bat in the command line to start the script
2. 📋 You will see the following self-explanatory menu:

dotnet tool install -g docfx

docfx --version

dotnet tool update -g docfx

dotnet tool update -g docfx --version 2.74.1

dotnet tool uninstall -g docfx

Please select an option:

 [en] Build English documentation
 [jp] Build Japanese documentation
 [all] Build documentation in all available languages
 [r] Run local website
 [c] Cancel

https://github.com/stride3d/stride-docs/blob/master/BuildDocs.ps1

39

3. 🌐 Choose to build the documentation in the language of your preference
Select [n] for no API build

4. 🖥 If you select [r], the documentation site will open automatically in your browser
http://localhost:8080/en/index.html

If you built the documentation in a language other than English, you'll need to manually change
the language in the URL

5. 💻 Open the project in Visual Studio by opening the Stride.Docs.sln solution file, or use the IDE of
your choice

6. 🔄 After saving the updated file, you will need to rebuild the documentation by running the script
again

7. 😃 Happy coding!

Let's update the content now!

Your choice:

40

Documentation content
Content Updates
If you want to contribute and update the website, please follow the instructions below.

Small updates can be done directly in the GitHub web interface, for bigger updates the local
development environment is required, which is described in the Installation section.

You can use any text editor to make changes. If you are using Visual Studio, you can open
Stride.Docs.sln solution file in the root of the repository and start making your updates directly from
this IDE.

You are always welcome to create an issue to discuss your changes before you start working on them.

Small Updates
Creating an issue is not required for small updates, but it is recommended to let others know what you
are working on. If you are not sure whether your update is small or not, please create an issue first.

What is a small update?
We can define small updates as changes to the content of the website:

Update the content of an existing page (manual, tutorial or release note, ..)
Add a new manual or tutorial or any new content
Fix a typo

Steps

For the following instructions, use the Stride Docs GitHub repository :

1. Go to the repository
2. Locate the file you wish to edit
3. Click the Edit this file (pencil) icon in the top right corner
4. If prompted, fork the repository by clicking Fork this repository
5. Make your changes to the file, then write a brief commit message describing the changes
6. Click on the Propose changes button
7. On the next screen, click the Create pull request button
8. Provide a title and description for your pull request, and click on Create pull request again

NOTE

This guide assumes that you are already familiar with updating files on GitHub.

https://github.com/stride3d/stride-docs/issues
https://github.com/stride3d/stride-docs

41

9. Wait for the review and merge

Major Updates
Creating an issue is required for major updates, so that others can comment on your changes and
provide feedback.

Major updates can be defined as significant changes to the website's design, where it's beneficial to
preview the impact of your changes to ensure they achieve the desired result. This may include:

Update Docfx version
Modifying layouts
Revamping design elements

Start by setting up your local development environment, as described in the Installation section. After
making and testing your changes locally, you should create a pull request to merge your changes into
the master branch.

When submitting a pull request, especially for substantial changes, it's recommended to include
screenshots or a link to your local deployment. This approach helps maintainers visualize and assess
your proposed changes more effectively. If you prefer to use GitHub infrastructure for your
demonstrations, refer to our Deployment to GitHub Pages guide for instructions on deploying via
GitHub Actions.

Manual
These pages contain information about how to use Stride, an open-source C# game engine.

Creating New Manual Page
1. Create a new file in the manual folder, in the already existing folders (e.g. animation, audio, ..) or

create a new folder in the manual folder.
If you created a new folder, make sue that you create also index.md file in this folder.

2. Use any existing page as a template for the new page.
3. Update toc.yml (or toc.md) file in the manual folder to include the new page or folder. The toc.yml

file contains the table of contents for the manual pages, which is displayed on the left side of the
manual pages. These pages are also included in the optionally generated PDF file.

IMPORTANT

SEO Note: Ensure that the file name includes essential keywords related to the content of the
article. This is crucial because the file name dictates the URL of the content page, which plays a
significant role in search engine optimization (SEO).

https://github.com/stride3d/stride-docs/issues

42

Naming Convention
Observe existing pages and folders for the naming convention.

Media
You can observe that existing folders might have a media folder. This folder contains images and videos
used in the manual pages. You can use this folder or create a new one in your folder. If possible make
sure that images are .webp format and videos are .mp4 format.

Tutorial
These pages contain tutorials on how to use Stride, an open-source C# game engine.

Creating New Tutorial Page
1. Create a new tutorial folder in the tutorial folder.
2. Create a new index.md file in this folder. Observe existing tutorials for the content of this file.
3. Create markdown files for each step of the tutorial. Observe existing tutorials structure for the

content of these files.
4. Update toc.yml file in the tutorial folder to include the new tutorial folder. The toc.yml file

contains the table of contents for the tutorial pages, which is displayed on the left side of the
tutorial pages.

Naming Convention
Observe existing pages and folders for the naming convention.

Media
You can observe that existing tutorials have a media folder. This folder contains images. If possible make
sure that images are .webp format. The videos should be uploaded to YouTube and embedded in the
tutorial pages.

Other Sections
In addition to the Manual and Tutorial sections mentioned above, the same principles apply to both
existing and new sections. Follow the established formats and conventions to ensure consistency and
clarity throughout the documentation.

Shortcodes and Includes
Docfx supports additional markdown syntax to enrich content. These syntaxes are specific to Docfx and
may not render correctly on other platforms, like GitHub.

43

For more information, read the Docfx documentation on markdown, shortcodes and includes . Some
commonly used features include:

Alert: These are block quotes that render with distinct colors and icons, highlighting the importance
or nature of the content
Video: Embed video content directly into your documentation
Image: Insert images to enhance the visual aspect of the documentation
Math Expressions: Integrate mathematical notations and expressions
Mermaid Diagrams: Embed mermaid diagrams for flowcharts and other graphical
representations
Include Markdown Files: Include content from other markdown files seamlessly
Code Snippet: Insert code snippets for better clarity and demonstration
Tabs: Organize content into tabbed sections for improved readability

Web Assets
Our main web assets include:

template/partials/affix.tmpl.partial - Currently not functioning
template/partials/footer.tmpl.partial - Currently not functioning
template/public/main.css - Contains minor Bootstrap CSS overrides
template/public/main.js:

Sets the top navigation icons, such as GitHub, Discord, Twitter
Injects the Stride Docs version selection above the filter in the side navigation
Injects the Stride Docs language selection into the top navigation

docfx.json - The HTML footer is included in the _appFooter section

Styling
Bootstrap Customization
We utilize the modern template provided by Docfx, which employs the Bootstrap framework, version
5.3. This includes the dark theme, enabled by Docfx.

