
1 / 1211

Stride manual

These pages contain information about how to use Stride, an open-source C# game engine.

Latest documentation
Recent updates
Manual

Updated Graphics - Materials - Materials for developers - Modifying parameters at runtime added
New Scripts - Best Practises docs added
New Physics - Bepu Physics docs added
Updated Bullet Physics - Bullet Physics docs moved

Tutorials
Updated Tutorials - Quick Tutorails section added

NOTE

The Stride manual is under construction and is regularly updated with new content. Follow Stride on
X for documentation updates.



https://x.com/stridedotnet?s=20
https://x.com/stridedotnet?s=20
https://x.com/stridedotnet?s=20
https://x.com/stridedotnet?s=20

2 / 1211

Contributing
Updated Contributing - Roadmap - GitHub Project - Roadmap link added

Previous updates
Manual

Updated Files and Folders - Game distribution steps updated
Updated Scripts - Types of script - Asynchronous script example improved
New Scripts - Gizmos - Description and example of the Flexible Processing system
New ECS - Flexible Processing - Description and example of the Flexible Processing system
Updated Linux - Setup and requirements - Fedora OS option added
New Scripts - Serialization - Explanation of serialization
Updated Scripts - Public properties and fields - Content improvements and additions
New Engine - Entity Component model - Usage - Explanation of ECS usage
Updated Engine - Entity Component model - Content improvements
Updated Stride for Unity® developers - Content improvements

Tutorials
Updated Tutorials - Added lesson counts and total length

Contributing
New Contributing - Core Team - The Stride core team
Updated Contributing - Roadmap - Status added

Improve this documentation
The Stride documentation is open source, so anyone can edit it. If you find a mistake, you can correct it
or comment in GitHub .

To edit any page of this manual, click the Edit this page link at the bottom. Please make sure to follow
the writing guidelines.

Stride community toolkit
Check out our Stride community toolkit for additional helpers and extensions.

https://github.com/stride3d/stride-docs
https://github.com/stride3d/stride-docs
https://github.com/stride3d/stride-docs
https://stride3d.github.io/stride-community-toolkit/index.html
https://stride3d.github.io/stride-community-toolkit/index.html
https://stride3d.github.io/stride-community-toolkit/index.html

3 / 1211

Development Requirements
General requirements
To develop projects with Stride, you need:

Requirement Specifications

Hard drive space 5GB

Operating system Windows 10, 11 [see (1)]

CPU x64

GPU Direct3D 10+ compatible GPU

RAM 4GB (minimum), 8GB (recommended) [see (2)]

.NET SDK 8+ [see (3)]

(1) Earlier versions of Windows may work but are untested.

(2) RAM requirements vary depending on your project:

Developing simple 2D applications doesn't require much RAM.
Developing 3D games with lots of assets requires larger amounts of RAM.

(3) .NET SDK is being downloaded with the Stride installer.

Mobile development requirements
To develop for mobile platforms, you also need:

Platform Requirements

Android Xamarin [see (4)]

iOS Mac computer, Xamarin [see (4)]

(4) Xamarin is included with Visual Studio installations. For instructions on installing Xamarin with Visual
Studio, see this MSDN page .

Running Stride Games
To run games made with Stride, you need:

https://docs.microsoft.com/en-us/visualstudio/cross-platform/setup-and-install
https://docs.microsoft.com/en-us/visualstudio/cross-platform/setup-and-install
https://docs.microsoft.com/en-us/visualstudio/cross-platform/setup-and-install

4 / 1211

.NET 8 if your application is not self-contained
DirectX11 (included with Windows 10 and later), OpenGL, or Vulkan depending on the platform, and
the graphics API override set in your .csproj
Visual C++ 2015 runtimes (x86 and/or x64, depending on what you set in your project properties in
Visual Studio)

Supported Platforms
For information about platforms Stride supports, see Platforms.

https://learn.microsoft.com/en-us/dotnet/core/deploying/#publish-self-contained
https://learn.microsoft.com/en-us/dotnet/core/deploying/#publish-self-contained
https://learn.microsoft.com/en-us/dotnet/core/deploying/#publish-self-contained

5 / 1211

Stride for Unity® developers
Stride and Unity® both use C# and share many concepts, with a few major differences.

Editor
The Stride editor is Game Studio. This is the equivalent of the Unity® Editor.

6 / 1211

You can customize the Game Studio layout by dragging tabs, similar to Visual Studio.

For more information about Game Studio, see the Game Studio page.

Terminology
Unity® and Stride use mostly common terms, with a few differences:

Unity® Stride

Hierarchy Window Entity Tree

Inspector Window Property Grid

Project Window Asset View

Scene View Scene Editor

GameObject Entity

MonoBehaviour SyncScript, AsyncScript, StartupScript

Folders and files
Like Unity®, Stride projects are stored in a directory that contains:

https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

7 / 1211

The project .sln solution file, which you can open with Game Studio or any IDE such as Visual Studio

A MyGame.Game folder with project source files, dependencies, resources, configurations, and
binaries

Assets contains asset configuration files.

Bin contains the compiled binaries and data. Stride creates the folder when you build the project,
with a subdirectory for each platform.

MyPackage.Game contains your source code.

MyPackage.Platform contains additional code for the platforms your project supports. Game
Studio creates folders for each platform (e.g. MyPackage.Windows, MyPackage.Linux, etc.). These
folders are usually small and only contain the entry point of the program.

obj contains cached files. Game Studio creates this folder when you build your project. To force a
complete asset and code rebuild, delete this folder and build the project again.

Resources is the recommended location for storing source files for your project, such as textures,
models, and audio files.

Stride and Unity® differ in the following ways:

Stride doesn't automatically copy resource files to your project folder when you import them into
assets. You have to do this yourself. We recommend you save them in the Resources folder.

Stride doesn't require resource files and asset files to be in the same folder. You can save resource
files in the Assets folder if you want, but instead, we recommend you save them in the Resources
folder. This makes sharing your project via version control easier.

For more information about project structure in Stride, including advice about how to organize and
share your files, see the Project structure page.

Open the project directory from Game Studio
You can open the project directory from Project > Show in explorer in Game Studio.

8 / 1211

Game settings
Unity® saves global settings in separate assets (i.e. Graphics Settings, Quality Settings, Audio Manager,
and so on).

Stride saves global settings in a single asset, the Game Settings asset. You can configure:

The default scene
Rendering settings
Editor settings
Texture settings

9 / 1211

Physics settings
Overrides

To use the Game Settings asset, in the Asset View, select GameSettings and view its properties in the
Property Grid.

Scenes
Like Unity®, in Stride, you place all objects in a scene. Game Studio stores scenes as separate .sdscene
assets in your project directory.

Set the default scene
You can have multiple scenes in your project. The scene that loads up as soon as your game starts is
called the Default Scene.

To set the default scene:

1. In the GameSettings properties, next to Default Scene, click (Select an asset).

10 / 1211

The Select an asset window opens.
2. Select the default scene and click OK.

For more information about scenes, see Scenes.

Entities vs GameObjects
In Unity®, objects in the scene are called GameObjects. In Stride, they're called entities.

Like GameObjects, entities are carriers for components such as transform components, model
components, audio components, and so on. If you're used to working with GameObjects in Unity®, you
should have no problem using entities in Game Studio.

Entity components
In Stride, you add components to entities just like you add components to GameObjects in Unity®.

11 / 1211

To add a component to an entity in Game Studio:

1. Select the entity you want to add the component to.

2. In the Property Grid (on the right by default), click Add component and select the component
from the drop-down list.

Transform component
Like GameObjects in Unity®, each entity in Stride has a Transform component which sets its position,
rotation, and scale in the world.

All entities are created with a Transform component by default.

In Stride, Transform components contain a LocalMatrix and a WorldMatrix that are updated in every
Update frame. If you need to force an update sooner than that you can use

12 / 1211

TranformComponent.UpdateLocalMatrix(), Transform.UpdateWorldMatrix(), or
Transform.UpdateLocalFromWorld() to do so, depending on how you need to update the matrix.

Local Position/Rotation/Scale
Stride uses position, rotation, and scale to refer to the local position, rotation, and scale.

Unity® Stride

transform.localPosition Transform.Position

transform.localRotation Transform.Rotation

transform.localScale Transform.Scale

transform.localEulerAngles Transform.RotationEulerXYZ

World Position/Rotation/Scale
In comparison to Unity, many of the Transform component's properties related to its location in the
world have been moved to the WorldMatrix.

Unity® Stride

transform.position Transform.WorldMatrix.TranslationVector

transform.rotation N/A

transform.scale N/A

transform.eulerAngles Transform.WorldMatrix.DecomposeXYZ(out Vector3 rotation)

transform.scale and
transform.position

Transform.WorldMatrix.Decompose(out Vector3 scale, out

Vector3 translation)

transform.scale,
transform.rotation, and
transform.position

Transform.WorldMatrix.Decompose(out Vector3 scale, out

Quaternion rotation, out Vector3 translation)

13 / 1211

Transform Directions
Unlike Unity, Stride provides a Backward, Left, and Down property. Note that those are matrix properties,
so setting one of those is not enough to properly rotate the matrix.

Unity® Stride

transform.forward Transform.WorldMatrix.Forward

transform.forward * -1 Transform.WorldMatrix.Backward

transform.right Transform.WorldMatrix.Right

transform.right * -1 Transform.WorldMatrix.Left

transform.up Transform.WorldMatrix.Up

transform.up * -1 Transform.WorldMatrix.Down

Assets
In Unity®, you select an asset in the project browser and edit its properties in the Inspector tab.

Stride is similar. You select an asset in the Asset View and edit its properties in the Property Grid.

NOTE

WorldMatrix is only updated after the entire Update loop runs, which means that you may be
reading outdated data if that object's or its parent's position changed between the previous frame
and now. To ensure you're reading the latest position and rotation, you should force the matrix to
update by calling Transform.UpdateWorldMatrix() before reading from it.



NOTE

See note in World Position/Rotation/Scale


14 / 1211

For certain types of assets, Game Studio also has dedicated editors:

prefabs
scenes
sprite sheets
UI pages
UI libraries
scripts

To open the dedicated editor for these types of assets:

double-click the asset, or
right-click the asset and select Edit asset, or
select the asset and type Ctrl + Enter

The editor opens in a new tab. You can arrange the tabs how you like, or float them as separate windows,
just like tabs in web browsers.

15 / 1211

Scriptable Objects
See the Custom Assets page.

Import assets
To import an asset, drag it from Explorer to the Asset View. You can also click an Add asset button,
navigate to the desired file, and specify the type of asset you want to import.

As soon as you add an asset to your project, you can edit its properties in the Property Grid.

Supported file formats
Like Unity®, Stride supports file formats including:

Asset type Supported formats

Models, animations, skeletons .fbx, .dae, .3ds, .obj, .blend, .x, .md2, .md3, .dxf

Sprites, textures, skyboxes .dds, .jpg, .jpeg, .png, .gif, .bmp, .tga, .psd, .tif, .tiff

NOTE

When you modify resource files outside Game Studio, the corresponding assets update
automatically in Game Studio.



NOTE

Unlike Unity®, Stride doesn't automatically copy resource files to the project directory when you
import them to projects.



16 / 1211

Asset type Supported formats

Audio .wav, .mp3, .ogg, .aac, .aiff, .flac, .m4a, .wma, .mpc

Fonts .ttf, .otf

Video .mp4

For more information about assets, see Assets.

Prefabs
Like Unity®, Stride uses prefabs. Prefabs are "master" versions of objects that you can reuse wherever
you need. When you change a prefab, every instance of the prefab changes too.

Just like with Unity®, in Stride, you can add prefabs to other prefabs. These are called nested prefabs. If
you modify a nested prefab, all the dependent prefabs inherit the change automatically.

For example, imagine you create a Vehicle prefab with acceleration, braking, steering, and so on. Then
you nest the Vehicle prefab inside prefabs of different types of vehicles: a taxi, bus, truck, etc. If you
adjust a property in the Vehicle prefab, the changes are inherited by all other prefabs. For example, if you

17 / 1211

increase the Acceleration property in the Vehicle prefab, the acceleration property in the taxi, bus, and
truck prefabs also increase.

For more information about using prefabs in Stride, see Prefabs.

Archetypes
Archetypes are master assets that control the properties of assets you derive from them. Derived assets
are useful when you want to create a "remixed" version of an asset. This is similar to prefabs.

For example, imagine we have three sphere entities that share a material asset named Metal. Now
imagine we want to change the color of only one sphere, but keep its other properties the same. We
could duplicate the material asset, change its color, and then apply the new asset to only one sphere. But
if we later want to change a different property across all the spheres, we have to modify both assets. This
is time-consuming and leaves room for mistakes.

The better approach is to derive a new asset from the archetype. The derived asset inherits properties
from the archetype and lets you override individual properties where you need them. For example, we
can derive the sphere's material asset and override its color. Then, if we change the gloss of the
archetype, the gloss of all three spheres changes.

18 / 1211

You can derive an asset from an archetype, then in turn derive another asset from that derived asset. This
way you can create different layers of assets to keep your project organized:

For more information about archetypes, see Archetypes.

Object Life Time
Entities and components are not destroyed in Stride, they are removed from the scene they exist in and
then freed by the Garbage Collector .

This seemingly small difference significantly changes how objects are managed within the engine. For
example, entities can be removed from a scene, kept as a reference in a component, and added back
into another scene later on. Components can be removed from an entity and added onto another
without losing its internal state.

Input
Stride supports a variety of inputs. The code samples below demonstrate the difference in input code
between Stride and Unity®.

For more information about Input in Stride, see Input.

Unity®

Archetype
 Derived asset
 Derived asset

void Update()
{
 // true for one frame in which the space bar was pressed
 if (Input.GetKeyDown(KeyCode.Space))
 {
 // Do something.
 }

 // true while this joystick button is down
 if (Input.GetButton("joystick button 0"))
 {
 // Do something.
 }

 float horiz = Input.GetAxis("Horizontal");
 float vert = Input.GetAxis("Vertical");

https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/

19 / 1211

Stride

Time
Unity® Stride

Time.deltaTime Game.UpdateTime.WarpElapsed.TotalSeconds

Time.unscaledDeltaTime Game.UpdateTime.Elapsed.TotalSeconds

Time.realtimeSinceStartup Game.UpdateTime.Total.TotalSeconds

Time.timeScale Game.UpdateTime.Factor

Time.fixedDeltaTime myRigidbodyComponent.Simulation.FixedTimeStep

Physics
Just like Unity®, Stride has three types of colliders:

 // Do something else.
}

public override void Update()
{
 // true for one frame in which the space bar was pressed
 if (Input.IsKeyDown(Keys.Space))
 {
 // Do something.
 }

 // true while this joystick button is down
 if (Input.GameControllers[0].IsButtonDown(0))
 {
 // Do something.
 }

 float horiz = (Input.IsKeyDown(Keys.Left) ? -1f : 0) + (Input.IsKeyDown(Keys.Right) ? 1f
: 0);
 float vert = (Input.IsKeyDown(Keys.Down) ? -1f : 0) + (Input.IsKeyDown(Keys.Up) ? 1f
: 0);
 // Do something else.
}

20 / 1211

static colliders
rigidbodies
characters

They're controlled by scripts in slightly different ways.

Kinematic rigidbodies
Unity®

Stride

public class KinematicX : MonoBehaviour
{
 public Rigidbody rigidBody;

 void Start()
 {
 // Initialization of the component.
 rigidBody = GetComponent<Rigidbody>();
 }

 void EnableRagdoll()
 {
 rigidBody.isKinematic = false;
 rigidBody.detectCollisions = true;
 }

 void DisableRagdoll()
 {
 rigidBody.isKinematic = true;
 rigidBody.detectCollisions = false;
 }
}

public class KinematicX : SyncScript
{
 public RigidbodyComponent rigidBody;

 public override void Start()
 {
 // Initialization of the component.
 rigidBody = Entity.Get<RigidbodyComponent>();
 }

21 / 1211

For more information about rigidbodies in Stride, see Rigidbodies.

Triggers
Unity®

Stride

 public override void Update()
 {
 // Perform an update every frame.
 }

 void EnableRagdoll()
 {
 rigidBody.IsKinematic = false;
 rigidBody.ProcessCollisions = true;
 }

 void DisableRagdoll()
 {
 rigidBody.IsKinematic = true;
 rigidBody.ProcessCollisions = false;
 }
}

// Occurs when game objects go through this trigger.
void OnTriggerEnter(Collider Other)
{
 Other.transform.localScale = new Vector3(2.0f, 2.0f, 2.0f);
}

// Occurs when game objects move out of this trigger.
void OnTriggerExit(Collider Other)
{
 Other.transform.localScale = new Vector3(1.0f, 1.0f, 1.0f);
}

var trigger = Entity.Get<PhysicsComponent>();
trigger.ProcessCollisions = true;

// Start state machine.
while (Game.IsRunning)
{
 // 1. Wait for an entity to collide with the trigger.

22 / 1211

For more information about triggers in Stride, see Triggers

Raycasting
Unity®

Stride

 Collision firstCollision = await trigger.NewCollision();

 PhysicsComponent otherCollider = trigger == firstCollision.ColliderA
 ? firstCollision.ColliderB
 : firstCollision.ColliderA;
 otherCollider.Entity.Transform.Scale = new Vector3(2.0f, 2.0f, 2.0f);

 // 2. Wait for the entity to exit the trigger.
 Collision collision;

 do
 {
 collision = await trigger.CollisionEnded();
 }
 while (collision != firstCollision);

 otherCollider.Entity.Transform.Scale = new Vector3(1.0f, 1.0f, 1.0f);
}

public static Collider FindGOCameraIsLookingAt()
{
 int distance = 50;

 // Cast a ray and set it to the mouse cursor position in the game
 Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
 RaycastHit hit;
 if (Physics.Raycast(ray, out hit, distance))
 {
 // Draw invisible ray cast/vector
 Debug.DrawLine(ray.origin, hit.point);
 // Log hit area to the console
 Debug.Log(hit.point);
 return hit.collider;
 }
 return null;
}

23 / 1211

For more information about Raycasting in Stride, see Raycasting.

Scripts
Stride saves scripts in a subfolder in the MyGame.Game folder in the project directory.

To open a script in the Game Studio script editor, double-click it in the Asset View. The script editor has
syntax highlighting, auto-completion, and live diagnostics.

public static bool ScreenPositionToWorldPositionRaycast(Vector2 screenPos, CameraComponent
camera, Simulation simulation)
{
 Matrix invViewProj = Matrix.Invert(camera.ViewProjectionMatrix);

 Vector3 sPos;
 sPos.X = screenPos.X * 2f - 1f;
 sPos.Y = 1f - screenPos.Y * 2f;

 sPos.Z = 0f;
 Vector4 vectorNear = Vector3.Transform(sPos, invViewProj);
 vectorNear /= vectorNear.W;

 sPos.Z = 1f;
 Vector4 vectorFar = Vector3.Transform(sPos, invViewProj);
 vectorFar /= vectorFar.W;

 HitResult result = simulation.Raycast(vectorNear.XYZ(), vectorFar.XYZ());
 return result.Succeeded;
}

24 / 1211

You can also edit scripts in other IDEs, such as Visual Studio. When you edit a script in an external IDE,
Stride reloads it automatically.

If you install the Visual Studio plug-in during the Stride installation, you can open your project in Visual
Studio from Game Studio. To do this, in the Game Studio toolbar, click Open in IDE.

Alternatively, right-click the script in the Asset View and click Open asset file:

Event functions (Start, Update, Execute, etc)
In Unity®, you work with MonoBehaviours with Start(), Update(), and other methods.