CSS Guidelines

IMPORTANT

Prioritize the use of Bootstrap's inherent styling before integrating any custom styles. You should be
familiar with Bootstrap Utilities which help you to achieve most of the styling requirements.

https://dotnet.github.io/docfx/docs/markdown.html?tabs=linux%2Cdotnet
https://mermaid.js.org/
https://getbootstrap.com/
https://getbootstrap.com/docs/5.3/utilities/api/

44

Our goal is to write minimal CSS code to keep the website lightweight, leveraging the Bootstrap
framework to the fullest extent possible.

Submitting your Changes
Assuming you have made all necessary changes and tested them on the development server, you can
submit a pull request to the master branch. The pull request will be reviewed and merged by the website
maintainers.

Steps to contribute your updates:

1. Commit your changes to your forked repository:
Commit the changes with a meaningful message
Push the changes to your forked repository

2. Create a pull request to the main repository:
You can create a pull request from your forked repository by navigating to Pull requests page
and click New pull request button
Select the master branch as the base branch and your branch as the compare branch
Click Create pull request button

Once your pull request has been reviewed and approved, your changes will be merged into the main
repository and deployed to the website.

45

Documentation Roadmap
This document outlines a proposed roadmap and an ongoing development plan for our Stride Docs
website.

Address Existing Issues: Prioritize resolving issues listed in the Issues section on GitHub.
Image Optimization: Convert existing images to the WebP format to enhance website
performance.
Content Enhancement: Implement improvements across all sections of the documentation to
ensure clarity, accuracy, and comprehensiveness.
Guidance for Contributors: Provide clear instructions for contributors on writing XML comments in
C#, which play a crucial role in enhancing the API documentation.

https://github.com/stride3d/stride-docs/issues

46

Docfx
Docfx is a static site generator that uses C# as its templating language. It is an exceptionally powerful
tool, offering immense flexibility and customization options for creating a documentation website.
Moreover, Docfx is user-friendly and easy to learn. This section covers the basics of Docfx configuration
for the Stride Docs website, while the creation and updating of content are detailed in our Content
section.

After reviewing various static site generator options, we decided to continue using Docfx, particularly in
light of the release of the new modern Docfx template. This template leverages Bootstrap 5.3 and has
recently introduced a dark theme feature.

Packages and Dependencies
Currently, we are not utilizing any additional packages.

Configuration
The configuration for Docfx is located in the en\docfx.json file. This file contains all the necessary
settings for the Docfx build process.

Contents of the Configuration File:

API Sources: Specifies the Stride path and selected projects for API documentation generation
Global Metadata: Contains global configuration settings for the documentation build
File Metadata: Defines folder sections to be processed for documentation generation, such as
Manuals, Tutorials, etc.
Resource - Pass Through Files: Lists files that are copied directly to the output folder without
processing
Other Configuration: Explore the file for additional configuration options

For more details on configuration options, visit the Docfx Configuration Documentation .

Global Data
Docfx currently does not support global data like 11ty. At present, Mustache can only be used in
templates.

Folder Structure
The folder structure plays a vital role in the documentation generation process, as it determines the
output of the build. The structure is organized as follows:

Folders

https://dotnet.github.io/docfx/index.html
https://dotnet.github.io/docfx/docs/config.html

47

.github: Contains GitHub Action workflows
_site: The output build folder (excluded in .gitignore and used for deployment)
en: Contains the English language documentation
en\api: Automatically generated folder from the Stride API
en\contributors: Documentation for contributors
en\diagnostics: Diagnostic pages referenced by Stride solution warnings in the IDE
en\examples: Additional content for C# XML comments, which are merged into API documentation
and linked by uids
en\includes: Markdown files whose content can be included in multiple .md files across the
documentation.
en\manual: Documentation for the manual
en\media: Main media assets
en\ReleaseNotes: Documentation for release notes
en\template: Docfx assets for minor template customization, including CSS and JS files
en\tutorials: Documentation for tutorials
jp: Japanese language documentation, translated from the English version (currently not updated)
wiki: GitHub wiki content - Excluded from the build process and used only for wiki deployment. This
section will be decommissioned as the content has been moved to Stride Docs.

Files
en*.md: Markdown content pages
en*.yml: Table of content files
en\.nojekyll: A flag file for GitHub Actions
en\docfx.json: Docfx configuration file
en\filterConfig.yml: Rules for API exclusion
en\languages.json: Configuration file for languages

Non Docfx Files
appsettings.json: Configuration file for ASP.NET Core.
appsettings.Development.json: Development-specific configuration file for ASP.NET Core.
build-all.bat: Batch file used in GitHub Actions CI/CD to build all documentation using
BuildDocs.ps1.
BuildDocs.ps1: PowerShell script responsible for building documentation. Refer to pipeline for
details.
OldDocsFix.ps1: Temporary PowerShell script for fixing old documentation.
Program.cs: Startup file for ASP.NET Core.
run.bat: Batch file to run BuildDocs.ps1 in interactive mode.
run-fix.bat: Temporary batch file to run OldDocsFix.ps1.
Stride.Docs.csproj: ASP.NET Core project file.
Stride.Docs.sln: ASP.NET Core solution file.

48

Stride.Docs.csproj.user: User-specific ASP.NET Core project file.
versions.json: Configuration file managing versions of Stride documentation.
web.config: Configuration file for IIS deployment.

Layouts
We utilize the default layout provided by the modern template, as specified in docfx.json.

Includes
All includes are located in the /_includes folder. These are reusable markdown snippets that can be
incorporated into multiple pages.

NOTE

This project includes the Visual Studio solution Stride.Docs.sln, allowing you to edit the files using
the Visual Studio IDE.

49

Deployment
Our team has explored various deployment options, ultimately selecting the method detailed in this
guide for its efficacy. Additionally, for demonstration purposes, you can refer to the Deployment to
GitHub Pages section for alternative deployment strategies you can use to showcase your updates.

Deploying to Azure Web Apps (Windows) with IIS
This guide is crafted for individuals who already have access to the Azure subscription. It provides step-
by-step instructions for setting up a new Azure Web App, specifically tailored for staging environments.
Note that the process for setting up a production environment is similar, but requires a distinct web app
name.

Deployments to Azure Web Apps are automated through GitHub Actions, forming an integral part of our
Continuous Integration/Continuous Deployment (CI/CD) process. The CI/CD pipeline is configured to
automatically trigger deployments upon merging changes into either the staging or release branches.

Setting up a new Azure Web App
Follow these instructions carefully to establish your Azure Web App in a staging environment. For
deploying in a production environment, replicate these steps with an alternate web app name for
differentiation.

1. Navigate to the Azure Portal
2. Select Create a resource
3. Choose Create a Web App
4. In the Basic Tab

Choose your existing subscription and resource group
Under Instance Details, enter:

Name: stride-docs-staging
Publish: Code
Runtime stack: ASP.NET V4.8
OS: Windows
Region: as the current web

NOTE

The deployment process outlined here is already established and running, hosted on Azure and
sponsored by the .NET Foundation. This guide serves primarily as a reference for maintainers in the
event that a new deployment setup is required.

https://portal.azure.com/

50

Pricing Plan - An existing App Service Plan should appear if the region and resource group
match that of the existing web app. Currently we use Standard S1.
Click Next

5. In the Deployment Tab - This step can be completed later if preferred.
Enable Continuous deployment
Select account, organisation Stride, repository stride-docs and branch staging
Click Next

6. In the Monitoring Tab
Leave all settings as default
Click Next

7. Monitoring Tab
Disable Application Insights - This is not needed at this stage
Click Next

8. In the Tags Tab
Leave this blank unless you wish to add tags
Click Next

9. In the Review Tab
Review your settings
Click Create
The GitHub Action will be added to the repository and run automatically. It will fail at this stage,
but this will be resolved in the subsequent steps.

Adjusting the Web App Configuration
1. Proceed to the newly created Web App
2. Click on Configuration
3. Select General Settings
4. Change the Http version to 2.0
5. Change Ftp state to FTPS only
6. Change HTTPS Only to On
7. Click Save to apply the changes

CAUTION

If you have completed the Deployment Tab process, ensure that the deployment profile includes
the DeleteExistingFiles property. This property may need to be set to False or True depending on
the specific requirements of your deployment. For instance, Stride Docs deployment retains files
from previous deployments, allowing multiple versions like 4.2, 4.1, etc., to be maintained. Adjust
this setting based on your deployment needs.

51

Modifying the GitHub Action
The previous step will have added a GitHub Action to your repository, which might fail initially. To
address this, you need to modify the GitHub Action:

1. Navigate to the repository
2. Select Actions
3. You have the option to stop the currently running action
4. Locate the new GitHub Action file (stride-docs/blob/master/.github/workflows/some-file-name.yml)

that was automatically generated by Azure Portal. We need to extract the app-name and publish-
profile values from it and disable the push trigger.

To disable the push trigger, retain only workflow_dispatch (manual trigger) as shown below:

5. Open the stride-docs-staging-azure.yml workflow and update it with the values obtained in the
previous step. Save your changes.

6. This workflow might also need to be added to the master branch if it is not already present.
7. Execute the workflow stride-docs-staging-azure.yml. Ensure you select the correct branch staging

and click Run workflow. This action will deploy the website to the Azure Web App.

GitHub Actions
stride-website-github.yml: Enables manual deployment to GitHub Pages in a forked repository,
primarily for showcasing updates.
stride-docs-release-azure.yml: Automates deployment to production upon merging changes into
the release branch, with a manual trigger option also available.
stride-docs-release-fast-track-azure.yml: Provides manual deployment to production, bypassing
the creation of artifacts.
stride-docs-staging-azure.yml: Facilitates automatic deployment to staging when changes are
merged into the staging branch, and includes a manual trigger option.
stride-docs-staging-fast-track-azure.yml: Allows for manual deployment to staging, skipping the
creation of artifacts.
stride-website-wiki.yml: Automatically deploys to the GitHub Wiki when changes are pushed to
the wiki folder in the master branch, also includes a manual trigger feature

Deployment to GitHub Pages

on:
push:
branches:
- staging
 workflow_dispatch:

https://stride-doc-staging.azurewebsites.net/latest/en/index.html

52

To showcase your updates, especially helpful for design changes pending review, you can deploy the
docs website either to your infrastructure or to GitHub Pages, a free hosting service. Once deployed,
share the link with us for review.

Prerequisites
In your stride-docs repository:

1. Navigate to Settings → Actions → General → Workflow Permissions
Choose Read and write permissions

Run GitHub Action
1. Go to Actions, select Build Stride Docs for GitHub Staging

Click Run workflow; you may optionally select a branch
2. Monitor the build logs while the action is in progress
3. Upon successful build, a gh-pages branch will be created
4. Navigate to Settings → Pages → Branch section

Choose the gh-pages branch with the root option and click Save
5. After saving, an internal GitHub Action pages build and deployment is automatically created and

triggered, deploying the content to the GitHub Pages website
6. The website will be accessible at https://[your-username].github.io/stride-docs/4.2/en

Change the version in the URL accordingly. You might see some JS errors, related to file
expected in the root level.

Add Custom Domain
Optionally, you can add also a custom domain. This should resolve JS url related errors.

1. Go to Settings → Pages → Custom domain
Enter your custom domain and follow the instructions for verification

2. Upon saving, the pages build and deployment action is triggered again, adding a CNAME file
containing your custom domain name to the gh-pages branch

3. Your website should now be fully operational on your custom domain, for example, https://stride-
docs.vaclavelias.com/4.2/en/ is hosted on GitHub Pages

53

Major Release Workflow
Assuming the transition is from version 4.1 to 4.2, and that the Stride source code has been updated to
the corresponding .NET version, follow these steps. Note that some steps can be executed at a later
stage if needed.

1. Duplicate ReleaseNotes\ReleaseNotes.md and rename the copy to ReleaseNotes-4.1.md
2. Update ReleaseNotes.md:

Change the content title to 4.2
Replace the content with the new release notes for version 4.2
GitHub Release can be used to generate a list What's Changed, once the new tag was added

3. Modify ReleaseNotes\toc.yml
name: 4.2 release notes with href: ReleaseNotes.md
name: 4.1 release notes with href: ReleaseNotes-4.1.md

4. In en\docfx.json
_appFooter: Increase the version number
Change TargetFrameworkin two locations to the current framework version being used. Ensure
to test this step locally

5. Edit versions.json
Under versions, add the new version 4.2

6. For GitHub Actions deployment update *.yml files in the .github\workflows\ folder
dotnet-version: Update to the related .NET version

The BuildDocs.ps1 script will manage the deployment to the 4.2 folder while maintaining accessibility to
previous versions. Note, that the deployment profile must be set to not delete existing items.

Other locations to update
1. Update README.md in the Stride repo, Building from source - Prerequisites section, bump .NET

version
2. Modify contributors\documentation\installation.md

Update SDK version

https://github.com/stride3d/stride/releases
https://github.com/stride3d/stride/blob/master/README.md

54

Troubleshooting and FAQ
Known Issues
Common Issues and Solutions
Frequently Asked Questions

Known Issues
ToDo: Add any known issues

Common Issues and Solutions
Any issue should be added to Stride Docs GitHub issues so it can be tracked and elaborated by the
community.