Instead of MonoBehaviours, Stride has three types of scripts: SyncScript, AsyncScript, and StartupScript.
For more information, see Types of script.

Unity® MonoBehaviour

Stride SyncScript

public class BasicMethods : MonoBehaviour
{
 void Start() { }
 void OnDestroy() { }
 void Update() { }
}

25 / 1211

Stride AsyncScript

Stride StartupScript

public class BasicMethods : SyncScript
{
 public override void Start() { }
 public override void Cancel() { }
 public override void Update() { }
}

public class BasicMethods : AsyncScript
{
 // Declared public member fields and properties that will appear in the game studio
 public override async Task Execute()
 {
 while (Game.IsRunning)
 {
 // Do stuff every new frame
 await Script.NextFrame();
 }
 }

 public override void Cancel()
 {
 // Cleanup of the script
 }
}

public class BasicMethods : StartupScript
{
 // Declared public member fields and properties that will appear in the game studio
 public override void Start()
 {
 // Initialization of the script
 }

 public override void Cancel()
 {
 // Cleanup of the script
 }
}

26 / 1211

Script components
Like Unity®, in Stride, you attach scripts to entities by adding them as script components.

Create a script
To create a script, click the Add asset button and select Scripts.

In Unity®, when you create a MonoBehaviour script, it has two base functions: MonoBehaviour.Start()
and MonoBehaviour.Update() . Stride has a SyncScript that works similarly. Like MonoBehaviour ,
SyncScript has two methods:

SyncScript.Start() is called when it the script is loaded.

SyncScript.Update() is called every update.

Unlike MonoBehaviour , implementating the SyncScript.Update() method is not optional, and as such,
must be implemented in every SyncScript.

If you want your script to be a startup or asynchronous, use the corresponding script types:

StartupScript: this script has a single StartupScript.Start() method. It initializes the scene and its
content at startup.

AsyncScript: an asynchronous script with a single method AsyncScript.Execute() and you can use
async/await inside that method. Asynchronous scripts aren't loaded one by one like synchronous
scripts. Instead, they're all loaded in parallel.

Reload assemblies

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

27 / 1211

After you create a script, you may have to reload the assemblies manually. To do this, click Reload
assemblies in the Game Studio toolbar.

Add scripts to entities
1. In the Entity Tree (on the left by default), or in the scene, select the entity you want to add the script

to.

2. In the Property Grid (on the right by default), click Add component and select the script you want
to add.

28 / 1211

In Unity®, script components are grouped under Components > Scripts. In Stride, scripts are not
grouped. Instead, Game Studio lists them alphabetically with other components.

For more information about adding scripts in Stride, see Use a script.

Scripting gameplay
Unity® and Stride both use C#. However, scripting gameplay in Stride is a little different from Unity®.

Instantiate Entity / GameObject
In Unity®, you use Instantiate to create new object instances. This function makes a copy of
UnityEngine.Object and spawns it to the scene.

Unity®

public GameObject CarPrefab;
public Vector3 SpawnPosition;
public Quaternion SpawnRotation;

void Start()
{
 GameObject newGameObject = (GameObject)Instantiate(CarPrefab,
SpawnPosition, SpawnRotation);
 newGameObject.name = "NewGameObject1";
}

29 / 1211

Stride
In Stride, you can instantiate Entities similarly to Unity® GameObjects:

Use default values
Each class in Unity® has certain default values. If you don't override these properties in the script, the
default values will be used. This works the same in Stride:

Unity®

Stride

// Declared public member fields and properties displayed in the Game Studio Property Grid.
public Prefab CarPrefab;
public Vector3 SpawnPosition;
public Quaternion SpawnRotation;

public override void Start()
{
 // Initialization of the script.
 List<Entity> car = CarPrefab.Instantiate();
 SceneSystem.SceneInstance.RootScene.Entities.AddRange(car);
 car[0].Transform.Position = SpawnPosition;
 car[0].Transform.Rotation = SpawnRotation;
 car[0].Name = "MyNewEntity";
}

public int NewProp = 30;
public Light MyLightComponent = null;

void Start()
{
 // Create the light component if we don't already have one.
 if (MyLightComponent == null)
 {
 MyLightComponent = gameObject.AddComponent<Light>();
 MyLightComponent.intensity = 3;
 }
}

// Declared public member fields and properties displayed in the Game Studio Property Grid.
public int NewProp = 30;
public LightComponent MyLightComponent = null;

30 / 1211

Disable GameObject/entity
Unity®

Stride

Access component from GameObject/entity
Unity®

Stride

Access GameObject/entity from component
Unity®

Stride

public override void Start()
{
 // Create the light component if we don't already have one.
 if (MyLightComponent == null)
 {
 MyLightComponent = new LightComponent();
 MyLightComponent.Intensity = 3;
 Entity.Add(MyLightComponent);
 }
}

MyGameObject.SetActive(false);

Entity.EnableAll(false, true);

Light lightComponent = GetComponent<Light>();

LightComponent lightComponent = Entity.Get<LightComponent>();

GameObject componentGameObject = lightComponent.gameObject;

Entity componentEntity = lightComponent.Entity;

31 / 1211

Log output
To see the output, in the Game Studio toolbar, under View, enable Output.

Game Studio displays in the Output tab (at the bottom of Game Studio by default).

Print debug messages
Logging from a ScriptComponent:

32 / 1211

Attributes
Unity® Stride

[Serializable] [DataContract]

[SerializeField] [DataMember]

[HideInInspector] [DataMemberIgnore]

[Range] [DataMemberRange]

[Header("My Header")] [Display(category: "My Header")]

[Tooltip("My tooltip")] /// <userdoc>My tooltip</userdoc>

public override void Start()
{
 // Enables logging. It will also spawn a console window if no debuggers are attached.
 // The argument dictates the kinds of message that will be filtered out, in this case,
anything with less priority than warning won't show up
 Log.ActivateLog(LogMessageType.Warning);
 // Log this message to your console or IDE output window
 Log.Warning("hello");
}

System.Diagnostics.Debug.WriteLine("hello");

NOTE

To print debug messages, you have to run the game from your IDE, not Game Studio. Running
games cannot print to the Game Studio output window.



NOTE

You cannot serialize private fields in Stride, if you want to set a field in editor but prevent other
scripts from writing to that field, you should use a init property



https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/init
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/init
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/init

33 / 1211

Unity® is a trademark of Unity Technologies.

See also
Best Practice

public float MyProperty { get; init; }

34 / 1211

Stride Launcher
Beginner

With the Stride launcher, you can install, manage and run different versions of Stride.

Install the latest Stride version
If you don't have Stride installed, the Stride Launcher prompts you to install the latest version.

35 / 1211

You can install other versions of Stride in the Switch/update version section (2). To do this, click the
install icon next to the version in the list.

Install the Stride Visual Studio extension
If you choose to install the latest version of Stride, the Stride Launcher asks if you want to install the
Visual Studio extension.

The Visual Studio extension lets you edit shaders directly from Visual Studio, and provides syntax
highlighting, live code analysis with validation, error checking, and navigation (jump to definition).
Installing the extension isn't mandatory, but we recommend it.

To install or reinstall the Visual Studio extension at any time, click the Reinstall button in the Stride
Launcher.

Switch the Stride version
To choose which version of Stride runs, select it in the list under Switch/update version.

36 / 1211

Manage different versions of Stride
You can install and uninstall multiple versions of Stride from the Switch/update version section.

You might need to use an older version of Stride to work with old projects. Newer versions of Stride
might contain changes that require old projects to be upgraded.

The version number consists of two numbers. The first number refers to the major version, and the
second number refers to the minor version.

Major updates add significant changes, and you might need to update your projects to use them. Minor
updates don't contain breaking changes, so they're safe use with your existing projects.

To see the release notes for a particular version, click the note icon next to the version name (1).

To install a particular version, click the Download and install icon next to the version name (4).

To install a particular minor version, click the List icon (5).

Start Game Studio
1. Under Switch/update version, select the version of Stride you want to use.

The version number is updated on the Start button.

37 / 1211

2. Click Start to launch Game Studio.

Recent projects

The Projects section displays your recent projects. To open a project, click it.

Open a project with a newer version of Stride
The top right of each project button (2) shows which version of Stride the project was made with.

To open a project with a more recent version of Stride:

1. On the project button, click the upgrade icon in the bottom right (4).

2. Select the Stride version you want to open the project with. Game Studio prompts you to upgrade
the project when it opens.

38 / 1211

NOTE

After you update a project to use a newer version of Stride, you might need to make manual
changes to get it to work. Make sure you back up the project and all its related files before you
upgrade it.



39 / 1211

Get started with Stride
Beginner

Welcome to Stride! This chapter provides everything you need to start creating games using the Stride
game engine. If you're new to Stride, we recommend starting with the Install Stride guide, which will help
you set up the engine and get you ready for development.

Stride is designed for game developers who want a powerful, flexible, and open-source engine for their
projects. Whether you're an experienced developer or just starting out, these guides will walk you
through the basics and help you get up and running quickly.

For video tutorials, have a look at the Tutorials.

If you're interested in building the Stride engine from source or contributing to its development, please
refer to the instructions on our GitHub repository .

In this section
Install Stride
Launch Stride
Visual Studio extension
Create a project
Game Studio
Assets

https://github.com/stride3d/stride
https://github.com/stride3d/stride
https://github.com/stride3d/stride

40 / 1211

Introduction to scenes
Launch your game

41 / 1211

Install Stride
Beginner

Introduction
If you want to create games using Stride, this guide provides the installation steps you'll need to follow.
You'll need to install the Stride installer and launcher. The Stride installer is approximately 55 MB and is
downloaded directly from our main GitHub repository.

The installer will automatically download and install the prerequisites if they are not detected, including
the Stride Launcher, which is essential for downloading and installing the latest version of Stride for
game development.

If you're interested in building the Stride engine from source or contributing to its development,
please visit the Stride GitHub repository for instructions on how to build from source and contribute to
the project.

Prerequisites (automatically installed if not present):

Latest .NET SDK supported by Stride
Microsoft Visual C++ Redistributable

The Stride Launcher will download and install the latest version of Stride.

Installation Steps
1. Download the Stride installer (StrideSetup.exe) from the Stride website .

2. Run the installer by double-clicking the StrideSetup.exe file.

3. The Stride Setup Wizard opens.

https://github.com/stride3d/stride
https://github.com/stride3d/stride
https://github.com/stride3d/stride
http://stride3d.net/download/
http://stride3d.net/download/
http://stride3d.net/download/

42 / 1211

Click Next.
4. The Stride installation type window opens.

43 / 1211

Select an installation type and click Next.
5. The Select installation folder window opens.

44 / 1211

Choose a folder where you want to install Stride, then click Next.
6. The Create application shortcuts window opens.

45 / 1211

Choose which shortcuts you want Stride to create, then click Next.
7. The Ready to Install window opens.

46 / 1211

Click Install to begin the installation.
8. Installation begins.

47 / 1211

The installer will proceed with the installation. After it completes, Stride creates shortcuts in the
locations you selected, and the Stride Launcher starts automatically.

9. The first time you run the Stride Launcher, you will be asked to accept the privacy policy.

48 / 1211

Check I agree to the Privacy Policy, then click I Accept.
10. The Stride Launcher window opens.

The Stride Launcher prompts you to install the latest version of Stride.

49 / 1211

Click Yes to install the latest version.
11. Installation of the latest version of Stride begins.

While the installation is in progress, the release notes are displayed.

50 / 1211

12. During the installation, you might be asked to install the .NET SDK if it's not already on your
machine.

Click Install.

13. The Stride Launcher asks if you want to install the Visual Studio integration. This allows you to edit
shaders directly from Visual Studio, providing syntax highlighting, live code analysis with validation,
error-checking, and navigation. Installing the integration isn't mandatory, but we recommend it.

WARNING

If the .NET SDK has never been installed on your machine, the .NET SDK installation window
might appear below the Stride installation window. Please check step 12 for details and be
prepared to manually continue the .NET SDK installation.



51 / 1211

Click Yes to install the integration, or No to skip.
14. Stride is now installed and ready to use.

52 / 1211

What's next?

NOTE

Stride Launcher: If you click Start and see an error message such as Could not find a compatible
version of MSBuild. or Path to dotnet executable is not set., close the Stride Launcher and
restart it. This issue is caused by the Stride Launcher not detecting the .NET SDK installation.
Restarting the Stride Launcher should resolve the issue. Alternatively, restart your computer.

Example error:



NOTE

If you don't install the prerequisites, Stride won't run. In this case, you can download and install the
prerequisites separately. For instructions, see Troubleshooting — Stride doesn't run.

Alternatively, uninstall Stride, restart the Stride installer, and install the prerequisites when
prompted.



53 / 1211

Launch Stride

54 / 1211

Visual Studio extension
Beginner

The Stride Visual Studio extension lets you edit shaders directly from Visual Studio.

You don't need to install the extension to use Stride, but we recommend it, especially for programmers.

Install the Stride Visual Studio Extension
When you install Stride, Stride asks if you want to install the Visual Studio extension.

Alternatively, you can install or reinstall the extension at any time in the Stride Launcher under Plug-in.

See also
Custom shaders

55 / 1211

Update Stride
Beginner

Updating Stride is a straightforward process, but it's important to follow the steps carefully to ensure a
seamless transition. Below are the guidelines for updating both the Stride engine and your existing
projects.

Updating Stride
1. Update Visual Studio 2022: Ensure that you have the latest version of Visual Studio 2022. This is

crucial for compatibility with the latest Stride version. After updating Visual Studio, restart your
computer to apply the changes fully.

2. Stride Launcher Instructions: Open the Stride Launcher. Follow the instructions provided to update
or install the Visual Studio plugin for Stride. This step is essential for integrating the latest version of
Stride with your development environment.

3. Restart Again: After completing the installation or update of the Visual Studio plugin, restart your
computer once more. This helps to ensure that all components are correctly loaded and ready for
use.

Updating Your Project
1. Version Control: Before proceeding with the update, confirm that your project is under version

control with all current changes committed. This provides a safety net, allowing you to revert to the
previous state if needed. If you're not using version control, ensure you have a backup of your
project.

2. Opening the Project: When you open a project created with an older version of Stride, a dialogue
will appear, prompting you to update the project. Make sure to check the option to apply the
update to all packages in the solution. Additionally, you can verify later whether all packages have
been updated by checking your project files, specifically the .csproj files.

NOTE

The instructions provided here can be used as a general guide for updating to any new version of
Stride.



56 / 1211

Dialog prompting for project update in Stride.
3. Saving the Project: After Stride updates the project, it's crucial to save it immediately. This step

prevents the project from being in an undefined state and solidifies the changes made during the

update.

4. Rebuild and Reload: Finally, rebuild the project and reload assemblies. This ensures that all
components are up-to-date and properly synchronized with the new version of Stride.

By following these steps, you can smoothly transition to the latest version of Stride, taking full advantage
of the new features and improvements it offers. Remember, these procedures are designed to provide a

57 / 1211

hassle-free update experience and safeguard your project against potential issues.

58 / 1211

Launch Stride
Beginner

With the Stride launcher, you can install, manage and run different versions of Stride.

Install the latest version of Stride
If you don't have Stride installed, the Stride Launcher prompts you to install the latest version.

59 / 1211

If you choose to install the latest version, the Stride Launcher asks if you want to install the Stride Visual
Studio extension.

The Stride Visual Studio extension lets you you edit shaders directly from Visual Studio. You don't need
to install the extension to use Stride, but we recommend it, especially for programmers.

Manage different versions of Stride
You can install multiple versions of Stride and launch them from the Stride Launcher.

60 / 1211

You might need to use an older version of Stride to work with old projects. Newer versions of Stride
might contain changes that require old projects to be upgraded.

For minor versions, only the last number of the version number changes (1.9.0, 1.9.1, 1.9.2, etc). Minor
versions don't contain breaking changes, so they're safe to install and use with your existing projects.

To see the release notes for a particular version, click the note icon next to the version name.

To install a particular version, click the Download and install icon next to the version name.

Start Game Studio
Now you've installed Stride, it's time to start Game Studio and build a project.

1. Under Switch/update version, select the version of Stride you want to use.

The version number is updated on the Start button.

NOTE

You can't revert to earlier minor versions. For example, you can install both Stride 1.9 and 1.8 side by
side, but you can't revert from Stride 1.9.2 to Stride 1.9.1.



61 / 1211

2. Click Start to launch Game Studio.

What's next?
Create your first project in Game Studio

See also
For more details about the Stride launcher, see the Stride launcher page.

62 / 1211

Create a project
Beginner

This page explains how to:

create a new empty project
create a project based on a template or sample

Templates are projects that contain just the necessary elements to start working on a game.

Samples are complete games, which you can learn from or base a new game on.

Create an empty project
An empty project is project that contains only the bare minimum to make a game: a simple scene with a
light, camera, and script to move the camera, plus a preconfigured rendering pipeline. This is good when
you want to start your game from scratch without elements you don't need.

To create an empty project:

1. In the Stride Launcher, click Start to start Game Studio.

The New/open project dialog opens.

63 / 1211

You can also open a new project in Game Studio from File > New.
2. Select New Game.

3. In the Name and Location fields, specify a name for the project and the folder to save it in.

4. Click Select.

The Create a new game dialog opens.

64 / 1211

5. In the Namespace field, specify the namespace you want to use. If you don't know what your
namespace should be, leave it as default.

6. Under Platforms, select the platforms you want your game to support.

65 / 1211

7. Under Asset Packs, you can select additional assets to include in your project. These include assets
such as animations and materials. The asset packs are fun to play with when you're learning how to
use Stride, but they're not necessary.

8. Under Rendering, select the options you want.

Graphics API: The graphics features you can use in your project depend on the API you select. For
advanced graphics features, select the latest version of the graphics APIs.

High or Low Dynamic Range (HDR / LDR): This defines how color is computed in your project. In
LDR mode, colors range from 0 to 1. In HDR mode colors can take any float value. HDR provides
more advanced and realistic rendering but requires more processing power and profile Direct3D
10.0 / OpenGL ES 3.0 or later.

9. Under Orientation, choose the orientation for your project. For PC games, use landscape. Portrait
should usually only be used for mobile games.

10. Click OK.

Stride creates the project and opens it in Game Studio. For more information, see Game Studio.

Create a project from a sample or template
Stride includes several sample projects demonstrating each part of the engine (2D, 3D, sprites, fonts, UI,
audio, input, etc). It also includes template games to help you make your own game.

To create a project from a sample or template:

1. Open the New Project dialog.

2. On the left, navigate to New project > Samples.

NOTE

To support iOS and Android, you need to install Xamarin (free if you have Visual Studio). If
your development system is missing prerequisites for any of the platforms you select, Stride
displays a warning.



WARNING

Some graphics cards don't support the latest APIs. For some mobile devices, only Direct3D 9.3 /
OpenGL ES 2.0 and Direct3D 10.0 / OpenGL ES 3.0 are available.



https://www.xamarin.com/studio
https://www.xamarin.com/studio
https://www.xamarin.com/studio

66 / 1211

3. Select the sample you want to create a project from.

4. Click Select.

The Select Platforms window opens.

67 / 1211

5. Select the platforms you want your game to support and click OK.

Stride creates the project and opens it in Game Studio.

What's next?
Get familiar with Game Studio

68 / 1211

Game Studio
Beginner

Game Studio is the central tool for game and application production in Stride. In Game Studio, you can:

create and arrange scenes
import assets, modify their parameters and see changes in real time in the preview window
organize assets by folder, attach tags and get notifications from modified assets on the disk
build a game executable and run it directly

Game Studio is also integrated with your Visual Studio projects, so you can seamlessly sync and switch
between them.

Interface

The asset editor (1) is used to edit assets and scenes. Some asset types, such as scenes, have dedicated
editors where you can make complex changes to the asset. To open a dedicated editor (when available),
double-click the asset or right-click it and select Edit asset.

The Property Grid (2) displays the properties of the asset or entity you select. You can edit the
properties here.

The Solution Explorer (3) displays the hierarchy of the elements of your project, such as assets, code
files, packages and dependencies. You can create folders and objects, rename them, and move them.

69 / 1211

The Asset View (4) displays the project assets. You can create new assets using the New Asset button or
by dragging and dropping resource files into the Asset View. You can also drag and drop assets from the
Asset View to the different editors or the Property Grid to Create an instance of the asset or add a
reference to it. By default, the Asset View is in the bottom center.

The Asset Preview tab (5) displays a preview of the selected asset. The preview changes based on the
type of the asset you have selected. For example, you can play animations and sounds. This is a quick
way to check changes to an asset when editing it in the Property Grid. By default, the Asset Preview is in
the bottom right.

You can show and hide different parts of the Game Studio in the View menu. You can also resize and
move parts of the UI.

In this section
Scenes

Create a scene
Navigate in the Scene Editor
Manage scenes
Load scenes
Add entities
Manage entities

Assets
Create assets
Use assets
Archetypes
Game settings

Prefabs
Create a prefab
Use prefabs
Edit prefabs
Nested prefabs
Override prefab properties

World units

70 / 1211

Assets
Beginner

An asset is a representation of an element of your game inside Game Studio, such as a texture,
animation, or model.

Some assets require resource files. For example, texture assets need image files and audio assets need
audio files. Other types of assets (such as scenes, physics colliders, and game settings) don't use resource
files, and can be created entirely in Game Studio.

You can compile and optimize assets with a special compiler provided by Stride. Compiled assets are
packed together as reusable bundles.

You can:

create and browse assets in the Asset View

import existing assets, such as FBX files

71 / 1211

edit assets in the property editor

see a live preview in the Asset Preview

In this section
Create assets
Manage assets
Use assets

72 / 1211

Create assets
Beginner

There are two ways to create assets:

Use the Add asset button in the Asset View
Drag and drop resource files (such as image or audio files) to the Asset View tab

Use the Add asset button
1. In the Asset View, click

2. Select the type of asset you want to create.

Game Studio displays a list of asset templates. These are assets configured for a specific use.

3. Select the right template for your asset.

Game Studio adds the asset to the Asset View:

73 / 1211

Drag and drop resource files
You can drag compatible resource files directly into Game Studio to create assets from them. Game
Studio is compatible with common file formats.

Asset type Compatible resource file formats

Models, animations, skeletons .dae, .3ds, obj, .blend, .x, .md2, .md3, .dxf, .fbx

Sprites, textures, skyboxes .dds, .jpg, .jpeg, .png, .gif, .bmp, .tga, .psd, .tif, .tiff

Audio .wav, .mp3, .ogg, .aac, .aiff, .flac, .m4a, .wma, .mpc

To create an asset by dragging and dropping a resource file:

1. (Optional) If it isn't there already, move the resource file you want to use in the Resources folder of
your project. You don't have to do this, but it's good practice to keep resource files organized and
makes projects easier to share. For more information, see Project structure.

2. Drag the resource file from Explorer to the Asset View:

NOTE

Some assets, such as textures, require a resource file. When you add these assets, Game Studio
prompts you for a resource file.



NOTE

You can't use this method to create assets that don't use resource files (eg prefabs, materials, or
scenes).



74 / 1211

3. Select the kind of asset you want to create:

Game Studio adds the asset to the Asset View:

75 / 1211

Game Studio automatically imports all dependencies in the resource files and creates corresponding
assets. For example, you can add a model or animation resource file and Game Studio handles
everything else.

See also
Manage assets
Use assets

TIP

You can drag multiple files simultaneously. If you drop multiple files of different types at the same
time, Game Studio only adds only files that match your template selection. For example, if you add
an image file and a sound file, then select the audio asset template, only the sound file is added.



76 / 1211

Use assets
Beginner

There are four ways to use assets:

reference them in entity components
reference them in other assets
load them from code as content
load them from code as content using UrlReference

Reference assets in components
Many kinds of component use assets. For example, model components use model assets.

Components that use assets have asset docks in the property grid.

To add an asset to an entity component, drag the asset to the asset dock in the component properties
(in the property grid). You can drop assets in the text field or the empty thumbnail.

77 / 1211

Alternatively, click (Select an asset).

The Select an asset window opens.

After you add an asset to a component, the asset dock displays its name and a thumbnail image.

Reference assets in other assets
Assets can reference other assets. For example, a model asset might use material assets.

You can add asset references to assets the same way you add them to entity components (see above).

NOTE

The Select an asset window only displays assets of types expected by the component. For example,
if the component is an audio listener, the window only displays audio assets.



78 / 1211

Clear a reference
To clear a reference to an asset, in the asset dock, click (Clear reference).

Examine references
You can see the references in a selected asset in the References tab. By default, this is in the bottom
right of Game Studio.

The References tab displays the assets referenced by the selected asset.
The Referenced by tab displays the assets that reference the selected asset.

Load assets from code
When loading in assets at runtime we speak of "Content" rather than assets. The loaded content refers to
the asset and can then be used in your script.

TIP

If you can't see the References tab, make sure it's displayed under View > References.


// Load a model (replace URL with valid URL)
var model = Content.Load<Model>("AssetFolder/MyModel");

79 / 1211

Unload unneeded assets
When loading content from code, you should unload content when you don't need them any more. If
you don't, content stays in memory, wasting GPU.

To unload an asset, use Content.Unload(myAsset).

Load assets from code using UrlReference
UrlReference allows you to reference assets in your scripts the same way you would with normal assets
but they are loaded dynamically in code. Referencing an asset with a UrlReference causes the asset to be
included in the build.

You can reference assets in your scripts using properties/fields of type UrlReference or UrlReference<T>:

UrlReference can be used to reference any asset. This is most useful for the "Raw asset".
UrlReference<T> can be used to specify the desired type. i.e. UrlReference<Scene>. This gives Game
Studio a hint about what type of asset this UrlReference can be used for.

Examples
Loading a Scene

// Create a new entity to add to the scene
Entity entity = new Entity(position, "Entity Added by Script") { new ModelComponent { Model
= model } };

// Add a new entity to the scene
SceneSystem.SceneInstance.RootScene.Entities.Add(entity);

TIP

To find the asset URL, in Game Studio, move the mouse over the asset. Game Studio displays the
asset URL in a tooltip. URLs typically have the format AssetFolder/AssetName.



WARNING

When loading assets from scripts, make sure you:

include the asset in the build as described in Manage assets
make sure you add the script as a component to an entity in the scene



80 / 1211

Using UrlReference<Scene> to load the next scene.

Load data from a Raw asset JSON file
Use a Raw asset to store data in a JSON file and load using Newtonsoft.Json . To use Newtonsoft.Json
you also need to add the Newtonsoft.Json NuGet package to the project.

using System.Threading.Tasks;
//Include the Stride.Core.Serialization namespace to use UrlReference
using Stride.Core.Serialization;
using Stride.Engine;

namespace Examples
{
 public class UrlReferenceExample : AsyncScript
 {
 public UrlReference<Scene> NextSceneUrl { get; set; }

 public override async Task Execute()
 {
 //...
 }

 private async Task LoadNextScene()
 {
 //Dynamically load next scene asynchronously
 var nextScene = await Content.LoadAsync(NextSceneUrl);
 SceneSystem.SceneInstance.RootScene = nextScene;
 }
 }
}

//Include the Newtonsoft.Json namespace.
using Newtonsoft.Json;
using System.IO;
using System.Threading.Tasks;
//Include the Stride.Core.Serialization namespace to use UrlReference
using Stride.Core.Serialization;
using Stride.Engine;

namespace Examples
{
 public class UrlReferenceExample : AsyncScript
 {
 public UrlReference RawAssetUrl { get; set; }

https://www.newtonsoft.com/json
https://www.newtonsoft.com/json
https://www.newtonsoft.com/json

81 / 1211

See also
Create assets
Manage assets

 public override async Task Execute()
 {
 //...
 }

 private async Task<MyDataClass> LoadMyData()
 {
 //Open a StreamReader to read the content
 using (var stream = Content.OpenAsStream(RawAssetUrl))
 using (var streamReader = new StreamReader(stream))
 {
 //read the raw asset content
 string json = await streamReader.ReadToEndAsync();
 //Deserialize the JSON to your custom MyDataClass Type.
 return JsonConvert.DeserializeObject<MyDataClass>(json);
 }
 }
 }
}

82 / 1211

Scenes
Beginner Level designer

Scenes are the levels in your game. A scene is composed of entities, the objects in your project.

The screenshot below shows a scene with a knight, a light, a background, and a camera entity:

Scenes are a type of asset. As they are complex assets, they have a dedicated editor, the Scene Editor.

In this section
Create and open a scene
Navigate in the Scene Editor
Manage scenes
Load scenes
Add entities
Manage entities

83 / 1211

Create and open a scene
Beginner Level Designer

When you create a new project, Game Studio creates an initial scene and populates it with basic entities
such as a light, a camera, and a skybox.

You can create scenes like any other asset. As they are complex assets, they have a dedicated editor, the
Scene Editor.

Create a scene
1. In the Asset View (by default in the bottom pane), click Add asset and select Scenes.

2. Select the appropriate scene template.

Template Result

Empty scene An empty scene with no entities or preconfigured rendering pipeline

Scene with HDR pipeline A scene containing basic entities and preconfigured for HDR rendering

Scene with LDR pipeline A scene containing basic entities and preconfigured for LDR rendering

84 / 1211

Open a scene in the Scene Editor
In the Asset View:

double-click the scene asset, or
right-click the asset and select Edit asset, or
select the asset and type Ctrl + Enter

Use the Scene Editor

The Scene Editor tabs (A) display the open scenes. You can switch between open scenes using the tabs.

TIP

You can have several scenes open simultaneously.


85 / 1211

The Entity Tree (B) shows the hierarchy of the entities included in the scene. The same entity hierarchy is
applied at runtime. You can use the Entity Tree to browse, select, rename, and reorganize your entities.

You can use the tool bar (C) to modify entities and change the Scene Editor display.

The main window (D) shows a simplified representation of your scene, with your entities positioned
inside it. For entities that have no shape (E), Game Studio represents them with 2D gizmos; for example,
cameras are represented with camera icons.

See also
Navigate in the Scene Editor
Manage scenes
Load scenes
Add entities
Manage entities

86 / 1211

Add entities
Beginner Level Designer

After you create a scene, you need to add entities to your scene to build your level.

Create an entity from the Scene Editor
1. Above the Entity Tree, click the icon.

The Create menu opens:

Alternatively, right-click the Entity Tree or anywhere in the scene. If you create an entity in the
scene, Game Studio adds an entity in the location you click.

87 / 1211

2. Select Empty entity, or select an entity template.

Game Studio adds an entity to the active scene and displays it in the Entity Tree:

TIP

The active scene is the scene entities are added to. To set the active scene, Entity Tree (left by
default), right-click the scene and select active scene.



88 / 1211

The active scene has no effect on runtime.

Create an entity from an asset
You can add an entity by dragging and dropping an asset from the Asset View to the scene.

89 / 1211

Game Studio automatically creates an entity and adds the required component and reference based on
the asset you used. For example, if you drag a model asset to the scene, Game Studio creates an entity
with a model component with the model asset as its reference.

Set up a component
Components add special properties to entities that define their purpose in your project. For example,
you add lights to your scene by adding Light components to entities, add models by adding model
components, and so on. An entity with no component has no purpose.

To add a component to an entity:

1. Select the entity.

2. In the Property Grid, click Add component, and add component you want.

0:00

NOTE

You can only create entities by dragging assets with corresponding components. For example,
model components use model assets, so can be dragged; animations have no corresponding
component, so can't be dragged.



90 / 1211

Game Studio adds the component.

3. Set the properties of your new component.

Duplicate an entity
You can duplicate an entity along with all its properties. Duplicating an entity and then modifying the
properties of the new entity is often faster than creating an entity from scratch.

1. Select the entity you want to duplicate.

91 / 1211

2. Hold Ctrl and move the entity with the mouse.

The entity and all its properties are duplicated.

Alternatively, right-click the entity and select Duplicate selected entities.

0:00

92 / 1211

Rename an entity
1. Select the entity and press F2.
2. Type a name for the entity, and then press Enter.

See also
Manage scenes

93 / 1211

Manage entities
Beginner Level designer

To build the levels of your game, you need to translate (move), rotate, and resize entities in your scene.
These are known as transformations.

Transformation gizmos
You can select the transformation gizmos from Scene Editor toolbar.

Alternatively, press Space to switch between gizmos.

There are three types of transformation gizmo:

 The translation gizmo moves entities
 The rotation gizmo rotates entities
 The scale gizmo resizes entities

Game Studio displays the selected transformation gizmo at the origin of the entity.

94 / 1211

Translation gizmo
To select the translation gizmo, click the icon in the Scene Editor toolbar or press W.

The translation gizmo moves (translates) entities in the scene along the axis you select.

To move an entity along the X axis, drag it by the red arrow.
To move an entity along the Y axis (up and down), drag it by the green arrow.
To move the entity along the Z axis, drag it by the blue arrow.
To move the entity in free 3D, drag it by the central sphere.

Rotation gizmo
To select the rotation gizmo, click the icon in the Scene Editor toolbar or press E.

The rotation gizmo rotates entities in the scene along the axis you select.

To rotate an entity along the X axis (pitch), drag it by the red ring.
To rotate an entity along the Y axis (yaw), drag it by the green ring.
To rotate the entity along the Z axis (roll), drag it by the blue ring.

0:00

95 / 1211

Scale gizmo
To select the scale gizmo, click the icon in the Scene Editor toolbar or press R.

The scale gizmo resizes entities along a single axis ("stretching" or "squashing" them) or all axes (making
them larger or smaller without changing their proportions).

To resize an entity along the X axis, drag it by the red ring.
To resize an entity along the Y axis, drag it by the green ring.
To resize the entity along the Z axis, drag it by the blue ring.
To resize the entity in all axes, drag it by the central sphere.

0:00

96 / 1211

Change gizmo coordinate system
You can change how the gizmo coordinates work.

1. Select the entity whose gizmo coordinates you want to change.
2. In the Scene Editor toolbar, select the coordinate system you want.

Coordinate
system Function

World
coordinates

Uses world coordinates for transformations. The X, Y, and Z axes are the same for
every entity.

Local
coordinates

Uses local coordinates for transformations. The axes are oriented in the same
direction as the selected entity.

0:00

NOTE

The scale gizmo only works with the local coordinate system (see below). When you select the scale
gizmo, Game Studio switches to local coordinates.



97 / 1211

Coordinate
system Function

Camera
coordinates

Uses the current camera coordinates for transformations. The axes are oriented in
the same direction as the editor camera.

Snap transformations to grid
You can "snap" transformations to the grid. This means that the degree of transformation you apply to
entities is rounded to the closest multiple of the number you specify. For example, if you set the rotation
snap value to 10, entities rotate in multiples of 10 (0, 10, 20, 30, etc).

You can change the snap values for each gizmo in the scene view toolbar. Snap values apply to all
entities in the scene. For example:

Icon Function

Snap translation to multiple of 1

Snap rotation to multiple of 22.5

Snap scale to multiple of 1.1

See also
Create and open a scene
Navigate in the Scene Editor
Load scenes
Add entities

98 / 1211

Navigate in the Scene Editor
Beginner Level designer

You can move around the scene and change the perspective of the editor camera. The XYZ axes in the
bottom left show your orientation in 3D space.

Move around in the scene
There are several ways to move the editor camera around the Scene Editor.

Fly

Hold the right mouse button and move the mouse to change the camera direction. Hold the right
mouse button and use the WASD keys to move. This is similar to the controls of many action games.

Pan
Hold the right mouse button and the center mouse button and move the mouse.

Dolly

TIP

Holding the Shift key speeds up movement.


0:00

99 / 1211

To dolly (move the camera forward and backward), use the mouse wheel.

Orbit
Hold Alt and the left mouse button and move the mouse.

The point of rotation is always the center of the screen. To adjust the distance to the center, use the
mouse wheel.

0:00

100 / 1211

Focus on an entity

0:00

101 / 1211

After you select an entity, press the F key. This zooms in on the entity and centers it in the camera editor.

You can also focus by clicking the magnifying glass icon next to the entity in the Entity Tree.

Controls
Action Control

Move Arrow keys + right mouse button

WASDQE keys + right mouse button

Look around Hold right mouse button + move mouse

Dolly Middle mouse button + right mouse button + move mouse

Orbit Alt key + left mouse button

Zoom Mouse wheel

Alt + Right mouse button + move mouse

0:00

TIP

Focusing and then orbiting with Alt + left mouse button is useful for inspecting entities.


102 / 1211

Action Control

Pan Middle mouse button + move mouse

Focus F (with entity selected)

Change camera editor perspective
You can change the camera editor perspective using the view camera gizmo in the top-right of the
Scene Editor.

TIP

You can change the scene navigator controls in Edit > Settings under Scene Editor > Key
bindings.



103 / 1211

Snap camera to position
To change the angle of the editor camera, click the corresponding face, edge, or corner of the view
camera gizmo.

Click Camera position

Face Faces the selected face

Edge Faces the two adjacent faces at a 45° angle

Corner Faces the three adjacent faces at a 45° angle

Camera options

To display the Scene Editor camera options, click the camera icon in the top-right of the Scene Editor.

0:00

NOTE

This page explains how to use the Scene Editor camera. For information about how to use cameras
in your game, see Graphics — Cameras.



104 / 1211

Perspective and orthographic views
Perspective view is a "real-world" perspective of the objects in your scene. In this view, objects close to
the camera appear larger, and lines of identical lengths appear different due to foreshortening, as in
reality.

In orthographic view, objects are always the same size, no matter how far their distance from the
camera. Parallel lines never touch, and there's no vanishing point. It's easy to tell if objects are lined up
exactly in orthographic view.

105 / 1211

You can also switch between perspective and orthographic views by clicking the view camera gizmo as
it faces you.

Field of view
You can change the camera field of view. This changes the camera frustum, and has the effect of
zooming in and out of the scene. At high settings (90 and above), the field of view creates stretched
"fish-eye lens" views. The default setting is 45.

Near and far planes
The near and far planes determine where the camera's view begins and ends.

The near plane is the closest point the camera can see. The default setting is 0.1. Objects before this
point aren't drawn.

The far plane, also known as the draw distance, is the furthest point the camera can see. Objects
beyond this point aren't drawn. The default setting is 1000.

Game Studio renders the area between the near and far planes.

0:00

106 / 1211

Camera speed
The camera speed setting changes how quickly the camera moves in the editor.

See also
Create and open a scene
Load scenes
Add entities
Manage entities

107 / 1211

Launch a game
Beginner

This page explains how to launch your game using Game Studio or Visual Studio.

Launch a game from Game Studio

1. In the Solution Explorer, right-click in your target platform, then choice Set as current project.

NOTE

Game Studio can't launch games for the Windows Store or UWP (Universal Windows Platform)
platforms. To launch a game for those platforms, use Visual Studio (see below).



108 / 1211

2. To run the game, click in the toolbar or press F5.

The Output window shows the build progress.

When the build is complete, your game starts on the selected platform.

Launch a game from Visual Studio
1. In Game Studio, in the toolbar, click (Open in IDE) to launch Visual Studio.