Frequently Asked Questions
Q: I just want to fix a typo in a post. Do I need to follow your installation steps?

A: No, you can fix the typo directly on the GitHub website. However, you will still need to fork the repo,
make your update on the main branch or a new branch, and then create a pull request. You can follow this
guide for minor updates.

https://github.com/stride3d/stride-docs/issues

55

Contributing to the Stride website
This documentation serves as a comprehensive guide to help you navigate and contribute to the Stride
website.

If you're looking to make minor changes, such as adding or updating a post or page, or fixing a typo,
you can jump straight to the Content Updates section.

For more extensive updates 🤯� and a deeper understanding of the website project, we recommend
exploring all the sections provided. Happy browsing and contributing!

Technologies we use to build our website:

Eleventy (static site generator)
Markdown
Mainly Liquid and a bit Nunjucks (template engines)
Bootstrap
Font Awesome
HTML, JavaScript, CSS, SCSS, and JSON
GitHub Actions (CI/CD)

Our GitHub Actions are already configured for deploying to both staging and release
environments.
For personal testing or demonstration purposes, you may need to set up your own GitHub
Actions. This is especially useful for showcasing proposed changes to maintainers for their
approval. For guidance on this, refer to our Deployment to GitHub Pages guide.

Dependencies
Various Stride systems rely on content fetched and processed from either the Stride website or the Stride
Docs website. It's crucial to ensure that the following links remain active and accessible. Please refrain
from removing or altering these links unless the dependent systems have been updated accordingly to
accommodate any changes.

1. https://www.stride3d.net/legal/privacy-policy/
This link is integral to the Stride Installer. It provides users with transparent information about
data handling and privacy considerations associated with using Stride.

2. https://www.stride3d.net/feed.xml
The Stride Launcher utilizes this feed to keep users updated with the latest news, updates, and
announcements from the Stride community.

3. https://doc.stride3d.net/latest/en/index.json
This JSON file is crucial for integrating the Stride Website's search functionality with the Stride
Documentation. It ensures that search results are comprehensive, including relevant
information from both the Stride website and Stride Docs.

https://www.11ty.dev/docs/
https://shopify.github.io/liquid/
https://github.com/stride3d/stride-website/tree/master/.github/workflows
https://www.stride3d.net/legal/privacy-policy/
https://www.stride3d.net/feed.xml
https://doc.stride3d.net/latest/en/index.json

56

57

Local installation
This guide will walk you through the steps to install the Stride website on your local machine for
development purposes. Although we use the Windows operating system for development, the steps
should be similar for other operating systems.

Minor updates can be made directly on GitHub. However, for more significant updates that affect
multiple pages, we recommend using a local development environment so you can see the impact of
your changes beforehand. This is because we use the Eleventy static site generator, and in some cases,
all pages need to be regenerated. This approach helps you assess your changes before submitting a pull
request.

This guide assumes you have a basic understanding of the technologies used in the Stride website.

Prerequisites
Before updating the Stride website, ensure you are familiar with the following prerequisites:

1. Familiarity with the command line
2. .NET SDK 8.0 or higher: You can download the installer from the .NET SDK website

If .NET SDK is already installed, ensure you have version 8.0 or higher. You can check your
version by running dotnet --info in a terminal.

3. Git installed: You will need Git for version control. If you don't have Git installed, you can download
it from the Git website

4. Development IDE of choice: Choose an Integrated Development Environment (IDE) that you're
comfortable with for development. Although there are various popular choices, such as Visual
Studio, Visual Studio Code, and others, this guide will focus on using Visual Studio, as it is the
primary IDE for the Stride project, and as of writing, we use Visual Studio 2022. You can download
the free Community edition from the Visual Studio website

Installation Steps
1. ❓You might want to create an issue so we can track your contribution and avoid duplicate work. If

you're unsure whether your contribution is needed, feel free to create an issue and ask
2. 🍴 Fork the repository by navigating to the Stride website repository and clicking the Fork button

in the top-right corner
3. 📥 Clone your forked repository using the following command, replacing your-username with your

GitHub username: git clone https://github.com/your-username/stride-website.git
💡Tip: It's a good idea to create a new branch for each feature or bug fix you work on. This
helps keep your forked repository organized and makes it easier to manage multiple pull
requests

4. 📁 Go to the project folder cd stride-website
5. 🚀 Run npm install to install all dependencies

https://www.11ty.dev/docs/
https://dotnet.microsoft.com/en-us/download
https://git-scm.com/downloads
https://visualstudio.microsoft.com/downloads/
https://github.com/stride3d/stride-website

58

Running the Development Server
1. 🚀 Run npm start (npx @11ty/eleventy --serve) in the command line to start the development

server
2. 📋 You should see many logs in the command line, indicating the progress and displaying any errors

⚠ A Windows Security warning may appear on the first run (Allow Node.js JavaScript Runtime
to communicate on these networks). Click Allow access

3. 🌐 Open the site in your browser by navigating to http://localhost:8080/
4. 💻 Open the project in Visual Studio by opening the Stride.Web.sln solution file, or use the IDE of

your choice
5. 🔄 Once you save the updated file, the website will automatically refresh in the browser
6. 😃 Happy coding!

ToDo: Attach a screenshot of the command line output

Let's update the content now!

ASP.NET Core
This static website can also be hosted using ASP.NET Core.

Although we're not currently using the ASP.NET Core website, it remains available for future use. If
necessary, we can integrate dynamic ASP.NET Core pages with the static pages generated by Eleventy.

To edit the website through Visual Studio, open the Stride.Web.sln solution, which will load the website
in the IDE. You can then modify the pages and content and run the website directly from Visual Studio.

During the Visual Studio build process, npm run build is executed, generating the static website in the
same _site folder as previously described. The ASP.NET Core website uses this folder instead of the
default wwwroot. This customization is specified in the Program.cs file.

var builder = WebApplication.CreateBuilder(new WebApplicationOptions
{
 Args = args,
 WebRootPath = "_site" // Set the folder where the static files are located (e.g., Eleventy
});

59

Website Content
Content Updates
If you want to contribute and update the website, please follow the instructions below.

Small updates can be done directly in the GitHub web interface, for bigger updates the local
development environment is required, which is described in the Installation section.

You can use any text editor to make changes. If you are using Visual Studio, you can open
Stride.Web.sln solution file in the root of the repository and start making your updates directly from this
IDE.

You are always welcome to create an issue to discuss your changes before you start working on them.