2. In the Visual Studio toolbar, set the appropriate project as the startup project.

The startup project configuration is updated automatically.

3. Check that the configuration and platform properly matches what you are expected.

4. To start the game without debugging, press Ctrl + F5.

NOTE

You can only select platforms you selected in the Create a new game dialog when you created
the project. To add additional platforms to the project, see Add or remove a platform.



TIP

You can see your projects in the Solution Explorer on the right. The project filename extensions
identify the platform (eg .Android, .iOS, etc).



109 / 1211

To start the game with debugging, click Start or press F5.

Remove borders
By default, the game runs with window borders.

With borders Without borders

To run the game without borders, use:

For example:

Game.Window.IsBorderLess = true;

using Stride.Engine;

namespace MyGame
{
 public class MyScript : StartupScript
 {
 public override void Start()
 {
 base.Start();
 Game.Window.IsBorderLess = true;
 }
 }
}

110 / 1211

Animation
Designer Programmer

3D models are animated by adding three kinds of asset:

a skeleton
a skinned model
an animation clip

Skeletons
Skeletons are digital structures that describe deformation patterns of 3D models. Skeletons are made of
bones that form a hierarchy. When parent bones change their position, they also affect the positions of
child bones. For example, a hand bone might have five child bones (the fingers and thumb); when the
hand moves up and down, the fingers and thumb move with it.

Skeletons don't have to resemble the skeletons of real humans or animals. You can make skeletons to
animate any 3D model.

Skinned models
Skinning is the process of assigning weights to vertices and bones they depend on. Each vertex usually
depends on one to four bones.

Skinned models are models that have been skinned to match a skeleton. The skin describes how
vertices of the mesh transform when bones move.

NOTE

For information about 2D animation, see Sprites.


NOTE

There's currently no way to visualize skeletons in Game Studio.


111 / 1211

Animation clips
Animation clips describe the pose of a skeleton at a particular moment. The skeleton moves according
to the animation. The mesh vertices transform (skin) to match the current pose.

Animation samples
For an example of how animations work in Stride, load the Sample: animation sample project.

The templates First-person shooter, Third-person platformer and Top-down RPG also include some
advanced animation techniques.

In this section
Import animations
Animation properties
Set up animations

NOTE

In Game Studio, you can only create simple 3D models such as spheres and cubes. For information
about how to do this, see Create assets. To create more complex models, use dedicated software
like 3DS Max, Maya, or Blender, then import the model into Game Studio.



112 / 1211

Preview animations
Animation scripts
Additive animation
Procedural animation
Custom blend trees
Model node links
Custom attributes

113 / 1211

Import animations
Beginner Designer

To animate a model, you need to use three kinds of assets together:

models
skeletons
animations

Stride supports the following model file types: .3ds, .blend, .dae,dxf, .fbx, .glb, .gltf, .md2, .md3, .obj,
.ply, .stl,.stp, .x.

Import a model, skeleton, or animation from a model file
1. Drag the model file from Explorer to the Asset View (in the bottom pane by default).

Alternatively, in the Asset View:

114 / 1211

1a. Click and select Import directly from files.

2b. Browse to the file and click Open.
2. Specify whether you want to import the 3D model, animation, or skeleton from the model file.

If you choose 3D model, Stride can import any additional materials, textures and skeletons it
finds in the model file. You can also import the skeleton from the model (Import new
skeleton), import no skeleton (Don't use skeleton), or specify a different skeleton (Use
existing skeleton) in the lower field.

115 / 1211

If you choose Skeleton, Stride imports only the skeleton from the model file. You might want to
do this, for example, if you want to use it for a new skeleton that uses a subset of its nodes.

If you choose Animation, Stride imports only the animation from the model file. This is
sufficient for regular animations; for additive information, there are some extra steps. For
details, see Additive animation.

After you import the assets, Game Studio adds them to the Asset View.

You can view and edit their properties in the Property Grid (on the right by default). For more
information, see Animation properties.

116 / 1211

Use an animation asset
To use an animation asset, add an AnimationComponent to an entity, then add the animation asset to
the animation component. For more information, see Set up animations.

See also
Animation index
Animation properties
Set up animations
Preview animations
Animation scripts
Additive animation
Procedural animation
Custom blend trees
Model node links
Custom attributes

NOTE

Make sure you correctly skin your mesh to the skeleton. If you don't, you won't be able to animate
your model correctly.



117 / 1211

Animation properties
Beginner Designer

After you import an animation, you can select it in the Asset View (in the bottom pane by default) and
view and edit its properties in the Property Grid (on the right by default).

Source
The source file used by the animation asset. If you change this, Game Studio re-imports the animation.

118 / 1211

Clip duration
By default, clip duration is disabled. This means the animation starts at frame 0 and runs to the last
written keyframe in the file.

However, single animation tracks sometimes include several animations. In this case, you have to split
the track. To do this, enable Clip duration and adjust the start and end frames to match the duration of
each animation.

The start and end frames are still limited by the keyframes exported in the file. For example, if you
originally exported frames 20 to 40 from the animation tool, the start frame cannot be lower than 20 and
the end frame cannot be higher than 40.

By default, Game Studio assumes the frame rate is 30. You can change this in the Game settings asset
properties under Editor settings > Animation frame rate.

Pivot position
Game Studio assumes the pivot is the origin of the coordinate system local to the animation. It should be
set to (0, 0, 0). If your animation was shifted from the origin when exported, you can use this property
to re-adjust it.

Scale import
The scale import should be set to 1. Stride detects the units in which your data was exported and adjusts
it automatically. If there are no export settings in your animation file and the scale appears incorrect, you
can use the scale import property to re-adjust it.

Repeat mode
You can choose PlayOnce, LoopInfinite or PlayOnce&Hold. This is just a hint for the engine. When you
assign an animation asset to the model, you can specify differently. If you don't specify the mode later,
Stride uses the attribute you set here by default.

Type
Stride supports two types of animation clip. Regular animations default to Animation clip and are used
with linear blending if mixed. For Difference clip, there are few more settings. For more information, see
Additive animation.

Skeleton
If you want to animate bones/joints, the animation needs a skeleton.

119 / 1211

Skeletons are made of bones that form a hierarchy. When parent bones change their position, they also
affect the positions of child bones. For example, a hand bone might have five child bones (the fingers
and thumb); when the hand moves up and down, the fingers and thumb move with it.

Make sure you reference the same skeleton used by the model you want to animate. If there are missing
bones or other differences between the bone/joint hierarchy of the skeleton in your animation file and
the target skeleton, Stride retargets the animation as closely as possible.

Root motion
When root motion is enabled, Stride applies the root node animation to the TransformComponent of
the entity you add the animation to, instead of applying it to the skeleton.

This is useful, for example, to animate entities that don't require skeletons, such as a spot light moving
back and forth.

Import custom attributes
If you have custom attribute in the animation file...

See also
Animation index
Import animations
Set up animations

NOTE

There's currently no way to visualize skeletons in Game Studio.


NOTE

If the animation has no skeleton specified in Skeleton, Stride always applies the animation to
TransformComponent, even if root motion is disabled.



NOTE

The TransformComponent applies an offset to the model node position. If you don't want to add an
offset, make sure the TransformComponent is set to 0,0,0.



120 / 1211

Preview animations
Animation scripts
Additive animation
Procedural animation
Custom blend trees
Model node links

121 / 1211

Set up animations
Beginner Designer Programmer

After you import animation assets, you need add them to an entity and play them with a script.

1. Add animation assets to an entity
1. In the Scene Editor, select the entity you want to animate.

2. In the Property Grid, click Add component and choose Animations.

NOTE

To animate an entity, the entity must have a model component.


122 / 1211

Game Studio adds an animation component to the entity.
3. In the animation component properties, next to Animations, click (Add) to add a new animation

to the library.

4. Type a name for the animation and press Enter.

5. Click (Select an asset).

TIP

When you play animations using scripts later, you use this name, not the name of the
animation asset. To make identification easy, we recommend you give your animation the same
name as the animation asset.



123 / 1211

The Select an asset window opens.
6. Browse to the animation asset you want to add and click OK.

Game Studio adds the animation asset to the entity.

124 / 1211

You can add as many animations to the animation component as you need. The Property Grid lists them
in alphabetical order.

2. Create a script to play the animations
After you add animations to an entity, you need to play them with a script.

Example script

This script looks for an animation with the name Walk under the animation component on the entity.

For more information about creating animation scripts, see animation scripts.

3. Add the script to the entity
1. In the Scene Editor, select the entity you want to animate.

public class SimpleAnimationScript : StartupScript
{
 public override void Start()
 {
 Entity.Get<AnimationComponent>().Play("Walk");
 }
}

125 / 1211

2. In the Property Grid, click Add component and choose the animation script you want to add.

126 / 1211

Game Studio adds the script as a component. You can adjust public variables you define in the script in
the Property Grid under the script component properties.

See also
Animation index
Import animations
Animation properties
Preview animations
Animation scripts
Additive animation
Procedural animation
Custom blend trees
Model node links
Custom attributes

127 / 1211

Preview animations
Intermediate Designer

After you import an animation, you can preview it in the Asset Preview.

By default, the Asset Preview is in the bottom-right under the Asset Preview tab.

The animation preview uses the model selected in the preview model in the animation asset
properties.

TIP

To rotate the animation, click and drag the mouse.


128 / 1211

Set the preview model
1. In the Asset View (at the bottom by default), select the animation asset.

2. In the Property Grid (on the right by default), under Preview model, click (Select an asset).

The Select an asset window opens.

3. Select the model you want to use to preview the animation.

See also
Animation index

NOTE

Make sure the model and the animation share identical skeletons.


129 / 1211

Import animations
Animation properties
Set up animations
Animation scripts
Additive animation
Procedural animation
Custom blend trees
Model node links
Custom attributes

130 / 1211

Animation scripts
Intermediate Programmer

Animations are controlled using scripts.

You can add an AnimationComponent to an entity and set up its parameters in Game Studio. The
AnimationComponent class is designed to be used mainly from a script.

The more useful properties include:

Property Description

Animations Gets the animation clips associated with this AnimationComponent

BlendTree
Builder

Gets or sets animation blend tree builder. Note you can create custom blend trees; for
more information, see Custom blend tree

Playing
Animations

Gets the list of active animations. Use it to customize your startup animations. The
playing animations are updated automatically by the animation processor, so be careful
when changing the list or keeping a reference to a playing animation

For more information, see Set up animations.

NOTE

Animation clips you reference in scripts must be added to the same entity under the Animation
Component.



131 / 1211

Use the pre-built AnimationStart script
Stride includes a pre-built AnimationStart script. You can use this script as a template to write your own
animation scripts.

To use the AnimationStart script:

1. In the Asset View (bottom pane by default), click Add asset.

2. Choose Add asset > Scripts > Animation start.

3. Specify a name for the script and click Create script.

3a. If Game Studio asks if you want to save your script, click Save script.

3b. If Game Studio asks if you want to reload the assemblies, click Reload assemblies.

132 / 1211

4. Edit the script as necessary and save it.

Example animation script
This sample script assigns a simple animation to a character based on its walking speed.

using Stride.Engine;

namespace AdditiveAnimation
{
 public class AnimationClipExample : SyncScript
 {
 public float MovementSpeed { get; set; } = 0f;

 private float walkingSpeedLimit = 1.0f;

 // Assuming the script is attached to an entity which has an animation component
 private AnimationComponent animationComponent;

 public override void Start()
 {
 // Cache some variables we'll need later
 animationComponent = Entity.Get<AnimationComponent>();
 animationComponent.Play("Idle");
 }

 protected void PlayAnimation(string name)
 {
 if (!animationComponent.IsPlaying(name))
 animationComponent.Play(name);
 }

 public override void Update()
 {
 if (MovementSpeed <= 0)
 {
 PlayAnimation("Idle");
 }
 else if (MovementSpeed <= walkingSpeedLimit)
 {
 PlayAnimation("Walk");
 }
 else
 {
 PlayAnimation("Run");
 }

133 / 1211

Override the animation blend tree
You can also override the animation blend tree and do all animation blending in the script. The
templates First-person shooter, Third-person platformer and Top-down RPG, which use some advanced
techniques, are examples of how to do this. For more information, see custom blend trees.

See also
Scripts
Animation index
Import animations
Animation properties
Set up animations
Preview animations
Additive animation
Procedural animation
Custom blend trees
Model node links
Custom attributes

 }
 }
}

134 / 1211

Additive animation
Intermediate Designer

Additive animation is the process of combining animations using difference clips (also known as
additive animation clips).

In the example above, the leftmost animation is the Walk animation. The rightmost animation is the Idle
animation. The two animations in the center are the Walk and Idle animations respectively, but have the
Reload animation added to them.

This means we only had to create three animations: Walk, Idle, and Reload. Additionally, we can add the
Reload animation to other suitable animations (eg Crouch, Strafe or Run). This helps keep the memory
budget and number of animations low.

Difference clips
A difference clip describes the difference between two animation clips: a source and a reference.

Take the Reload animation above, which we want to add to other animation clips. This is our source clip
(S). Because the Reload animation mainly involves the arms, it will blend well with animations that don't
involve the arms (such as idling and crouching). We can use one of these animations — let's say the Idle
animation — as our reference clip (R).

Stride calculates the difference between the source and reference clips to create the difference clip (D).
The difference clip encodes the difference between the source and reference clips. We can express it as
D = S - R.

135 / 1211

We can use use the difference clip to blend the source and reference animations. We can also use the
same difference clip to blend the source animation with other animations. If the animation you add it to
is sufficiently similar to the original reference clip, then the animations blend effectively. For example,
you could use it to add the reload animation to any animation that doesn't use the arms, such as
crouching.

Create a difference clip
1. In the Asset View (at the bottom by default), click Add asset and select Animations > Animation.

A browser dialog opens.

2. As we don't need a source for this animation, click Cancel.

Game Studio asks if you want to create an animation without a source file.

3. Click Yes. Game Studio adds a new empty animation asset to the Asset View.

4. Give the asset a name that makes it easy to identify. For example, if you want to make a reload
animation that can be used with other animations, you could name the asset ReloadAdditive.

5. In the Asset View (bottom pane by default), select the animation asset you created.

6. In the Property Grid (on the right by default), add the Source animation clip. This is the animation
you want to apply to other animations.

NOTE

Additive animations should use the same skinned mesh and skeleton.


NOTE

Make sure you add the file that contains the animation itself (eg a model file such as .fbx), not
the animation asset that references it. Animation files are usually saved in the Resources folder.



136 / 1211

7. Under Type, choose Difference Clip.

8. Under Reference, specify the animation you want to use as your reference clip. This is the
animation Stride references to create a difference clip.

9. Choose the Mode from the drop-down menu.

Animation creates a difference clip from the entire source animation, referencing it frame by
frame.
FirstFrame creates a difference clip from only the first frame of the source animation, as a still
pose.

10. Next to Skeleton, specify a skeleton for the difference clip.

This should be a skeleton that works for all the animations you want to blend with the difference
clip. In most cases, you should use the same skeleton you used for the source and reference
animations.

11. If you want to Preview the animation in the Asset Preview, specify a Preview model suitable for the
animation.

Use an additive animation
You can use additive animations with animations that use the same skeleton and skinned mesh.

1. In the Asset View (in the bottom pane by default), click Add asset.

2. Select Scripts > Animation Start.

NOTE

The Asset Preview shows only the source animation you specify in the difference clip.


137 / 1211

AnimationStart is a startup script you can use to load animations into your model, including additive
animations. For more information, see Animation scripts.

3. Recompile your project to apply the changes.

4. In the scene view, select the entity you want to animate.

5. In the Property Grid (on the right by default), click Add component and choose Animations.

NOTE

To animate an entity, the entity must have a model component.


138 / 1211

Game Studio adds an animation component to the entity.
6. Click Add component and choose the Animation Start script.

The script lets you customize a list of animations to be loaded into your entity.

7. In the Animation Start properties, next to Animations, click (Add).

8. Next to Clip, specify the source animation you set in the difference clip.

139 / 1211

9. Next to Add to Animations, click (Add).

10. Expand the animation properties. Next to Clip, specify the reference animation you set in the
difference clip.

11. Under Blend Operation, select Additive.

12. Repeat the steps to add as many animations as you need.

140 / 1211

See also
Animation index
Import animations
Animation properties
Set up animations
Preview animations
Animation scripts
Procedural animation
Custom blend trees
Custom attributes

141 / 1211

Procedural animation
Intermediate Programmer

Procedural animation is an alternative method of animation. Instead of creating animations yourself,
you can use engine components to animate 3D models at runtime.

In some cases, this creates more effective and efficient animations. For example, imagine a shrink effect
that happens when the player shoots a monster with a shrink weapon. Instead of creating a complex
shrinking animation, you can access the entity TransformComponent and simply scale the enemy down
to the required size.

The animation can animate a wide variety of components besides Skeleton bones, including:

TransformComponent
LightComponent
RigidBodyComponent
Custom components

Stride's animation system works just like Blender or Maya's curve animation editor. Each bone/value is
assigned a curve composed of several points that are interpolated either in linear, cubic or constant
fashion.

Code samples
Transform component
public class AnimationScript : StartupScript
{
 public override void Start()
 {
 // Create an AnimationClip. Make sure you set its duration properly.
 var animationClip = new AnimationClip { Duration = TimeSpan.FromSeconds(1) };

 // Add a curves specifying the path to the transformation property.
 // - You can index components using a special syntax to their key.
 // - Properties can be qualified with a type name in parenthesis.
 // - If a type isn't serializable, its fully qualified name must be used.

 animationClip.AddCurve("[TransformComponent.Key].Rotation", CreateRotationCurve());

 // Optional: pack all animation channels into an optimized interleaved format.
 animationClip.Optimize();

 // Add an AnimationComponent to the current entity and register our custom clip.

142 / 1211

Light component's color

 const string animationName = "MyCustomAnimation";
 var animationComponent = Entity.GetOrCreate<AnimationComponent>();
 animationComponent.Animations.Add(animationName, animationClip);

 // Play the animation right away and loop it.
 var playingAnimation = animationComponent.Play(animationName);
 playingAnimation.RepeatMode = AnimationRepeatMode.LoopInfinite;
 playingAnimation.TimeFactor = 0.1f; // slow down
 playingAnimation.CurrentTime = TimeSpan.FromSeconds(0.6f); // start at
different time
 }

 // Set custom linear rotation curve.
 private AnimationCurve CreateRotationCurve()
 {
 return new AnimationCurve<Quaternion>
 {
 InterpolationType = AnimationCurveInterpolationType.Linear,
 KeyFrames =
 {
 CreateKeyFrame(0.00f, Quaternion.RotationX(0)),
 CreateKeyFrame(0.25f, Quaternion.RotationX(MathUtil.PiOverTwo)),
 CreateKeyFrame(0.50f, Quaternion.RotationX(MathUtil.Pi)),
 CreateKeyFrame(0.75f, Quaternion.RotationX(-MathUtil.PiOverTwo)),
 CreateKeyFrame(1.00f, Quaternion.RotationX(MathUtil.TwoPi))
 }
 };
 }

 private static KeyFrameData<T> CreateKeyFrame<T>(float keyTime, T value)
 {
 return new KeyFrameData<T>((CompressedTimeSpan)TimeSpan.FromSeconds(keyTime),
value);
 }
}

public class AnimationLight : StartupScript
{
 public override void Start()
 {
 // Our entity should have a light component
 var lightC = Entity.Get<LightComponent>();

143 / 1211

 // Create an AnimationClip and store unserializable types. Make sure you set its
duration properly.
 var clip = new AnimationClip { Duration = TimeSpan.FromSeconds(1) };
 var colorLightBaseName = typeof(ColorLightBase).AssemblyQualifiedName;
 var colorRgbProviderName = typeof(ColorRgbProvider).AssemblyQualifiedName;

 // Point to the path of the color property of the light component
 clip.AddCurve(
 $"[LightComponent.Key].Type.({colorLightBaseName})Color.
({colorRgbProviderName})Value",
 CreateLightColorCurve()
);

 // Play the animation right away and loop it.
 clip.RepeatMode = AnimationRepeatMode.LoopInfinite;
 var animC = Entity.GetOrCreate<AnimationComponent>();
 animC.Animations.Add("LightCurve",clip);
 animC.Play("LightCurve");
 }
 private AnimationCurve CreateLightColorCurve()
 {
 return new AnimationCurve<Vector3>
 {
 InterpolationType = AnimationCurveInterpolationType.Linear,
 KeyFrames =
 {
 CreateKeyFrame(0.00f, Vector3.UnitX), // Make the first keyframe a red color

 CreateKeyFrame(0.50f, Vector3.UnitZ), // then blue

 CreateKeyFrame(1.00f, Vector3.UnitX), // then red again
 }
 };
 }

 private static KeyFrameData<T> CreateKeyFrame<T>(float keyTime, T value)
 {
 return new KeyFrameData<T>((CompressedTimeSpan)TimeSpan.FromSeconds(keyTime),
value);
 }
}

144 / 1211

See also
Animation index
Import animations
Animation properties
Set up animations
Preview animations
Animation scripts
Additive animation
Custom blend trees
Model node links
Custom attributes

NOTE

If you need to animate a bone procedurally you must use the NodeTransformations field of the
Skeleton.



145 / 1211

Custom blend trees
Advanced Programmer

The AnimationComponent has the property AnimationComponent.BlendTreeBuilder. If you want
absolute control over which animations are played, how are they blended and what weights they have,
you can create a script which implements from IBlendTreeBuilder and assign it to the BlendTreeBuilder
under your animation component.

When the animation component is updated, it calls void BuildBlendTree(FastList<AnimationOperation>
animationList) on your script instead of updating the animations itself. This allows you to choose any
combination of animation clips, speeds and blends, but is also more difficult, as all the heavy lifting is
now on the script side.

The templates First-person shooter, Third-person platformer and Top-down RPG, included with Stride, are
examples of how to use custom blend trees.

Code sample
public class AnimationBlendTree : SyncScript, IBlendTreeBuilder
{
 /// <summary>
 /// The animation component is required
 /// </summary>
 [Display("Animation Component")]
 public AnimationComponent AnimationComponent { get; set; }

 [Display("Walk")]
 public AnimationClip AnimationWalk { get; set; }

 [Display("Run")]
 public AnimationClip AnimationRun { get; set; }

 [Display("Lerp Factor")]
 public float LerpFactor = 0.5f;

 private AnimationClipEvaluator animEvaluatorWalk;
 private AnimationClipEvaluator animEvaluatorRun;
 private double currentTime = 0;

 public override void Start()
 {
 base.Start();

 // IMPORTANT STEP

146 / 1211

 // By setting a custom blend tree builder we can override the default behavior of
the animation system.
 // Instead, BuildBlendTree(FastList<AnimationOperation> blendStack) will be called
each frame.
 // We need to update the animation state in Update() and then
 // pass the new animation state (stack = blend tree) to the animation system.
 AnimationComponent.BlendTreeBuilder = this;

 // As we override the animation system, we need to create an AnimationClipEvaluator
for each clip we want to use.
 animEvaluatorWalk = AnimationComponent.Blender.CreateEvaluator(AnimationWalk);
 animEvaluatorRun = AnimationComponent.Blender.CreateEvaluator(AnimationRun);
 }

 public override void Cancel()
 {
 // When the script is cancelled, don't forget to release all animation resources
created in Start() - AnimationClipEvaluators
 AnimationComponent.Blender.ReleaseEvaluator(animEvaluatorWalk);
 AnimationComponent.Blender.ReleaseEvaluator(animEvaluatorRun);
 }

 public override void Update()
 {
 // Use DrawTime rather than UpdateTime because the animations are updated only when
they are drawn.
 var time = Game.DrawTime;

 // This update function accounts for animation with different durations,
 // keeping a current time relative to the blended maximum duration.
 long blendedMaxDuration = (long)MathUtil.Lerp(AnimationWalk.Duration.Ticks,
AnimationRun.Duration.Ticks, LerpFactor);

 var currentTicks = TimeSpan.FromTicks((long)(currentTime * blendedMaxDuration));

 currentTicks = blendedMaxDuration == 0
 ? TimeSpan.Zero
 : TimeSpan.FromTicks((currentTicks.Ticks + (long)(time.Elapsed.Ticks))
% blendedMaxDuration);

 currentTime = ((double)currentTicks.Ticks / (double)blendedMaxDuration);
 }

 /// BuildBlendTree is called every frame from the animation system when the
AnimationComponent needs to be evaluated.
 /// It overrides the default behavior of the AnimationComponent by setting a custom

147 / 1211

See also
Animation index
Import animations
Animation properties
Set up animations
Preview animations
Animation scripts
Additive animation
Procedural animation
Model node links
Custom attributes

blend tree.
 public void BuildBlendTree(FastList<AnimationOperation> blendStack)
 {
 var timeWalk = TimeSpan.FromTicks((long) (currentTime *
AnimationWalk.Duration.Ticks));
 var timeRun = TimeSpan.FromTicks((long) (currentTime
* AnimationRun.Duration.Ticks));

 // Build the animation blend tree (stack)
 blendStack.Add(AnimationOperation.NewPush(animEvaluatorWalk, timeWalk)); // Will
PUSH animation state to be evaluated at the specified Time.
 blendStack.Add(AnimationOperation.NewPush(animEvaluatorRun, timeRun)); // Will
PUSH another animation state to be evaluated at the specified Time.
 blendStack.Add(AnimationOperation.NewBlend(CoreAnimationOperation.Blend,
LerpFactor)); // Will POP the last two states, blend them with the factor and PUSH back
the result.

 // NOTE
 // Because the blending operations are laid out in a stack you have to pack the
operations in this manner.
 // In general, traversing a binary tree depth-first and adding operations as you
leave precessed nodes should be sufficient.
 // For non-binary trees, you have to properly weight the blending factors as well

 // DONE
 // The top of the stack now contains the final state used for the animated model
 }
}

148 / 1211

Model node links
Beginner Artist

The model node link component attaches an entity to a node of a skeleton on another entity.

For example, imagine you have two models: a knight, and a sword. The character has a sword swinging
animation. You can use a model link node to place the sword in the knight's hand and attach it to the
correct node in the knight skeleton, so the sword swings with the knight animation.

Set up a model node link component
1. In the Scene Editor, select the entity you want to link to a node in another entity.

2. In the Property Grid, click Add component and select Model node link.

NOTE

In some versions of Stride, Model node links are called Bone links.


149 / 1211

Game Studio adds a model node link component to the entity.

The component only has two properties: Node name and Target.
3. Next to Target, click .

The Select an entity window opens.

150 / 1211

4. Select the model you want to link the entity to and click OK.

5. In Node name, select the node in the model you want to attach this entity to.

NOTE

The entity you link to must have a model with a skeleton, even if the model isn't visible at
runtime.



TIP

If you don't specify a model, Stride links the entity to the model on the parent entity.


151 / 1211

After you link the node, the Entity Tree shows the link in blue next to the entity name.

Offset
To add an offset to the linked entity, use the entity's TransformComponent.

Example script
This script demonstrates how to link one entity (such as a SwordModel) to a specific bone (weapon_bone_R)
in another entity's skeleton hierarchy (in this case, the mannequinModel) using Stride's
ModelNodeLinkComponent.

NOTE

If you don't want to add an offset, make sure the values are all set to 0,0,0.


152 / 1211

See also
Import animations
Animation properties
Set up animations
Preview animations
Animation scripts
Additive animation
Procedural animation
Custom blend trees
Custom attributes

public class BoneLink : StartupScript
{
 // This example assumes you've created a project with the default Stride models
 // "mannequinModel" and "SwordModel." Add them from the "Assets/Models" folder to
your scene,
 // and then attach this script to the "SwordModel" entity

 ModelNodeLinkComponent boneLink;

 public override void Start()
 {
 // Initialize the script
 // Here we locate the entity named "mannequinModel" by searching the root
scene's entities
 Entity owner = SceneSystem.SceneInstance.RootScene.Entities.Where(e => e.Name
== "mannequinModel").Single();

 boneLink = new ModelNodeLinkComponent
 {
 // This is the ModelComponent on the target entity (mannequinModel)
 Target = owner.Get<ModelComponent>(),

 // We set a "hard link" to Nodes[70], which corresponds to "weapon_bone_R"
 // in the target's skeleton hierarchy
 NodeName = owner.Get<ModelComponent>().Model.Skeleton.Nodes[70].Name
 };

 // Finally, add this link component to our current (SwordModel) entity
 base.Entity.Components.Add(boneLink);
 }
}

153 / 1211

For examples of how model node links are used, see:

Particles — Create a trail
Cameras — Animate a camera with a model file

154 / 1211

Custom attributes
Intermediate

You can import custom attributes created in modeling tools such as Maya.

Currently, you can only import custom animated attributes. Attributes that aren't animated can't be
imported.

1. Import custom attributes
1. Import the animation. For instructions, see Import animations.

2. In the Asset View, select the animation asset.

155 / 1211

3. In the Property Grid, select Import custom attributes.

When the assets are built, Stride imports the custom attributes from the FBX file.

2. Control custom attributes with a script
Add a script to read the custom attributes and copy their value to another property. This can be a
separate script, or part of another animation script.

To look up an attribute, use NodeName_AttributeName. For example, if you have the node myNode with the
custom attribute myAttribute, use myNode_myAttribute.

Example script

156 / 1211

using Stride.Animations;
using Stride.Engine;
using Stride.Rendering;
using Stride.Audio;
using Stride.Rendering.Materials;
using System.Linq;

namespace Sample
{
 public class HologramScript : SyncScript
 {
 public Material MyMaterial;

 private AnimationComponent animationComponent;
 private AnimationProcessor animationProcessor;

 public override void Start()
 {
 base.Start();

 animationComponent = Entity.GetOrCreate<AnimationComponent>();
 animationProcessor =
SceneSystem.SceneInstance.Processors.OfType<AnimationProcessor>().FirstOrDefault();
 }

 public override void Update()
 {
 if (animationProcessor == null || MyMaterial == null)
 return;

 // Animation result may be Null if animation hasn't been played yet.
 var animResult = animationProcessor.GetAnimationClipResult(animationComponent);
 if (animResult == null)
 return;

 // Read the value of the animated custom attribute:
 float emissiveIntensity = 0;
 unsafe
 {
 fixed (byte* structures = animResult.Data)
 {
 foreach (var channel in animResult.Channels)
 {
 if (!channel.IsUserCustomProperty)
 continue;

157 / 1211

 var structureData = (float*)(structures + channel.Offset);
 var factor = *structureData++;
 if (factor == 0.0f)
 continue;

 var value = *structureData;
 if (channel.PropertyName == "myNode_myProperty")
 emissiveIntensity = value;
 }
 }
 }

 // Bind the material parameter:

 MyMaterial.Passes[0].Parameters.Set(MaterialKeys.EmissiveIntensity,
emissiveIntensity);
 }
 }
}

158 / 1211

Audio
You can import sound files and use them in your games. Stride supports audio features including 3D
spatialized audio, streaming, and low-latency playback.

In this section
Import audio
Audio asset properties
Non-spatialized audio
Spatialized audio

Audio emitters
Audio listeners
HRTF

Stream audio
Global audio settings
Play a range within an audio file
Custom audio data
Set an audio device

159 / 1211

Import audio
Beginner Designer

You can import audio files to use as audio assets in your project. You can import file types including
.wav, .mp3, .ogg, .aac, .aiff, .flac, .m4a, .wma, and .mpc.

1. Drag and drop the audio file from Windows Explorer to the Asset View:

Alternatively, in the Asset View:

1. Click

2. Click (Import audio directly from file) and select the audio file.

2. To give the audio asset some default properties, choose a preset. (You can always change the
properties in the Property Grid later.)

160 / 1211

Sound effect: Recommended for smaller files that you want to play directly from memory.

*Spatialized audio: Process the audio asset as spatialized audio. Note that Stride processes
audio files as mono (single-channel) audio. The source file is unaffected.

Music: Recommended for larger files that you want to stream from disk to save memory.

After you import an audio file, you can select it as an asset in the Asset View.

Import audio from a video file
You can also import a video file and choose to import only the audio tracks from it.

1. In the Asset View, click Add asset and select Media > Video.

2. Browse to the video you want to import audio from and click Open.

Alternatively, drag the file from Explorer into the Asset View.

3. Clear Import video and click OK.

161 / 1211

Stride adds the audio tracks from the video to the Asset View.

See also
Spatialized audio
Non-spatialized audio
Global audio settings
Video

162 / 1211

Audio asset properties
After you select an audio asset in the Asset View, you can configure its properties in the Property Grid.

Property Description

Source The source audio file (note that Stride never alters source files)

Compression
ratio

Set the compression rate from 1 (no compression) to 40 (maximum). Greater
compression optimizes memory use, but decreases audio quality. Stride compresses
audio files with the open-source Opus/Celt codec.

Sample rate The rate at which Stride resamples the source file. The higher the sample rate, the
higher the audio quality. Typical sample rates are 44.1 kHz (44,100 Hz), 48 kHz, 88.2
kHz, and 96 kHz. Note that high sampling rates doesn't improve the quality of low-
quality audio files.

Spatialized Simulate 3D audio (see spatialized audio)

Stream from
disk

Streaming is useful for larger audio files, as it saves memory. For more information,
see Stream audio.

See also
Import audio
Global audio settings
Spatialized audio
Non-spatialized audio

https://en.wikipedia.org/wiki/CELT
https://en.wikipedia.org/wiki/CELT
https://en.wikipedia.org/wiki/CELT
https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate
https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate
https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate

163 / 1211

Non-spatialized audio
Beginner Programmer

Non-spatialized audio sounds the same throughout the scene, regardless of the position of entities
(such as the player camera). It's stereo and moves along a single axis (usually the X-axis). Unlike
spatialized audio, the volume, pitch (frequency), and other parameters of spatialized audio don't change.
This is useful, for example, for background music and menu sound effects.

Non-spatialized audio requires no audio emitters or audio listeners.

1. Import audio and include it in the build
1. Import the audio as a audio asset.

2. Make sure the audio asset is a root asset. Root assets are assets that Stride includes in the build so
they can be used at runtime.

In the Asset View, right-click the asset and select Include in build as root asset:

If the menu option reads Do not include in build as root asset, the option is already selected and
you don't need to change it.

2. Create a script to play audio

164 / 1211

To play non-spatialized audio at runtime, create an instance of it and define its behavior in the code.

The SoundInstance controls audio at runtime with the following properties:

Property Function

IsLooping Gets or sets looping of the audio.

Pan Sets the balance between left and right speakers. By default, each speaker a value of 0.

Pitch Gets or sets the audio pitch (frequency).

PlayState Gets the state of the SoundInstance.

Position Gets the current play position of the audio.

Volume Sets the audio volume.

For more details, see the SoundInstance API documentation.

If the sound is already playing, Stride ignores all additional calls to SoundInstance.Play. The same goes
for SoundInstance.Pause (when a sound is already paused) and SoundInstance.Stop (when a sound is
already stopped).

For example, the following code:

instantiates non-spatialized audio
sets the audio to loop
sets the volume
plays the audio

NOTE

public override async Task Execute()
{
 // Load the sound
 Sound musicSound = Content.Load<Sound>("MySound");

 // Create a sound instance
 SoundInstance music = musicSound.CreateInstance();

 // Loop
 music.IsLooping = true;

165 / 1211

Alternative: create a script with public variables
Create a public variable for each audio asset you want to use. You can use the same properties listed
above.

For example:

Add the script to the entity

 // Set the volume
 music.Volume = 0.25f;

 // Play the music
 music.Play();
}

public class MySoundScript : SyncScript
{
 public Sound MyMusic;

 private SoundInstance musicInstance;
 public bool PlayMusic;

 public override void Start()
 {
 musicInstance = MyMusic.CreateInstance();
 }

 public override void Update()
 {
 // If music isn't playing but should be, play the music.
 if (PlayMusic & musicInstance.PlayState != PlayState.Playing)
 {
 musicInstance.Play();
 }

 // If music is playing but shouldn't be, stop the music.
 else if (!PlayMusic)
 {
 musicInstance.Stop();
 }
 }
}

166 / 1211

1. In the Scene view, select the entity you want to add the script to:

2. In the Property Grid, click Add component and select your script:

The script is added to the entity.

3. If you added public variables to the script, you need to tie them to audio assets.

Drag and drop an asset from the Asset View to each variable:

167 / 1211

Alternatively, click (Select an asset):

Then choose the audio asset you want to use:

168 / 1211

See also
Import audio
Global audio settings
Spatialized audio

169 / 1211

Spatialized audio
Beginner Designer Programmer

Spatialized audio, also called 3D audio, simulates three-dimensional sound. This creates more realistic
audio than non-spatialized audio.

In real life, our experience of sound is affected by factors including its volume, the surrounding area
(such as a cave or small room), and the position and movement of the sound source. We can usually tell
approximately where a sound is coming from and whether it's moving.

For example, the frequency (pitch) of the sound coming from a moving object varies depending on the
observer's position (the Doppler effect). Sound from an approaching source has a higher frequency
than sound from a receding source:

https://en.wikipedia.org/wiki/Doppler_effect
https://en.wikipedia.org/wiki/Doppler_effect
https://en.wikipedia.org/wiki/Doppler_effect

170 / 1211

To simulate realistic 3D audio, Stride tracks the positions of two entities in the scene:

audio emitters, which emit audio
audio listeners, which hear the sound emitted by audio emitters

You must have both audio emitters and audio listeners to hear spatialized sound in a scene.

Spatialized audio is widely used for sound effects in platform, desktop, and VR games. For example, a
gun might make a gunshot sound when fired, or a character might make a footstep sound when they
take a step.

Enable spatialized audio
When you import your audio, select Spatialized Sound as the asset type.

You can also set audio to spatialized in the asset's Property Grid:

1. In Asset View, select Audio Asset.

2. In the Property Grid, select the Spatialized checkbox:

See also
Audio emitters

NOTE

Spatialized audio uses more CPU than non-spatialized audio.


NOTE

Stride processes spatialized audio as mono (single-channel) audio. It doesn't alter the source file.


171 / 1211

Audio listeners
HRTF
Global audio settings

172 / 1211

Audio emitters
Beginner Programmer Designer

Audio emitter components emit audio used to create spatialized audio. You can add them to any entity.

The pitch and volume of the sound changes as the audio listener moves closer to and away from the
audio emitter.

You need at least one AudioListenerComponent in the scene to hear audio from audio emitters.

1. Set up an audio emitter asset
1. In the Scene view, select an entity you want to be an audio emitter.

2. In the Property Grid, click Add component and select Audio Emitter.

NOTE

173 / 1211

Now we need to add audio to the emitter.
3. Under Audio Emitter, click (Add) and specify a name for the audio.

4. From the Asset View, drag and drop an audio asset to the audio you just added:

Alternatively, click (Select an asset).

Then choose an audio asset:

174 / 1211

5. Repeat steps 3 and 4 to add as many audio assets as you need.

6. Configure the properties for this audio emitter.

Property Description

Use HRTF Enable head-related transfer function (HRTF). With this enabled, sounds appear to
come from a specific point in 3D space, synthesizing binaural audio. For more
information, see HRTF.