Small Updates
Creating an issue is not required for small updates, but it is recommended to let others know what you
are working on. If you are not sure whether your update is small or not, please create an issue first.

What is a small update?
We can define small updates as changes to the content of the website:

Update the content of an existing page
Update the content of an existing blog post
Add a new page or blog post
Fix a typo
Minor navigation or footer update

This will update all pages containing the navigation or footer

Steps

For the following instructions, use the Stride Website GitHub repository :

1. Go to the repository
2. Locate the file you wish to edit
3. Click the Edit this file (pencil) icon in the top right corner
4. If prompted, fork the repository by clicking Fork this repository
5. Make your changes to the file, then write a brief commit message describing the changes

NOTE

This guide assumes that you are already familiar with updating files on GitHub.

https://github.com/stride3d/stride-website
https://github.com/stride3d/stride-website

60

6. Click on the Propose changes button
7. On the next screen, click the Create pull request button
8. Provide a title and description for your pull request, and click on Create pull request again
9. Wait for the review and merge

Major Updates
Creating an issue is required for major updates, so that others can comment on your changes and
provide feedback.

Major updates can be defined as significant changes to the website's design, where it's beneficial to
preview the impact of your changes to ensure they achieve the desired result. This may include:

Adding new Eleventy shortcodes and Liquid includes
Updating the Bootstrap library or other libraries
Modifying layouts
Revamping design elements

Start by setting up your local development environment, as described in the Installation section. After
making and testing your changes locally, you should create a pull request to merge your changes into
the master branch.

When submitting a pull request, especially for substantial changes, it's recommended to include
screenshots or a link to your local deployment. This approach helps maintainers visualize and assess
your proposed changes more effectively. If you prefer to use GitHub infrastructure for your
demonstrations, refer to our Deployment to GitHub Pages guide for instructions on deploying via
GitHub Actions.

Creating New Post
To create a new blog post, you can follow one of these methods:

1. Copy an existing post and update the front matter and content. This is the fastest way to get started
with a new post

2. Alternatively, create a new file in the posts folder, ensuring that the file name follows the
appropriate naming convention

Either method will allow you to create a new blog post, so choose the one that best suits your needs.

Post Naming Convention
YYYY-MM-DD-post-title.md

Replace YYYY-MM-DD with the date of the post and post-title with the title of the post.

https://github.com/stride3d/stride-website/issues

61

Post Front Matter
The file should start with the following front matter:

The same example, without the comments:

Default front matter, which is used for all posts, can be found in the posts/posts.json file.

IMPORTANT

SEO Note: Ensure the file title includes essential keywords related to your post's content. This is
crucial as the file title dictates the URL of the post, which plays a significant role in search engine
optimization (SEO).

title: 'Post title'
author's id, defined in the _data/site.json
author: vaclav
optional, if not set, the default tags will be used, tags are merged with the default tags
you can find all tags in the live site in the /tags/ page
tags: ['Announcement']
optional, if not set, the default image will be used
use webp format for best performance, images should be located in the /images/blog/YYYY-MM-DD
image: /images/blog/2023-04/new-home-page.webp
optional, if true, the post will be featured in the popular section
pupular: true
permlink is automatically generated based on the file name, but you can override it here
permalink: /blog/2023-04/my-custom-link/ # this is a custom link

title: 'Post title'
author: vaclav
tags: ['Announcement']
image: /images/blog/2023-04/new-home-page.webp
pupular: true
permalink: /blog/2023-04/my-custom-link/

{
 "layout": "post",

62

Image
The image specified in the front matter serves dual purposes: It appears in the blog listing at Stride Blog
 and is used as the og:image meta tag for social sharing. Here are three ways to specify this image:

Not including an image in the front matter will use the default image
Including an image in the front matter will override the default image. The size of the image should
be minimum 1200 x 600px e.g. image: /images/blog/2023-04/new-home-page.webp
External image URL e.g. image: https://i.imgur.com/7GVEiSR.jpg
If you are looking for Stride specific logo's or icons, have a look at the Figma options

Post Content
Check the previous posts for an example of the post content. Ideally you should use the same format as
the previous posts to preserve the consistency of the blog.

You can use shortcodes and includes which are described in the Shortcodes and Includes section.

You can also use majority of the Bootstrap classes in your content if you combine HTML and Markdown.

Excerpt
The excerpt is the first paragraph of the post. Separated from the rest of the content by three dashes --
-. The excerpt is used in the blog post list, meta description and in the RSS feed.

Example

 "eleventyComputed": {
 "year": "{{ page.date | date: '%Y' }}",
 "modified": "Last Modified"
 },
 "permalink": "/blog/{{ page.fileSlug }}/",
 "tags": ["blog", "search"]
}

TIP

We have a folder called _drafts where you can store your drafts. These files are not published. Once
you are ready to publish your post, you can move it to the posts folder.

title: 'Stride 4.1 is Now Live'
author: aggror

https://www.stride3d.net/blog/

63

Creating New Page
To create a new page, create a new file in the root folder or create a new folder and add an index.md file
to it. You can use any templating language supported by Eleventy. We use Markup, HTML, Nunjucks.

Page Front Matter
The page front matter works the same way as the post front matter. The only difference is that the
layout property is required.

Example: file features.html

Shortcodes and Includes
To enhance the quality and functionality of the content, both pages and posts can incorporate
shortcodes and includes. These tools offer a versatile way to enrich the presentation and interactivity of
the content on the Stride website.

Web Assets
Our main web assets are:

css/custom-bootstrap.scss - Slightly modified Bootstrap theme
Some Bootstrap variables are overridden
Some Bootstrap parts are disabled so they don't bloat the website (e.g. button-group,
breadcrumb, ..)

tags: ['Tutorials','Release', 'Graphics']

Stride contributors are proud to announce a new release now running on .NET 6 supporting the la

Additional content goes here...

layout: default
title: Features
description: 'Stride supports an extensive list of features: Scene Editor, Physically Based Ren
permlink is automatically generated based on the file name, but you can override it here
permalink: /my-features/ # otherwise it would be /features/

64

css/styles.scss - Main stylesheet
Styles also Dark Mode

css/syntax-highlighting.scss - Imported prismjs styling, Light and Dark Mode
assets/search.liquid - Script for search
assets/site.liquid - Not used
assets/theme-selector.liquid - Script for Ligth and Dark Mode selection
search.liquid - Renders as search.json contains search meta

Styling
Bootstrap Customization
Our website uses the Bootstrap framework, version 5.3.

CSS Guidelines
Our goal is to write as little CSS as possible to ensure the website remains lightweight. We maximize the
utilization of the Bootstrap framework to achieve this.