Directional
factor

How directional the audio is, from 0 (min) to 1 (max). If set to 0, the audio is emitted
from all directions. You can control this with a slider or number value.

Environment The reverb type for the audio, simulating reverberation of real environments (small,
medium, large, or outdoors).

2. Create a script to play the audio

175 / 1211

Now we need to create a script to play and configure the audio asset.

1. In your script, instantiate AudioEmitterSoundController for each sound you want to use in the script.

For example, say we have two sounds, MySound1 and MySound2:

2. Use the following AudioEmitterSoundController properties and methods to play and configure the
audio:

Property /
method Description

IsLooping Loops audio. Has no effect if PlayAndForget() is set to true.

Pitch Gets or sets sound pitch (frequency). Use with caution for spatialized audio.

PlayState Gets the current state of the audio emitter sound controller.

Volume Volume of the audio.

Pause() Pauses audio.

Play() Plays audio.

PlayAndForget() Plays audio once, then clears the memory. Useful for short sounds such as
gunshots. Overrides IsLooping.

Stop() Stops audio.

For example:

This sound will loop at double the original pitch and half the original volume. For more information, see
the AudioEmitterSoundController Stride API documentation.

 AudioEmitterComponent audioEmitterComponent = Entity.Get<AudioEmitterComponent>();
 AudioEmitterSoundController mySound1Controller = audioEmitterComponent["MySound1"];
 AudioEmitterSoundController mySound2Controller = audioEmitterComponent["MySound2"];

mySound1Controller.IsLooping = true;
mySound1Controller.Pitch = 2.0f;
mySound1Controller.Volume = 0.5f;
mySound1Controller.Play();

176 / 1211

3. Add the script to the audio emitter entity
Game Studio lists the script as a component under Add component. Add the script to the audio emitter
entity.

1. In the Scene view, select an entity you want to be an audio emitter.

2. Click Add component and select the script.

177 / 1211

See also
Spatialized audio
Audio listeners
Global audio settings

178 / 1211

Audio listeners
Beginner Designer

An audio listener is an entity that listens for audio emitted by audio emitters to create spatialized audio.
There can be multiple audio listeners in a scene. This is common, for example, in multiplayer games,
where each player camera is an audio listener.

You don't need to configure audio listeners. All settings for sound effects, including Volume and Pitch
(Frequency), are configured on the audio emitter.

If there's no audio listener in the scene, you won't hear audio from audio emitters.

Add an audio listener component to an entity
To create an audio listener, attach an audio listener component to an entity. You can attach this
component to any entity.

1. In Scene view, select the entity you want to be an audio listener:

2. In the Property Grid, click Add Component and select Audio listener component:

179 / 1211

The entity is now an audio listener.

On iOS, you can create multiple objects with Audio listener component in a scene, but only one is used
at runtime.

See also
Spatialized audio
Audio emitters
Global audio settings

WARNING

180 / 1211

Head-related transfer function (HRTF) audio
Head-related transfer function (HRTF) is an advanced way of rendering audio so that sounds appear
to come from a specific point in 3D space, synthesizing binaural audio. It provides more realistic audio
than standard spatialized audio. For example, with HRTF, the player can hear whether a character is
above or below them. This is particularly useful for VR applications, as it increases immersion.

Players don't need special hardware to use HRTF. However, the effect works much better with
headphones than speakers.

This video demonstrates the effect of HRTF audio:

Enable HRTF
To use HRTF, first enable it globally in the Game Settings asset, then enable HRTF on the entities you
want to use it with.

1. Enable HRTF globally
1. In Solution explorer (the bottom-left pane by default), select the Assets folder.

0:00

NOTE

For now, you can only use HRTF on Windows 10.


181 / 1211

2. In the Asset View (the bottom pane by default), select the GameSettings asset.

3. In the Property Grid (the right-hand pane by default), under Audio settings, select HRTF support.

For more information about the Game Settings asset, see Game settings.

2. Enable HRTF on the entities
1. Select the entity with the audio emitter that contains the sound you want to enable for HRTF.

2. In the Property Grid (on the right by default), under Audio emitter, select Use HRTF.

Sounds emitted from this entity will use HRTF.

182 / 1211

For more information about audio emitters, including the properties you can change, see Audio emitters.

See also
Head-related transfer function (Wikipedia)
Spatialized audio
Audio emitters
Audio listeners
Game settings

NOTE

The HRTF option applies to every sound emitted from this audio emitter.


https://en.wikipedia.org/wiki/Head-related_transfer_function
https://en.wikipedia.org/wiki/Head-related_transfer_function
https://en.wikipedia.org/wiki/Head-related_transfer_function

183 / 1211

Stream audio
Beginner Designer Programmer

By default, Stride plays audio directly from memory. This is useful for short sound effects such as
gunshots or footsteps.

Alternatively, Stride can buffer audio and stream it in sequences. As soon as the first sequence is
buffered, Stride plays it while buffering the following sequences in parallel. This saves a lot of memory
when used for larger audio files such as background music and character dialogue.

Streaming audio increases latency unless you preload it with the ReadyToPlay task (see below).

NOTE

184 / 1211

To stream an audio asset:

1. In the Asset View, select the audio asset.

2. In the Property Grid, select Stream From Disk:

In the script for the asset, you can configure an audio file to play once the audio engine buffers enough
audio samples. To do this, use this task:

See also

SoundInstance music = musicSound.CreateInstance();
await music.ReadyToPlay();
music.Play();

185 / 1211

Global audio settings
Audio asset properties
Spatialized audio
Non-spatialized audio

186 / 1211

Global audio settings
Beginner Programmer

Global audio settings apply to all the audio in your project.

You can control the global audio settings by accessing the AudioEngine properties class:

Property Function

MasterVolume Sets the master volume.

PauseAudio Pauses all audio.

ResumeAudio Resumes all audio.

You can also control sounds individually using the SoundInstance API.

See also
Spatialized audio
Non-spatialized audio
SoundInstance API documentation

187 / 1211

Play a range within an audio asset
Intermediate Programmer

You can have Stride play only certain portions of an audio asset. This means, for example, that you can
create multiple samples from a single audio asset by specifying different ranges in different Sound
Instance objects.

You can use the following properties, methods, and structures:

Property, method, or structure Function

TotalLength The total length of the sound.

SoundInstance.SetRange(Play
Range)

Sets the time range to play within the audio asset.

PlayRange Time information, including the range's starting point and
length.

SoundInstance.Position Gets the current play position as TimeSpan.

For example:

See also

//Assume sample length is 4 seconds.
var length = mySound.TotalLength;
var begin = TimeSpan.FromSeconds(2);
var duration = TimeSpan.FromSeconds(2);
mySoundInstance.SetRange(new PlayRange(begin, duration));

188 / 1211

Global audio settings
Spatialized audio
Non-spatialized audio

189 / 1211

Custom audio data
Advanced Programmer

You can generate audio using your own mechanism. To do this, create a subclass of DynamicSound
Source. For an example of how to implement this, see the CompressedSoundSource` source code .

Example code
To play a custom DynamicSoundSource at runtime, use:

See also
Global audio settings

int sampleRate = 48000;
bool mono = false;
bool spatialized = false;
DynamicSoundSource myCustomSource = new MyCustomSource(...);
AudioListener listener = Audio.AudioEngine.DefaultListener;
AudioEngine audioEngine = Audio.AudioEngine;
SoundInstance myCustomInstance = new SoundInstance(audioEngine, listener, myCustomSource,
sampleRate, mono, spatialized);
await myCustomInstance.ReadyToPlay();
myCustomInstance.Play();

https://github.com/Stride3d/stride/blob/master/sources/engine/Stride.Audio/CompressedSoundSource.cs
https://github.com/Stride3d/stride/blob/master/sources/engine/Stride.Audio/CompressedSoundSource.cs
https://github.com/Stride3d/stride/blob/master/sources/engine/Stride.Audio/CompressedSoundSource.cs

190 / 1211

Set an audio device
Advanced Programmer

You can set which audio device Stride uses. For example, you can access the Oculus Rift audio device
from your custom game constructor.

If you don't specify a device, Stride uses the default audio advice.

Example code
This code sets the Oculus Rift device at runtime:

See also
Global audio settings

namespace OculusRenderer
{
 public class OculusGame : Game
 {
 public OculusGame()
 {
 var deviceName = OculusOvr.GetAudioDeviceFullName();
 var deviceUuid = new AudioDevice { Name = deviceName };
 Audio.RequestedAudioDevice = deviceUuid;
 }
 }
}

191 / 1211

Engine

Asset
Entity-component system
File system
Build pipeline
Asset introspection

See also
Introduction to assets
Scripts

WARNING

This section is out of date. For now, you should only use it for reference.


192 / 1211

Asset manager

Assets
After creating your assets in Game Studio, @'Stride.Core.Serialization.Assets.AssetManager' is the class
responsible for loading, unloading and saving assets.

Creating
You usually create assets directly in Game Studio.

Their URL will match the name (including folder) in Game Studio.

Examples of URLs:

knight (user imports knight.fbx directly in main asset folder)
level1/room1 (user creates level1 and import room1.fbx inside)

For more information, see Assets for more details.

Loading
Loading an asset should be done with the help of @'Stride.Core.Serialization.Assets.AssetManager' class:

Note that loading an asset that has already been loaded only increment the reference counter and do
not reload the asset.

Unloading
Unloading is also done using the AssetManager class:

WARNING

This section is out of date. For now, you should only use it for reference.


// Load an asset directly from a file:
var texture = Content.Load<Texture>("texture1");

// Load a Scene asset
var scene = Content.Load<Scene>("scenes/scene1");

// Load an Entity asset
var entity = Content.Load<Entity>("entity1");

193 / 1211

Asset life time
Asset load and unload are working in pairs. For each call to 'load', a corresponding call to 'unload' is
expected.

An asset is actually loaded only during the first call to 'load'. All subsequent calls only result to an asset
reference increment.

An asset is actually unload only when the number of call to unload match the number of call the load.

The @'Stride.Core.Serialization.Assets.AssetManager.Get' method returns the reference to a loaded asset
but does not increment the asset reference counter.

 Asset.Unload(asset);

 var firstReference = Content.Load<Texture>("MyTexture"); // load the asset and increase the
reference counter (ref count = 1)

// the texture can be used here

var secondReference = Content.Load<Texture>("MyTexture"); // only increase the reference
counter (ref count = 2)

// the texture can still be used here

Asset.Unload(firstReference); // decrease the reference counter (ref count = 1)

// the texture can still be used here

Asset.Get<Texture>("MyTexture"); // return the loaded asset without increasing the reference
counter (ref count = 1)

// the texture can still be used here
Asset.Unload(secondReference); // decrease the reference counter and unload the asset (ref
count = 0)

// The texture has been unloaded, it cannot be used here any more.

194 / 1211

Asset bundles

A bundle of assets allows to package assets into a single archive that can be downloaded into the game
at a specific time.

It allows creation of Downloadable Content (DLC).

Basic rules:

A project can generate several bundle.
A bundle is created from several assets selectors (Currently, only the PathSelector and TagSelector
are supported)
A bundle can have dependencies to others bundles
Every bundle implicitly references default bundle, where every asset which shouldn't go in a specific
bundle will be packaged
Once a bundle is deployed into the game, all assets from this bundle and all its dependencies are
accessible
Bundle resolution is done through an asynchronous callback that allows you to download bundle,
and will be called once per dependency (similar to AssemblyResolve event).

Create a bundle

Open the sdprj file of the game executable and add the following configuration:

Example:

A bundle named MyBundleName will embed assets with tags MyTag1 and MyTag2
A bundle named MyBundleName2 will embed assets with tags MyTag3 and MyTag4. This bundle has a
dependency to MyBundleName
There is also a PathSelector which follow the .gitignore filtering convention.

WARNING

This section is out of date. For now, you should only use it for reference.


NOTE

Creating currently requires some manual steps (i.e. editing sdpkg by hand).


195 / 1211

Bundles:
 - Name: MyBundleName
 Selectors:
 - !TagSelector
 Tags:
 - MyTag1
 - MyTag2
 - Name: MyBundleName2
 Dependencies:
 - MyBundleName
 Selectors:
 - !TagSelector
 Tags:
 - MyTag3
 - MyTag4
 - !PathSelector
 Paths:
 - folder1/
 - /folder2/
 - *.bin
 - folder3/*.xml

NOTE

Asset dependencies are automatically placed in the most appropriate bundle.

Current process works that way:

Find assets that matches specific Tag Selectors ("roots" of bundle assets).
Enumerate assets that are dependent on those "roots" bundle assets and put them in the same
bundle than their "roots" asset.

Except if already accessible through one of package dependencies (i.e. a shared dependent
package or default package).

Place everything else in default bundle.

Note that:

Shared assets might be duplicated if not specifically placed in common or default package, but
that is intended (i.e. if user wishes to distribute 2 separate DLC that need common assets but
need to be self-contained).
Every bundle implicitly depends on default bundle.



196 / 1211

Load a bundle at runtime
Loading bundle is done through ObjectDatabase.LoadBundle(string bundleName) (ref:
{Stride.Core.Storage.ObjectDatabase.LoadBundle}):

Selectors
Selectors help deciding which assets are stored in a specific bundle.

Tag selector
Select assets based on a list of tag attached on each asset.

Properties:

Tags: List of Tags. Any asset that contains at least one of the tag will be included.

Path selector
Select assets based on their path.

Standard .gitignore patterns are supported (except ! (negate), # (comments) and [0-9] (groups)).

Properties:

Paths: List of filters. Any asset whose URL matches one of the filter will be included.

// Load bundle
Assets.DatabaseFileProvider.ObjectDatabase.LoadBundle("MyBundleName2");

// Load specified asset
var texture = Assets.Load<Texture2D>("AssetContainedInMyBundleName2");

197 / 1211

Asset control

Until now, all assets of a game package, and its dependencies, were compiled as part of your game.

Starting with 1.3, we compile only the assets required by your game.

Don’t worry, most of it is done automatically for you! We do that by starting to collect dependencies
from the new Game Setting asset: it references the Default Scene, and we can easily detect all the
required asset references (Models, Materials, Asset referenced by your scripts and so on).

In case you were loading anything in your script using Content.Load, you can still tag those assets
specifically with “Mark as Root” in the editor.

However, we now recommend to instead create a field in your script and fill it directly in the editor. All
the samples have been updated to this new practice, so please check them out.

Which assets are compiled?
Assets that will be compiled and packaged in your project are:

Root assets (blue)
Automatic for a few asset types (i.e. Game Settings, Shaders)
Explicit (using "Mark as Root" on the asset)

Dependencies of root assets (green)
Since Game Settings is collected, that means that Default Scene and all its dependencies will be
compiled as well (includes Model, Script field members pointing to other assets, etc...)
Also, we encourage our users to switch your script from Content.Load (which require "Mark as
Root") to a field member that you can set within the editor using drag and drop. That will create
an implicit dependency that will force that asset to be compiled as well.

Everything else (white) (objects not marked as root and not referenced directly or indirectly by a
root) won't be packaged

WARNING

This section is out of date. For now, you should only use it for reference.


198 / 1211

"Mark as root"
One important thing to understand is that "Mark as root" is not part of the asset, it is stored in the
"current" package (the one that is in bold in the Solution Explorer).

It means that if "MyGame" is current package, if you check "Mark as Root" on Silver Material (part of
SharedPackage), this information will be stored in MyGame.sdpkg as part of the reference to
SharedPackage.

As a result, you can use a shared package from multiple games even if you have different explicit roots.

See also
For additional information about asset management, see Manage Assets

199 / 1211

ECS (Entity Component System) Introduction
Problem

Dog is a subclass of Animal.

This example is often used as an example of inheritance in introductions to programming. However,
when things get more complex, we get problems:

Dog and Fish can swim, so we create SwimmingAnimal as a class in between
Bee and Bird can fly, so we create FlyingAnimal
What do we now do with the Duck, who can do both?

We have the exact same problem in video games. Enemies can walk, shoot, fly - but not all of them can
do everything. Even something basic like hitpoints is not universal, as some enemies are indestructible.

Solution
Entity component system (ECS) is a software architectural pattern mostly used in video game
development for the representation of game world objects. An ECS comprises entities composed
from components of data, with systems which operate on entities' components.
-Wikipedia

The general idea of an ECS is that an entity - an "object" in your virtual world - does not really do
anything. It is mostly just a "bag of components".

The selection of components on an entity decides what it does. An entity with a collider component can
collide, an entity with a sound component can make a noise, etc.

Differing opinions
For the "System" part of the term, there are two interpretations:

1. Entity-and-Component System: In this setup, the components contain both the data they need
and the functionality that works with that data.

2. Entity, Component, System: In this arrangement, a component only contains data, while a third
part - the system - contains the functionality.

Stride allows for working in both ways. 1) can be achieved by using scripts while the usage of 2) is
described in this section of the manual.

https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system

200 / 1211

Which one to choose?

201 / 1211

ECS Usage
Classes
The three parts of Entity Component System map to the following classes:

Entity - Stride.Engine.Entity
Component - Stride.Engine.EntityComponent
System - Stride.Engine.EntityProcessor

Minimal Setup
A component can be defined by deriving a class from EntityComponent. By adding the attribute
DefaultEntityComponentProcessor to an EntityComponent, an EntityProcessor can be assigned to it. This
will automatically set up and run the EntityProcessor if the EntityComponent is in the scene. An
EntityComponent also needs to indicate that it can be serialized by adding the attribute DataContract to
it. A system can be defined by deriving a class from EntityProcessor.

Code
Component

System

Additional Note

[DataContract(nameof(MyComponent))]
[DefaultEntityComponentProcessor(typeof(MyProcessor))]
public class MyComponent : EntityComponent
{
 public int MyValue { get; set; }
}

public class MyProcessor : EntityProcessor<MyComponent>
{
 public override void Update(GameTime time)
 {
 foreach (var myComponent in ComponentDatas.Values)
 {
 Console.WriteLine($"myComponent with value {myComponent.MyValue}
at {time.Total.TotalSeconds}");
 }
 }
}

202 / 1211

An EntityComponent can currently not be drag-dropped onto an entity in Game Studio. It has to be
added by selecting an entity, and then clicking the Add component button
in the Property grid. Alternatively, this can also be done in code via entity.Add(entityComponent) .

Advanced Features
More Component Attributes
Display
By adding the Display attribute, a nicer name can be shown in Game Studio.

ComponentCategory
By default, your components will be listed in the category "Miscellaneous". By adding the
ComponentCategory attribute, a different category can be chosen. If the chosen name does not exist yet, it
will be added to the list in Game Studio.

ComponentOrder
By adding the ComponentOrder attribute, the order in which components are listed in Game Studio can be
changed.

Component Combinations
By passing the types of other components to the EntityProcessor constructor, it will only include entities
that also have those other components. For example, the following EntityProcessor is for MyComponent,
but will skip any entity that does not also have both TransformComponent and AnimationComponent on it.

[Display("My better name")]

[ComponentCategory("My own components")]

[ComponentOrder(2001)]

public class MyProcessor : EntityProcessor<MyComponent>
{
 public MyProcessor() : base(typeof(TransformComponent), typeof(AnimationComponent))
 {
 }
}

https://doc.stride3d.net/latest/en/api/Stride.Engine.Entity.html#Stride_Engine_Entity_Add_Stride_Engine_EntityComponent_
https://doc.stride3d.net/latest/en/api/Stride.Engine.Entity.html#Stride_Engine_Entity_Add_Stride_Engine_EntityComponent_
https://doc.stride3d.net/latest/en/api/Stride.Engine.Entity.html#Stride_Engine_Entity_Add_Stride_Engine_EntityComponent_

203 / 1211

Non-default Processors
Adding processors for a type of component via the attribute DefaultEntityComponentProcessor has been
explained above. However, as the name implies, this is for the default processor. Non-default processors
can also be added via

Separation of EntityComponent and Data
EntityProcessor<TComponent> is a shortcut for EntityProcessor<TComponent, TComponent>. By explicitly
using EntityProcessor<TComponent, TData> instead, a different type can be chosen for the actual data.
This way, the EntityComponent can e.g. have "heavier" startup data and references, while the data object
that needs to be processed every frame can be kept small. This will require overriding a method
GenerateComponentData, which produces a TData instance from a TComponent instance.

Overrides
EntityProcessor also provides several methods which can be overridden in order to react to certain
events. They are not overly complicated, so that their usage should be clear from their doc comments.

SceneSystem.SceneInstance.Processors.Add(entityProcessor);

204 / 1211

Manage entities

Overview
User usually want to manipulate Component contained in a specific entity, while engine wants to access
component by types (i.e. all Mesh Component while drawing, all animation components while updating
animations, etc...):

User will add component-based entities into an entity manager.

Engine or user registers entity processors that can process specific entities and/or components.

Entity Processor
To solve this problem, the concept of Entity Processor has been added. An Entity Processor will access
Entities that matches specific requirements (i.e. process all entities with MeshComponent) and process all
of them in a single update function. This allows for greater efficiency and cache-friendliness, as there is
no need to check every entity/components many times per frame.

WARNING

This documentation is under construction.


205 / 1211

This approach also solves many update order dependencies issues (just need to order the entity
processors updates properly).

Here is some examples of entity processors:

TransformProcessor: Compute transformation matrices from hierarchy and local transformation
stored in TransformComponent.

As a result, EntityManager can be used as a hierarchical scenegraph instead of a simple entity
list.

ModelTransformProcessor: Add Model to rendering.
LightProcessor: Collects and update lights, and transfer it to rendering system. It can hides
implementation details (deferred or forward rendering, etc...)

Entity System
Entity are grouped together in an EntityManager. It will also contains the list of entity processors. When
an entity is added or an entity components changes, it will ask entity processors if they should be
included.

EntityManager can be used to enumerate its Entities (ref:{Stride.Engine.Entity}). Note that children
of a given entities will also be in this list.

To manipulate entities as a scenegraph, refer to TransformComponent class.

// Add an entity:
var myEntity = new Entity();
engine.EntityManager.AddEntity(myEntity);

// Iterate through added entities:
foreach (var entity in engine.EntityManager.Entities)
{

Console.WriteLine(entity.Name);
}

206 / 1211

Flexible Processing
This document expects the reader to be familiar with ECS, please take a look at usage first.

Handling components through EntityProcessor may be too rigid in some cases, when the components
you're trying to process cannot share the same base implementation for example.

Stride.Engine.FlexibleProcessing.IComponent<TProcessor, TThis> provides similar features to
EntityProcessor while being more flexible on the component type, this document covers some of the
usage of this particular interface.

The IComponent interface requires to type parameters,

TProcessor which is your processor's type.
And TThis which is your component's type.

While that last type may seem redundant, it is required to ensure your processor and your implemented
type are compatible.

A summarised example satisfying those type constraint would look like so:

The main difference compared to EntityProcessor is that IComponent is not limited to concrete types,
your processor may operate on interfaces as well;

public class MyComponent : StartupScript, IComponent<MyComponent.MyProcessor, MyComponent>
{
 public class MyProcessor : IProcessor
 {
 public List<MyComponent> Components = new();

 public void SystemAdded(IServiceRegistry registryParam) { }
 public void SystemRemoved() { }

 public void OnComponentAdded(MyComponent item) => Components.Add(item);
 public void OnComponentRemoved(MyComponent item) => Components.Remove(item);
 }
}

// Here, declaring the interface, which will be the type received by the processor
public interface IInteractable : IComponent<IInteractable.InteractableProcessor,
IInteractable>
{
 void Interact();
 public class InteractableProcessor : IProcessor

207 / 1211

Updating Processors
Processors do not receive any updates by default, you have to implement the IUpdateProcessor or
IDrawProcessor interface to receive them:

 {
 // Process each IInteractable here
 // Omitted method implementation for brievety
 }
}

// Now any component implementing IInteractable will be processed by
the InteractableProcessor
public class Button : StartupScript, IInteractable
{
 public void Interact(){}
}
public class Character : SyncScript, IInteractable
{
 public void Interact(){}
 public override void Update(){}
}

public interface ISpecialTick : IComponent<ISpecialTick.Processor, ISpecialTick>
{
 void Tick();

 public class Processor : IProcessor, IUpdateProcessor
 {
 public List<ISpecialTick> Components = new();

 public void SystemAdded(IServiceRegistry registryParam) { }
 public void SystemRemoved() { }

 public void OnComponentAdded(ISpecialTick item) => Components.Add(item);
 public void OnComponentRemoved(ISpecialTick item) => Components.Remove(item);

 // The execution order of this Update, smaller values execute first compared to
other IComponent Processors
 public int Order => 0;

 public void Update(GameTime gameTime)
 {
 foreach (var comp in Components)
 comp.Tick();

208 / 1211

Performance
While it is more flexible, processing components as interfaces instead of concrete class may introduce
some overhead. If the system you're writing is performance critical you should look into strategies to
elide or reduce virtual calls in your hot path.

 }
 }
}

209 / 1211

File system

We recommend you use the static class VirtualFileSystem to access files across platforms. It offers all
basic operations such as reading, writing, copying, checking existence and deleting files.

Code example

Default mount points
Mount
point Description Writable Cloud Notes PC Android

data Application
data,
deployed
by package

✗ ✗ Output directory/data APK itself

binary Application
binaries,
deployed
by package

✗ ✗ Usually
the
same as
app_data
(except

Assembly directory Assembly directory

WARNING

This documentation is under construction.


NOTE

The path separator is / (Unix/Linux convention).


// Open a file through VirtualFileSystem
var gamesave1 = VirtualFileSystem.OpenStream("/roaming/gamesave001.dat",
VirtualFileMode.Open, VirtualFileAccess.Read);

// Alternatively, directly access the same file through its file system provider
(mount point)
var gamesave2 = VirtualFileSystem.ApplicationRoaming.OpenStream("gamesave001.dat",
VirtualFileMode.Open, VirtualFileAccess.Read);

210 / 1211

Mount
point Description Writable Cloud Notes PC Android

on
Android)

roaming User
specific
data
(roaming)

✓ ✓ Backup Output
directory/roaming,
%APPDATA%

$(Context.getFilesDir

local User
application
data

✓ ✓ Backup Output directory/local $(Context.getFilesDi

cache Application
cache

✓ ✗ DLC, etc.
Might
be
deleted
manually
by user
(restore,
clear
data,
etc...)

Output directory/cache,
with do-not-back-up
flags

$(Context.getFilesDir

tmp Application
temporary
data

✓ ✗ Might
be
deleted
without
notice
by OS

Output directory/temp,
%TEMP%/%APPNAME%

$(Context.getCacheD

211 / 1211

Build pipeline
This document describes the Build pipeline in Stride, its current implementation (and legacy), and the
work that should be done to improve it.

Terminology
An Asset is a design-time object containing information to generate Content that can be loaded at
runtime. For example, a Model asset contains the path to a source FBX file, and additional
information such as an offset for the pivot point of the model, a scale factor, a list of materials to
use for this model. A Sprite font asset contains a path to a source font, multiple parameters such as
the size, kerning, etc. and information describing in which form it should be compiled (such as pre-
rasterized, or using distance field...). Asset are serialized on disk using the YAML format, and are part
of the data that a team developing a game should be sharing on a source control system.

Content is the name given to compiled data (usually generated from Assets) that can be loaded at
runtime. This means that in term of format, Content is optimized for performance and size (using
binary serialization, and data structured in a way so that the runtime can consume it without re-
transforming it). Therefore Content is the platform-specific optimized version of your game data.

Design
Stride uses Content-addressable storage to store the data generated by the compilation. The main
concept is that the actual name of each generated file is the hash of the file. So if, after a change, the
resulting content built from the asset is different, then the file name will be different. An index map file
contains the mapping between the content URL and the actual hash of the corresponding file.
Parameters of each compilation commands are also hashed and stored in this database, so if a command
is ran again with the same parameters, the build engine can easily recover the hashes of the
corresponding generated files.

Build Engine
The build engine is the part of the infrastructure that transforms data from the assets into actual
content and save it to the database. It was originally designed to build content from input similar to a
makefile. (eg. "compile all files in MyModels/*.fbx into Stride models). It has then been changed to work
with individual assets when the asset layer has been implemented. Due to this legacy, this library is still
not perfectly suited or optimal to build assets in an efficient way (dependencies of build steps,
management of a queue for live-compiling in the Game Studio, etc.).

Builder
The Builder class is the entry point of the build engine. A Builder will spawn a given number of threads,
each one running a Microthread scheduler (see RunUntilEnd method).

212 / 1211

Build Steps
The Builder takes a root BuildStep as input. We currently have two types of BuildSteps:

A ListBuildStep contains a sequence of BuildStep (Formerly we had an additional parent class
called EnumerableBuildStep, but it has been merged into ListBuildStep). A ListBuildStep will
schedule all the build steps it contains at the same time, to be run in parallel. Formerly we had a
synchronization mechanism using a special WaitBuildStep but it has been removed. We now use
PrerequisiteSteps with LinkBuildSteps to manage dependencies.
A CommandBuildStep contains a single Command to run, which does actual work to compile asset.

TODO: Currently, when compiling a graph of build steps, we need to have all steps to compile in the
root ListBuildStep. More especially, if we have a ListBuildStep container in which we want to put a
step A that depends on a step B and C, we need to put A, B, C in the ListBuildStep container. This is
cumbersome and error-prone. What we would like to do is to rely only on the PrerequisiteSteps of
a given step to find what we have to compile. If we do so, we wouldn't need to return a
ListBuildStep in AssetCompilerResult, but just the final build step for the asset, the graph of
dependent build steps being described by recursive PrerequisiteSteps. The ListBuildStep container
could be removed. We would still need to have lists of build steps when we compile multiple asset
(eg. when compiling the full game), but it would be nothing that the build engine should be aware
of.

Commands
Most command inherits from IndexFileCommand, which automatically register the output of the command
into the command context.

Basically, at the beginning of the command (in the PreCommand method), a BuildTransaction object is
created. This transaction contains a subset of the database of objects that have been already compiled,
provided by the ICommandContext.GetOutputObjectsGroups(). In term of implementation, this method
returns all the objects that where written by prerequisite build steps, and all the objects that are already
written in any of the parent ListBuildSteps, recursively. The objects coming from the parent
ListBuildStep are a legacy of when we were using WaitBuildStep to synchronize the build steps. This
hopefully should be implemented differently, relying only on prerequisite (since no synchronization can
happen in the `ListBuildStep itself, everything is run in parallel).

TODO: Rewrite how OutputObjects are transfered from BuildSteps to other BuildSteps. Only the
output from prerequisite BuildStep should be transfered. A lot of legacy makes this code very
convoluted and hard to maintain.

The BuildTransaction created during this step is mounted as a Microthread-local database, which is
accessible only from the current microthread (which is basically the current command).

213 / 1211

At the end of the command (in the PostCommand method), every object that has been written in the
database by the command are extracted from the BuildTransaction and registered to the current
ICommandContext (which is how the ICommandContext can "flow" objects from one command to the other.

It's important to keep in mind that objects accessible in a given command (in the DoCommandOverride)
using a ContentManager are those provided during the PreCommand step, and therefore it is important that
dependencies between commands (what other commmands a command needs to be completed to
start) are properly set.

Compilers
Compilers are classes that generate a set of BuildSteps to compile a given Asset in a specific context.
This list could grow in the future if we have other needs, but the current different contexts are:

compiling the asset for the game
compiling the asset for the scene editor
compiling the asset to display in the preview
compiling the asset to generate a thumbnail

IAssetCompiler
This is the base interface for compiler. The entry point is the Prepare method, which takes an AssetItem
and returns a AssetCompilerResult, which is a mix of a LoggerResult and a ListBuildStep. Usually there
are two implementations per asset types, one to compile asset for the game and one to compile asset
for its thumbnails. Some asset types such as animations might have an additional implementation for the
preview.

Each implementation of IAssetCompiler must have the AssetCompilerAttribute attached to the class, in
order to be registered (compilers are registered via the AssetCompilerRegistry.

TODO: The AssetCompilerRegistry could be merged into the AssetRegistry to have a single location
where asset-related types and meta-information are registered.

Each compiler provides a set of methods to help discover the dependencies between assets and
compilers. They will be covered later in this document.

ICompilationContext

Not to be mistaken with CompilerContext and AssetCompilerContext.

Contexts of compilation are defined by types, which allow to use inheritance mechanism to fallback on a
default compiler when there is no specific compiler for a given context. Each compilation context type
must implement ICompilationContext. Currently we have:

214 / 1211

AssetCompilationContext is the context used when we compile an asset for the runtime (ie. the
game).
EditorGameCompilationContext is the context used when we compile an asset for the scene editor,
which is a specific runtime. Therefore, it inherits from AssetCompilationContext.
PreviewCompilationContext is the context used when we compile an asset for the preview, which is a
specific runtime. Therefore, it inherits from AssetCompilationContext.
ThumbnailCompilationContext is the context used when we compile an asset to generate a
thumbnail. Generally, for thumbnails, we compile one or several assets for the runtime, and use
additional steps to generate the thumbnail with the ThumbnailCompilationContext (see below).

TODO: Currently thumbnail compilation is in a poor state. In ThumbnailListCompiler.Compile, we first
generate the steps to compile the asset in PreviewCompilationContext, then generate the steps to
compile the asset in ThumbnailCompilationContext, and finally we like the first with the latter.
Dependencies from thumbnail compilers (which load a scene and take screenshots) to the runtime
compiler (which compile the asset) is not expressed at all. It just works now because in all current
cases, the PreviewCompilationContext does what we need for thumbnails (for example, the
AnimationAssetPreviewCompiler adds the preview model to the normal compilation of the animation,
which is needed for both preview and thumbnail).

Dependency managers
We currently have two mechanisms that handle dependencies.

TODO: Merge the AssetDependencyManager and the BuildDependencyManager together into a single
dependency manager object. There is a lot of redundancy between both, one rely on the other,
some code is duplicated. See XK-4862

AssetDependencyManager
The AssetDependencyManager was the first implementation of an mechanism to manage dependencies
between assets. It works independently of the build, which is one of the main issue it had and the reason
why we started to develop a new infrastructure.

It is based essentially on visiting assets with a DataVisitorBase to find references to other assets. There
are two ways of referencing an asset:

Having a property whose type is an implementation of IReference. More explicitely the only case we
have currently is AssetReference. This type contains an AssetId and a Location corresponding to the
referenced asset.
Having a property whose type correspond to a Content type, ie. a type registered as being the
compiled version of an asset type (for example, Texture is the Content type of TextureAsset).

215 / 1211

The problem of that design was that once all the references are collected, there is no way to know of the
referenced assets are actually consumed, which could be one of the three following way:

the referenced asset is not needed to compile this asset, but it's needed at runtime to use the
compiled content (eg. Models need Materials, who need Textures. But you can compile Models,
Materials and Textures independently).
the referenced asset needs to be compiled before this asset, and the compiler of this asset needs to
load the corresponding content generated from the referenced asset (eg. A prefab model, which
aggregates multiple models together, needs the compiled version of each model it's referencing to
be able to merge them).
the referenced asset is read when compiling this asset because it depends on some of its parameter,
but the referenced asset itself doesn't need to be compiled first (eg. Navigation Meshes need to
read the scene asset they are related to in order to gather static colliders it contains, but they don't
need to compile the scene itself).

BuildDependencyManager
The BuildDependencyManager has been introduced recently to solve the problems of the
AssetDependencyManager. It is currently not complete, and the ultimate goal is to merge it totally with the
AssetDependencyManager.

The approach is a bit different. Rather than extracting dependencies from the asset itself, we extract
them from the compilers of the assets, which are better suited to know what they exactly need to
compile the asset and what will be needed to load the asset at runtime.

But one asset type can have multiple compilers associated to it (for the game, for the thumbnail, for the
preview...). So the BuildDependencyManager works in the context of a specific compiler.

Currently there is one BuildDependencyManager for each type of compiler.

TODO: Have a single global instance of BuildDependencyManager that contains all types of
dependencies for all context of compilers. For example, we have thumbnail compilers that requires
game version of assets, which means that the BuildDependencyManager for thumbnails will also
contain a large part of the BuildDependencyManager to build the game. Merging everything into a
single graph would reduce redundancy and risk to trigger the same operation multiple times
simultaneously.

AssetDependenciesCompiler
The AssetDependenciesCompiler is the object that computes the dependencies with the
BuildDependencyManager, and then generates the build steps for a given asset, including the runtime
dependencies. It's the main entry point of compilation for the CompilerApp, the scene editor, and the
preview. Thumbnails also use it, via the ThumbnailListCompiler class.

216 / 1211

TODO: This class should be removed, and its content moved into the BuildDependencyManager class.
By doing so, it should be possible to make BuildAssetNode and BuildAssetLink internal - those
classes are just the data of the dependency graph, they should not be exposed publicly. To do that, a
method to retrieve the dependencies in a given context must be implemented in
BuildDependencyManager in order to fix the usage of BuildAssetNode in EditorContentLoader.

In the Game Studio
The Game Studio compiles assets in various versions all the time. It has some specific way of managing
database and content depending on the context.

Remark: the Game Studio never saves index file on the disk, it keeps the url -> hash mapping in memory,
always.

Databases
Before accessing content to load, a Microthread-local database must be mounted. Depending on the
context, it can be a database containing a scene and its dependencies (scene editor), the assets needed
to create a thumbnail, an asset to display in the preview...

For the scene editor, this is handled by the GameStudioDatabase class. Thumbnails and preview also
handle database mounting internally (in ThumbnailGenerator for example).

TODO: See if it could be possible/useful to wrap all database-mounting in the Game Studio into the
GameStudioDatabase class.

Builder service
All compilations that occur in the Game Studio is done through the GameStudioBuilderService. This class
creates an instance of Builder, a DynamicBuilder which allows to feed the Builder with build steps at any
time. Having a single builder for the whole Game Studio allows to control the number of threads and
concurrent tasks more easily.

The DynamicBuilder class simply creates a thread to run the Builder on, and set a special build step,
DynamicBuildStep, as root step of this builder. This step is permanently waiting for other child build step
to be posted, and execute them.

TODO: Currently the dynamic build step waits arbitratly with the CompleteOneBuildStep method
when more than 8 assets compiling. This is a poor design because if the 8 assets are for example
prefabs who contains a lot of models, materials, textures, it will block until all are done, although we
could complete the thumbnails of these models/materials/textures individually. Ideally, this await
should be removed, and a way to make sure thumbnails of assets which are compiled are created as
soon as possible should be implemented.

217 / 1211

The builder service uses AssetBuildUnits as unit of compilation. A build unit corresponds to a single
asset, and encapsulates the compiler and the generated build step of this asset.

EditorContentLoader
The scene editor needs a special behavior in term of asset loading. The main issue is that any type of
asset can be modified by the user (for example a texture), and then need to be reloaded. Stride use the
ContentManager to handle reference counting of loaded assets. With a few exception (Materials, maybe
Textures), it does not support hot-swapping an asset. Therefore, when an asset needs to be reloaded, we
actually need to unload and reload the first-referencer of this asset.