Further, we are using also FontAwesome free icons. The icons are loaded in the
src/_includes/css/main.css file.

Submitting your Changes
Assuming you have made all necessary changes and tested them on the development server, you can
submit a pull request to the master branch. The pull request will be reviewed and merged by the website
maintainers.

Steps to contribute your updates:

1. Commit your changes to your forked repository:
Commit the changes with a meaningful message
Push the changes to your forked repository

2. Create a pull request to the main repository:
You can create a pull request from your forked repository by navigating to Pull requests page
and click New pull request button
Select the master branch as the base branch and your branch as the compare branch
Click Create pull request button

IMPORTANT

Prioritize the use of Bootstrap's inherent styling before integrating any custom styles. You should be
familiar with Bootstrap Utilities which help you to achieve most of the styling requirements.

https://getbootstrap.com/
https://fontawesome.com/
https://getbootstrap.com/docs/5.3/utilities/api/

65

Once your pull request has been reviewed and approved, your changes will be merged into the main
repository and deployed to the website.

66

Shortcodes and Includes
You can see examples here https://www.stride3d.net/blog/examples/ .

Alert
To add an alert, use the following include, where:

type is one of the following: primary, secondary, success, danger, warning, info, light, dark. Using
these types will automatically include a relevant icon
icon is a Font Awesome icon, which is optional. You can use any free icon, e.g., fa-check.
title is the title of the alert

Examples
See the examples here .

This will render as a green box without the icon
{% include _alert.html type:'success' icon:'' title:'No icon: Stride contributors are proud to a

This will render as a green box with a check icon
{% include _alert.html type:'success' title:'No icon: Stride contributors are proud to announce a

This will render as a green box with a custom icon
{% include _alert.html type:'success' icon:'fa-face-smile' title:'No icon: Stride contributors a

https://www.stride3d.net/blog/examples/
https://www.stride3d.net/blog/examples/#alert

67

Alert Banner
A global alert banner can be used for promotional purposes. The banner can be activated in site.json. It
will show up on every single page.

The HTML can be updated in the /_includes/alert-banner.html file.

Image
Add responsive images using shortcodes. Be sure to include a descriptive title, as it will improve your
post's search engine visibility. Also, if possible, use the webp format for images, which can also be used
for transparent images. This will improve the performance of your site.

img
To add a responsive image, use the following shortcode:

{% img 'title' 'url' %}

Replace title with a descriptive title for the image and url with the image URL. This shortcode renders
as:

img-click
To add a responsive image with a clickable link that opens the image in full size, use the following
shortcode:

{% img-click 'title' 'url' %}

Replace title with a descriptive title for the image and url with the image URL. This shortcode renders
as:

"alert-banner": true

68

To add a responsive image with a clickable link that directs users to a custom destination, use the
following shortcode:

{% img-click 'title' 'url' 'destinationUrl' %}

Replace title with a descriptive title for the image, url with the image URL, and destinationUrl with the
target URL when the image is clicked. This shortcode renders as:

Video
We should consider hosting our videos on YouTube whenever possible.

youtube
To embed a YouTube video, use the following shortcode:

{% youtube 'id' %}

Replace id with the YouTube video ID. This shortcode renders as:

youtube-playlist
To embed a YouTube playlist, use the following shortcode:

{% youtube-playlist 'id' %}

Replace id with the YouTube playlist ID. This shortcode renders as:

To embed a video hosted elsewhere, use the following shortcode:

Hosting our own videos
{% video 'url' %}

<img alt="title" src="url" class="img-fluid" loading="

<img alt="title" src="url" class="img-fluid

<div class="ratio ratio-16x9 mb-2"><iframe src="https://www.youtube.com/embed/id" title="YouTub

<div class="ratio ratio-16x9 mb-2"><iframe src="https://www.youtube.com/embed/videoseries?list=

69

Replace url with the video URL (e.g., .mp4 file). Make sure you have a matching .jpg file with the same
name as the .mp4 file for the poster attribute. This shortcode renders as:

How to encode videos
Videos can be generated by many software in various formats & size, so they might end up being
incompatible with web browsers or mobile, or simply be way too large. It is better to stick to a format
with low requirements such as H264 baseline profile (works almost everywhere).

To do so, process the file using fmpeg :

Also, generate a static thumbnail so that people can preview it before downloading the video (very
important on mobile):

ToDo: Check if webp can be generated from ffmpeg

ToDo: Maybe we could provide a simple tool to do that without using command line.

<!-- jpgUrl = url.replace(".mp4", ".jpg") // make sure you have a pair .mp4 and .jpg -->
<div class="ratio ratio-16x9 mb-2"><video autoplay loop class="responsive-video" poster="jpgUrl

ffmpeg -i myvideo_original.mp4 -profile:v baseline -level 3.0 -an myvideo.mp4

ffmpeg -i myvideo.mp4 -vframes 1 -f image2 -y myvideo.jpg

https://ffmpeg.org/download.html

70

Figma Designs
Stride boasts a range of official logos tailored for various applications and occasions.

Access the official Stride Figma designs to explore and utilize these creative resources.

Our Figma design collection encompasses:

Stride Logo: The core visual representation of the Stride brand
Stride Icons: A variety of icons reflecting Stride's identity and functionality
Stride Website Mockups: Conceptual designs and layouts for the Stride website
Stride Tutorial Thumbnails: Engaging and informative thumbnails for Stride tutorials
Stride Splash Screens: Visually striking splash screens for Stride software and applications

https://www.figma.com/file/LwUrbnxR1hVkO53R3yqpQT/STRIDE3D?type=design&node-id=126-192&mode=design

71

Website roadmap
This document outlines a proposed roadmap and an ongoing development plan for our Stride website.

Address Existing Issues: Prioritize resolving issues listed in the Issues section on GitHub.
Image Optimization: Convert existing images to the WebP format to enhance website
performance.
Decoupling Media: Streamline the website by decoupling media from the site

Consider hosting videos on YouTube
Consider hosting images in Azure Blob Storage or another location

https://github.com/stride3d/stride-website/issues

72

Eleventy site generator
Eleventy is a static site generator that uses JavaScript as its templating language. It is a very powerful
tool that allows us to create a website with a lot of flexibility and customization. It is also very easy to use
and learn. This section will cover the basics of Eleventy configuration on the Stride website. Creating and
updating the content is described in our Content section.

We used to use Jekyll as our static site generator, but we decided to switch to Eleventy because of its
flexibility and ease of use. We also wanted to use a tool that is more widely used and supported, which is
why we decided to switch to Eleventy.

Packages and Dependencies
Eleventy is a Node.js application. Please follow our Installation guide to install Node.js and all the
required dependencies.

Packages we currently use:

Dev Dependencies
@11ty/eleventy v2.0 - Main package for the static site generator
@11ty/eleventy-plugin-rss - RSS feed plugin
@11ty/eleventy-plugin-syntaxhighlight - Syntax highlighting plugin (dark and light theme in
/css/syntax-highlighting.scss)

Dependencies
@11ty/eleventy-fetch - Fetch plugin
@fortawesome/fontawesome-free - Font Awesome with a variety of awesome icons 😃🤩

bootstrap - Bootstrap 5.3
lunr - Lunr search plugin that consumes local search.json (/search.liquid) and remote
index.json from the docs website; the script is in /assets/scripts/search.liquid
markdown-it-anchor - Anchor plugin for markdown-it
markdown-it-table-of-contents - Table of contents plugin for markdown-it, used mainly in blog
posts as [[TOC]]
sass - Sass compiler for our /css/*.scss files

Configuration
The Eleventy configuration is located in the .eleventy.js file at the root of the project. This file contains
all the configuration settings for the Eleventy build process. As it is a JavaScript file, you can utilize all
JavaScript features and syntax within it.

What do you find in this file?

plugins configuration - All the plugins we use

https://www.11ty.dev/

73

pass through files - Files that are copied to the output folder without any processing
custom collections - Custom collections used in the templates like tagList and yearList
filters - Custom filters used in the templates
custom shortcodes - Custom shortcodes used in the templates, pages or blog posts.

The file is well-commented and should be self-explanatory. If you need to add a new configuration,
please follow the existing structure and include a comment to explain the new configuration.

Global Data
Global data is located in the _data folder. It contains all the global data that is accessible in all the
templates. Currently, we have these JSON files:

site.json - Contains all the global data for the website, used in the templates and shortcodes.
features.json - Contains all the data for the features page and its features sections.
sponsors.json - Contains sponsor information used in multiple places on the website.

Our site.json file contains these main properties, with only some listed below:

dark-mode - Dark mode toggle true|false
alert-banner - Global banner below navigation true|false
docs-search - Includes docs website content in the search true|false
links - Contains all the main links used across the website (social media, docs, GitHub, etc.)
authors - Contains all the authors used in the blog posts
repeated data - like csharp-version, dotnet-version, download-version which are used in multiple
places on the website and are updated with every release

Folder Structure
The folder structure is crucial for Eleventy, as it determines the output of the build process. The folder
structure is organized as follows:

Folders
_data - Global data
_drafts - Draft blog posts (excluded from the build process)
_includes - Reusable code snippets that can be included in multiple pages
_layouts - Main layout pages (container, page, post) using the primary layout page default
_site - Output build folder (excluded in .gitignore and used for deployment)
assets - Additional assets, such as scripts
blog - Blog content page
css - Website stylesheets
files - Stride installer files
images - Images and MP4 files used on the website

74

legal - Content page
posts - Blog posts
posts/2014-2021 - Old blog posts which are merged to the same output folder as /posts

this folder is only for convenience to easily access new posts
wiki - GitHub wiki content - Excluded from build process, used only for wiki deployment. This will be
decommissioned because the content was moved to Stride Docs

Files
posts/posts.json - Blog post defaults so they don't have to be repeated in the front matter
*.html - HTML content pages
*.liquid - Liquid content pages
*.md - Markdown content pages
*.njk - Nunjucks content pages
.eleventy.js - Eleventy configuration file
.eleventyignore - Lists files and folders not to be processed by Eleventy
package.json - Eleventy project metadata used by npm

Non Eleventy files
.nojekyll - Special file for GitHub Pages
CNAME - Custom domain for GitHub Pages
appsettings.json - ASP.NET Core configuration file
appsettings.Development.json - ASP.NET Core configuration file
Program.cs - ASP.NET Core startup file
Stride.Web.csproj - ASP.NET Core project file
Stride.Web.sln - ASP.NET Core solution file
Stride.Web.csproj.user - ASP.NET Core project file
web.config - Configuration file for IIS deployment
web.Release.config - Configuration file for Windows ASP.NET Core deployment

Layouts
All the layouts are located in the _layouts folder. The default layout is the main layout page and is used
by all the other layouts.

default - Main layout page

NOTE

This project includes ASP.NET Core solution and files, as they can be used seamlessly with Eleventy.
Read more about this in our Installation section.

75

container - Used by some pages
page - Used by most of the pages
post - Used by blog posts

Includes
All the includes are located in the _includes folder. The includes are reusable code snippets that can be
included in multiple pages.

Some includes are used solely by the layouts, while others are used by the content pages.

Advanced Topics
Creating Custom Shortcodes and Includes
If you need to create a custom shortcode or include, please follow the existing structure and include a
comment to explain the new shortcode or include.

The shortcodes are defined in the .eleventy.js file, while the includes are located in the _includes
folder.

You can explore the existing shortcodes and includes to get a better understanding of how they work
and how to create new ones.

Performance Optimization
ToDo: Remove this section if not needed

76

Deployment
Our team has explored various deployment options, ultimately selecting the method detailed in this
guide for its efficacy. Additionally, for demonstration purposes, you can refer to the Deployment to
GitHub Pages section for alternative deployment strategies you can use to showcase your updates.

Deploying to Azure Web Apps (Windows) with IIS
This guide is crafted for individuals who already have access to the Azure subscription. It provides step-
by-step instructions for setting up a new Azure Web App, specifically tailored for staging environments.
Note that the process for setting up a production environment is similar, but requires a distinct web app
name.

Deployments to Azure Web Apps are automated through GitHub Actions, forming an integral part of our
Continuous Integration/Continuous Deployment (CI/CD) process. The CI/CD pipeline is configured to
automatically trigger deployments upon merging changes into either the staging or release branches.

Setting up a new Azure Web App
Follow these instructions carefully to establish your Azure Web App in a staging environment. For
deploying in a production environment, replicate these steps with an alternate web app name for
differentiation.

1. Navigate to the Azure Portal
2. Select Create a resource
3. Choose Create a Web App
4. In the Basic Tab

Choose your existing subscription and resource group
Under Instance Details, enter:

Name: stride-website-staging
Publish: Code
Runtime stack: ASP.NET V4.8
OS: Windows
Region: as the current web

NOTE

The deployment process outlined here is already established and running, hosted on Azure and
sponsored by the .NET Foundation. This guide serves primarily as a reference for maintainers in the
event that a new deployment setup is required.

https://portal.azure.com/

77

Pricing Plan - An existing App Service Plan should appear if the region and resource group
match that of the existing web app. Currently we use Standard S1.
Click Next

5. In the Deployment Tab - This step can be completed later if preferred.
Enable Continuous deployment
Select account, organisation Stride, repository stride-website and branch staging
Click Next

6. In the Monitoring Tab
Leave all settings as default
Click Next

7. Monitoring Tab
Disable Application Insights - This is not needed at this stage
Click Next

8. In the Tags Tab
Leave this blank unless you wish to add tags
Click Next

9. In the Review Tab
Review your settings
Click Create
The GitHub Action will be added to the repository and run automatically. It will fail at this stage,
but this will be resolved in the subsequent steps.

Adjusting the Web App Configuration
1. Proceed to the newly created Web App
2. Click on Configuration
3. Select General Settings
4. Change the Http version to 2.0
5. Change Ftp state to FTPS only
6. Change HTTPS Only to On
7. Click Save to apply the changes

CAUTION

If you have completed the Deployment Tab process, ensure that the deployment profile includes
the DeleteExistingFiles property. This property may need to be set to False or True depending on
the specific requirements of your deployment. For instance, Stride Docs deployment retains files
from previous deployments, allowing multiple versions like 4.2, 4.1, etc., to be maintained. Adjust
this setting based on your deployment needs.

78

Modifying the GitHub Action
The previous step will have added a GitHub Action to your repository, which might fail initially. To
address this, you need to modify the GitHub Action:

1. Navigate to the repository
2. Select Actions
3. You have the option to stop the currently running action
4. Locate the new GitHub Action file (stride-website/blob/master/.github/workflows/some-file-

name.yml) that was automatically generated by Azure Portal. We need to extract the app-name and
publish-profile values from it and disable the push trigger.

To disable the push trigger, retain only workflow_dispatch (manual trigger) as shown below:

5. Open the stride-website-staging-azure.yml workflow and update it with the values obtained in the
previous step. Save your changes.

6. This workflow might also need to be added to the master branch if it is not already present.
7. Execute the workflow stride-website-staging-azure.yml. Ensure you select the correct branch

staging and click Run workflow. This action will deploy the website to the Azure Web App.

GitHub Actions
stride-website-github.yml: Facilitates manual deployment to GitHub Pages in the forked repository,
primarily used for showcasing updates
stride-website-release-azure.yml: Automates deployment to production upon merging changes
into release branch, with a manual trigger option also available
stride-website-staging-azure.yml: Enables automatic deployment to staging upon merging
changes into staging branch, along with an option for manual triggering
stride-website-wiki.yml: Automatically deploys to the GitHub Wiki when changes are pushed to
the wiki folder in the master branch, also includes a manual trigger feature

Deployment to GitHub Pages
To showcase your updates, especially helpful for design changes pending review, you can deploy the
website either to your infrastructure or to GitHub Pages, a free hosting service. Once deployed, share the
link with us for review.

Prerequisites

on:
push:
branches:
- staging
 workflow_dispatch:

https://stride-website-staging.azurewebsites.net/

79

In your stride-website repository:

1. Navigate to Settings → Actions → General → Workflow Permissions
Choose Read and write permissions

Run GitHub Action
1. Go to Actions, select Build Stride Web for GitHub Staging

Click Run workflow; you may optionally select a branch
2. Monitor the build logs while the action is in progress
3. Upon successful build, a gh-pages branch will be created
4. Navigate to Settings → Pages

Choose the gh-pages branch with the root option and click Save
5. After saving, an internal GitHub Action pages build and deployment is automatically created and

triggered, deploying the content to the GitHub Pages website
6. Initially, the website will be accessible at https://[your-username].github.io/stride-website but

with broken styling

Add Custom Domain
1. To resolve styling issues, deploy the site to a custom domain. This is necessary because the site isn't

deployed at the root directory on GitHub Pages
2. Go to Settings → Pages → Custom domain

Enter your custom domain and follow the instructions for verification
3. Upon saving, the pages build and deployment action is triggered again, adding a CNAME file

containing your custom domain name to the gh-pages branch
4. Your website should now be fully operational on your custom domain, for example, https://stride-

website.vaclavelias.com/ is hosted on GitHub Pages

80

Major Release Workflow
1. Create a Release Blog Post

Place the post inside the _drafts folder, which is not deployed, or directly in the posts folder for
testing in the staging environment. Note: If you need to deploy updates to the release branch,
remember to move the post back to the _drafts folder.

2. Update _data\site.json with the following settings, which are used in multiple places on the
website:

version: Increase the version number
This helps refresh the cached CSS file

download-version: Update the version number for downloads
Used on the home page

csharp-version: Update to the current C# version being used
Used on the home page and features page

dotnet-version: Update to the current .NET version being used
Used on the home page and features page

81

Troubleshooting and FAQ
Known Issues

1. Sponsor Page - Widget Incompatibility with dark theme: Widgets on the Sponsor Page currently
do not support the dark theme. As a workaround, we can either fetch data from
https://opencollective.com/stride3d/members/all.json and render it before deployment or make it
dynamic. Both options would give us more control over the content and design, and allow for better
compatibility with the dark theme in the future.

2. Search Page - Lack of pagination: At present, the Search Page does not have pagination, which
limits the maximum number of search results displayed to 100. To resolve this issue, we can
implement a pager in JavaScript. This would enable users to navigate through multiple pages of
search results, providing a more comprehensive view of the available content.

Common Issues and Solutions
Any issue should be added to Stride Website GitHub issues so it can be tracked and elaborated by the
community.

Frequently Asked Questions
Q: I just want to fix a typo in a post. Do I need to follow your installation steps?

A: No, you can fix the typo directly on the GitHub website. However, you will still need to fork the repo,
make your update on the main branch or a new branch, and then create a pull request. You can follow this
guide for minor updates.

https://opencollective.com/stride3d/members/all.json
https://github.com/stride3d/stride-website/issues

	🌟 Ways to Contribute
	💸 Donate
	🤝 Contribution Workflow
	🛠️ Contribute to the engine
	Contribute to code
	Bug bounties
	Building source on Windows
	Localization
	Hot reloading editor shaders
	Source debugging
	Visual Studio plugin
	🏗️ Architecture
	Build details
	Dependency graph
	Copy and paste

	📖 Contribute to the documentation
	Generation Pipeline
	Installation
	Content
	Roadmap
	Docfx
	Deployment
	Major Release Workflow
	Troubleshooting and FAQ

	🌐️ Contribute to the website
	Installation
	Website Content
	Shortcodes and Includes

	Figma Designs
	Roadmap
	Eleventy
	Deployment
	Major Release Workflow
	Troubleshooting and FAQ