The first-referencer is the first asset referenced by an entity, that contains a way (in term of reference) to
the asset to reload. For example, in case of a texture, we will have to reload all models that use materials
that use the texture to reload.

This is done by the EditorContentLoader class. At initialization, this class collects all first-referencer assets
and build them. Each time an asset is built, it is then loaded into the scene editor game, and the
references (from the entity to the asset) are updated. This means that this class needs to track all first-
referencers on its own and update them. This is done specifically by the LoaderReferenceManager object.
The reference are collected from the GameEditorChangePropagator, an object that takes the responsibility
to push synchronization of changes between the assets and the game (for all properties, including non-
references). There is one instance of it per entity. When a property of an entity that contains a reference
to an asset (a first-referencer) is modified, the propagator will trigger the work to compile and update the
entity. In case of a referenced asset modified by the user, EditorContentLoader.AssetPropertiesChanged
takes the responsibility to gather, build, unload and reload what needs to be reloaded.

Additional Todos
TODO: GetInputFiles exists both in Command and in IAssetCompiler. It has the same signature in both
case, so it's returning information using ObjectUrl and UrlType in the compiler, where we are trying
to describe dependency. That signature should be changed, so it returns information using
BuildDependencyType and AssetCompilationContext, just like the GetInputTypes method. Also, the
method is passed to the command via the InputFilesGetter which is not very nice and has to be
done manually (super error-prone, we had multiple commands that were missing it!). An automated
way should be provided.

TODO: The current design of the build steps and list build steps is a tree. For this reason, same build
steps are often generated multiple times and appears in multiple trees. It could be possible to cache
and share the build step if the structure was a graph rather than a tree. Do to that, the Parent
property of build steps should be removed. The main difficulty is that the way output objects of
build steps flow between steps has to be rewritten.

218 / 1211

219 / 1211

Asset, introspection and prefab
NOTE: Please read the Terminology section of the Build Pipeline documentation first

Design notes
Assets contains various properties describing how a given Content should be generated. Some
constraints are defined by design:

All types that can be referenced directly or indirectly by an asset must be serializable. This means
that it should have the [DataContract] attribute, and the type of all its members must have it too.
Members that cannot or should not be serialized can have the [DataMemberIgnore] attributes
Other members can have additional metadata regarding serialization by using the [DataMember]
attributes. There is also a large list of other attributes that can be used to customize serialization and
presentation of those members.
Arrays are not properly supported
Any type of ordered collection is supported, but unordered collection (sets, bags) are not.
Dictionaries are supported as long as the type of the key is a primitive type (see below for the
definition of primitive type)
When an asset references another asset, the member or item shouldn't use the type of the target
asset, but the corresponding Content. For example, the MaterialAsset needs to reference a texture,
it will have a Texture member and not a TextureAsset.
It is possible to use the AssetReference type to represent a reference to any type of asset.
Nullable value types are not properly supported
An asset can reference multiple times the same objects through various members/items, but one of
the member/item must be the "real instance", and the others must be defined as "object
references", see below for more details.

Yaml metadata
When assets are serialized to/deserialized from Yaml files, dictionaries of metadata is created or
consumed in the process. There is one dictionary per type of metadata. The dictionary maps a property
path (using YamlAssetPath) to a value, and is stored in a instance of YamlAssetMetadata. These dictionary
are exchanged between the low-level Yaml serialization layer and the asset-aware layer via the
AssetItem.Metadata property. This property is not synchronized all the time, it is just consumed after
deserialization, to apply metadata to the asset, and generated just before serialization, to allow the
metadata to be consumed during serialization.

Overrides
The prefab and archetype system introduces the possibility to override properties of an asset. Some
nodes of the property tree of an asset might have a base. (usually all of them in case of archetype, and
some specific entities that are prefab instances in case of scene). How nodes are connected together is

220 / 1211

explained later on this documentation, but from a serialization point of view, any property that is
overridden will have associated yaml metadata. Then we usa a custom serializer backend,
AssetObjectSerializerBackend, that will append a star symbol * at the end of the property name in Yaml.

Collections
Collections need special handling to properly support override. An item of a collection that is inherited
from a base can be either modified (have another value) or deleted. Also, new items that are not present
in the base can have been added. This is problematic in the case of ordered collection such as List
because adding/deleting items changes the indices of item.

To solve all these issues, we introduce an object called CollectionItemIdentifiers. There is one instance
of this object per collection that supports override. This instance is created or retrieved using the
CollectionItemIdHelper. They are stored using ShadowObject, which maintain weak references from the
collection to the CollectionItemIdentifiers. This means that it is currently not possible to have
overridable items in collection that are struct.

A collection that can't or shouldn't have overridable items should have the
NonIdentifiableCollectionItemsAttribute.

The CollectionItemIdentifiers associates an item of the collection to a unique id. It also keep track of
deleted items, to be able to tell, when an item in an instance collection is missing comparing to the base
collection, if it's because it has been removed purposely from the instance collection, or if it's because it
has been added after the instance collection creation to the base collection.

Items, in the CollectionItemIdentifiers, are represented by their key (for dictionaries) or index (list).
This means that any collection operation (add, remove...) must call the proper method of this class to
properly update this collection. This is automatically done as long as the collection is updated through
Quantum (see below).

In term of inheritance and override, the item id is what connect a given item of the base to a given item
of the instance. This means that items can be re-ordered, and other items can be inserted, without
loosing or messing the connection between base and instances. Also, for dictionary, keys can be
renamed in the instance.

At serialization, the item id is written in front of each item (so collections are transformed to dictionaries
of [ItemId, TValue] and dictionary are transformed to dictionaries of [KeyWithId<TKey>, TValue], with
KeyWithId being equivalent to a Tuple). Here is an example of Yaml for a base collection and an instance
collection:

Base collection, with one id per item:

221 / 1211

Derived collection. The first item is overridden, the 4th is a new item (added), and the last one express
that the BaseClass entry has been deleted in the derived instance.

When two assets that are connected with a base relationship are loaded, it is then possible to reconcile
them:

any item missing in the derived collection is re-added (so the ~(Deleted) is need to purposely delete
items)
any item existing in the derived collection that doesn't exist in the base collection and doesn't have
the star * is removed
any item that exists in both collection but have a different value is overwritten with the value of the
base collection
overridden items (with the star *) are untouched

Quantum
In Stride, we use an introspection framework called Quantum.

Type descriptors
The first layer used to introspect object is in Stride.Core.Reflection. This assembly contains type
descriptors, which are basically objects abstracting the reflection infrastructure. It is currently using .NET
reflection (System.Reflection) but could later be implemented in a more efficient way (using Expression,
or IL code).

The TypeDescriptorFactory allows to retrieve introspection information on any type. ObjectDescriptors
contains descriptor for members which allow to access them. Collections, dictionaries and arrays are also
handled (NOTE: arrays are not fully supported in Quantum itself).

Strings:
 309e0b5643c5a94caa799a5ea1480617: Hello
 e09ec493d05e0446b75358f0e1c0fbdd: World
 9550f04dcee1d24fa8a30e41eea71a94: Example
 1da8adce3f0ce9449a9ed0e48cd32f20: BaseClass

Strings:
 309e0b5643c5a94caa799a5ea1480617*: Hi
 e09ec493d05e0446b75358f0e1c0fbdd: World
 9550f04dcee1d24fa8a30e41eea71a94: Example
 cfce75d38d66e24fae426d1f40aa4f8a*: Override
 1da8adce3f0ce9449a9ed0e48cd32f20: ~(Deleted)

222 / 1211

This assembly also provides an AttributeRegistry which allows to attach Attributes to any class or
member externally.

TODO: make sure all locations where we read Attributes are using the AttributeRegistry and not
the default .NET methods, so we properly support externally attached attributes.

Node graphs
In order to introspect object, we build graphs on top of each object, representing their members, and
referencing the graphs of other objects they reference through members or collection. The classes
handling theses graphs are in the Stride.Core.Quantum assembly.

Node containers
Nodes of the graphs are created into an instance of NodeContainer. Usually a single instance of
NodeContainer is enough, but we have some scenarios where we use multiple ones: for example each
instance of scene editor contains its own NodeContainer instance to build graphs of game-side objects,
which are different from asset-side (ie. UI-side) objects, have a different lifespan, and require different
metadata.

In the GameStudio, the NodeContainer class has two derivations: the AssetNodeContainer class, which
expands the primitive types to add Stride-specific types (such as Vector3, Matrix, Guid...). This class is
inherited to a SessionNodeContainer, which additionally allows plugin to register their own primitive
types and metadata.

Node builders
The NodeContainer contains an INodeBuilder member and provides a default implementation for it. So
far we didn't had the need to make a custom implementation, since the structure of the graphs
themselves is pretty stable.

However, the INodeBuilder interface presents an INodeFactory member which we override. This factory
allows to customize the nodes to be constructed.

The INodeBuilder also contains a list of types to be considered as primitive types, which means that even
if the type contains members or is a reference type, it will be, in term of graph, considered as a primitive
value and won't be expanded.

Nodes
There are 3 types of nodes in Quantum:

ObjectNode are node corresponding to an object that is a reference type. They can contain members
(properties, fields...), and items (collection).

223 / 1211

BoxedNode are a special case of ObjectNode that handles struct. They are able to write back the value
of the struct in other nodes that reference them
MemberNode are node corresponding to the members of an object. If the value of the member is a
class or a struct, the member will also contain a reference to the corresponding ObjectNode.
ObjectNode that are representing a collection of class/struct items will also have a collection of
reference to target nodes via the ItemReferences property.

Each node has some methods that allow to manipulate the value it's wrapping. Retrieve returns the
current value, Update changes it. Collections can be manipulated with the Add and Remove methods (and a
single item can be modified also with Update).

Events
Each node presents events that can be registered to:

PrepareChange and FinalizeChange are raised at the very beginning and the very end of a change of
the node value. These events are internal to Quantum.
MemberNodes have the ValueChanging and ValueChanged events that are raised when the value is being
modified.
ObjectNode have ItemChanging and ItemChanged events that are raised when the wrapped object is a
collection, and this collection is modified.

The arguments of these events all inherits from INodeChangeEventArgs, which allows to share the
handlers between collection changes and member changes.

Finally, Quantum nodes are specialized for assets, where the implementation of the support of override
and base is. These specialized classes also present OverrideChanging and OverrideChanged event to
handle changes in the override state.

AssetPropertyGraph
Concept
We use Quantum nodes mainly to represent and save the properties of an asset. The
AssetPropertyGraph is a container of all the nodes related to an asset, and describes certain rules such as
which node is an object reference, etc.

Asset references
When an asset needs to reference another asset, it should never contains a member that is of the type of
the referenced asset. Rather, the type of the member should be the type of the Content corresponding
to the referenced asset.

Node listener

224 / 1211

A node listener is an object that can listen to changes in a graph of node (rather than an individual
nodes). The base class is GraphNodeChangeListener, and this class must define a visitor that can visit the
graph of nodes to register, and stop at the boundaries of that graph.

Object references
In many scenarios of serialization (in YAML, but also in the property grid where objects are represented
by a tree rather than a graph), we need a way to represent multiple referencers of the same object such a
way that the object is actually expanded at one unique location, and shown/serialized as a reference to
all other locations. We introduce the concept of Object references to solve this issue.

By design, only objects implementing the IIdentifiable interface can be referenced from multiple
locations from the same root object. But right now they can only be referenced from the same unique
root object (usually an Asset). Later on we might support cross-asset references but this would require to
change how we serialize them.

There are two methods to implement to define if a node must be considered as an object reference or
not:

one for members of an object: IsMemberTargetObjectReference
one for items of a collection: IsTargetItemObjectReference

Node presenters
Node presenters are objects used to present the properties of an object to a view system, such as a
property grid. They transform a graph of nodes to a tree of nodes, and contains metadata to be
consumed by the view. The resulting tree is slightly different from the graph. When an object A contains
a member that is an object B that contains a property C, the graph will look like this:

ObjectNode A --(members)--> MemberNode B --(target)--> ObjectNode B --(members)--> MemberNode C

the corresponding tree of node presenters will be:

RootNodePresenter A --> MemberNodePresenter B --> MemberNodePresenter C

There is also a ItemNodePresenter for collection. On the example above, if B is instead a collection that
contains a single item C, the graph would be:

ObjectNode A --(members)--> MemberNode B --(target)--> ObjectNode B --(items)--> ObjectNode C

the corresponding tree of node presenters will be:

RootNodePresenter A --> ItemNodePresenter B --> MemberNodePresenter C

225 / 1211

Node presenter are constructed by a INodePresenterFactory in which INodePresenterUpdater can be
registered. A INodePresenterUpdater allows to attach metadata to nodes, and re-organize the hierarchy
in case it want to be presented differently from the actual structures (by inserting nodes to create
category, bypassing a class object to inline its members, etc.). INodePresenterUpdater have two methods
to update node:

void UpdateNode(INodePresenter node) is called on each node, after its children have been created.
But it's not guaranteed that its siblings, or the siblings of its parents, will be constructed.
void FinalizeTree(INodePresenter root) is called once, at the end of the creation of the tree, and
only on the root. Here it's guaranteed that every node is constructed, but you have to visit manually
the tree to find the node that you want to customize.

Node presenters listens to changes in the graph node they are wrapping. In case of an update, the
children of the modified node are discarded and reconstructed. UpdateNode is called again on all new
children, and FinalizeTree is also called again at the end on the root of the tree. Therefore, you have to
be aware that an updater can run multiple time on the same nodes/trees.

Metadata can be attached to node presenters via the NodePresenterBase.AttachedProperties property
containers. These metadata are exposed to the view models as described in the section below.

Commands can also be attached to node presenters. A command does special actions on a node, in
order to update it. Node presenter commands implements the INodePresenterCommand interface. A
command is divided in three steps, in order to handle multi-selection:

PreExecute and PostExecute are run only once, for a selection of similar node presenters, before and
after Execute respectively.
Execute is run once per selected node presenter.

Node view models
The view models are created on top of node presenters. Each node presenter has a corresponding
NodeViewModel. In case of multi-selection, a NodeViewModel can actually wrap a collection of node
presenters, rather than a single one.

Metadata (ie. attached properties) are also exposed from the node presenter to the view via the view
model, assuming they are common to all wrapped node presenter, if not, it is possible to add a
PropertyCombinerMetadata to the property key to define the rule to combine the metadata. The default
behavior for combining is to set the value to DifferentValues (a special object representing different
values) if the values are not equals.

Commands are also exposed. They are added to the view model, combined depending on their
CombineMode property. They are transformed into WPF commands by being wrapped into a
NodePresenterCommandWrapper.

226 / 1211

All members, attached properties, and commands of node view models are exposed as dynamic
properties, and can therefore be used in databinding.

All node view models are contained in an instance of GraphViewModel. A GraphViewModelService is passed
in this object that acts as a registry for the node presenter commands and updaters that are available
during the construction of the tree.

Template selector
In order to be presented to the property grid, a proper template must be selected for each
NodeViewModel. The TemplateProviderSelector object picks the proper template by finding the first
registered one that accept the given node. Templates are defined in various XAML resource dictionaries,
the base one being DefaultPropertyTemplateProviders.xaml. There is a priority mechanism that uses an
OverrideRule enum with four values: All, Most, Some, None. One template can also explicitly override the
other with the OverriddenProviderNames collection. The algorithm that picks the best match is in the
CompareTo method of TemplateProviderBase.

There is actually 3 levels of templates for each property. PropertyHeader and PropertyFooter represent
the section above and the section below the expander that contains the children properties. In the
default implementation (DefaultPropertyHeaderTemplate and most of its specializations), the header
presents the left part of the property (the name, sometimes a checkbox...), and use the third template
category, PropertyEditor, for the right side of the property grid.

Bases
The base-derived concept and the override are stored in specialized Quantum nodes that implements
IAssetNode. Properties (as well are items of collections) are automatically overridden when
Update/Add/Remove methods are called. Some methods are also provided to manually interact with
overrides, but it should not be used directly by users of Quantum.

Node linker
GraphNodeLinker is an object that link a given node to another node. It has two main usages: it links
objects that are game-side in the scene editor to their counterpart asset-side, and they also link a node
to its base if it has one.

The AssetToBaseNodeLinker is used to do that. It is invoked at initialization, as well as each time a
property changes. It has a FindTarget method and FindTargetReference, which basically resolve, when
visiting the derived graph, which equivalent node of the base graph corresponds to it.

This linker is run from the AssetPropertyGraph that can then call SetBaseNode to actually link the nodes
together.

Reconciliation with base

227 / 1211

Each time a change occurs in an asset, all nodes that have the modified nodes as base will call
ReconcileWithBase. This method visits the graph, starting from the modified properties, and "reconcile"
the change. The method is a bit long but well commented. The principle is, for each node, to detect first
if something should be reconciled, and if yes, find the proper value (either cloning the value from the
base, or find a corresponding existing object in the derived) and set it.

ReconcileWithBase is also called at initialization to make sure that any desynchronization that could
happen offline is fixed.

Future
Undo/redo
The undo/redo system currently records only the change on the modified object, and rely on
ReconcileWithBase to undo/redo the changes on the derived object. This is not an ideal design because
there are a lot of consideration to take, and a lot of special cases.

What we would like to do is:

record everything that changes, both in derived and in base nodes
disbranch totally automatic propagation during an undo/redo

This design was not possible initially, and I'm not sure it is possible to do now - it's possible to hit a
blocker when implementing it, or that it requires a lot of refactoring here and there before being doable.

Dynamic nodes
Currently we still expose the real asset object in AssetViewModel, which it should never, in the editor, be
modified out of Quantum node. Also, manipulating Quantum node is quite difficult sometimes due to
indirection with target nodes, and access to members.

Ideally, we would like to use the DynamicNode objects (currently broken) to manipulate quantum nodes:

If this is done properly, AssetViewModel.Asset could be turned private, and AssetViewModel could just
expose the root dynamic node, which would allow to seemlessly manipulate the asset through a dynamic

var partsNode = RootNode[nameof(AssetCompositeHierarchy<TAssetPartDesign,
TAssetPart>.Hierarchy)].Target[nameof(AssetCompositeHierarchyData<IAssetPartDesign<IIdentifi
able>, IIdentifiable>.Parts)].Target;
partsNode.Add(newPart);

dynamic root = DynamicNode.Get(RootNode);
root.Hierarchy.Parts.Add(newPart)

228 / 1211

object.

229 / 1211

Files and folders
This section explains Stride's files and folders and the best way to organize them in development.

In this section
Project structure
Cached files
Version control
Distribute a game

230 / 1211

Project structure
Stride saves your projects as Visual Studio solution files . You can open the projects with Stride Game
Studio or any IDE such as Visual Studio.

Stride organizes project files into packages. Each package comprises several folders and an *.sdpkg file
which describes the package.

A project can contain one package or several. You can share packages between projects.

Package folder structure

Assets contains the asset files which represent elements in your game.

Bin contains the compiled binaries and data. Stride creates the folder when you build the project,
with a subdirectory for each platform.

MyGame.Game contains the source code of your game as a cross-platform Visual Studio project
(.csproj). You can add multiple projects to the same game.

MyGame.Platform contains additional code for the platforms your project supports. Game Studio
creates folders for each platform (eg MyPackage.Windows, MyPackage.Linux, etc). These folders are
usually small, and only contain the entry point of the program.

obj contains cached files. Game Studio creates this folder when you build your project.

Resources is a suggested location for files such as images and audio files used by your assets.

Recommended project structure
For advice about the best way to organize your project, see the Version control page.

See also
Version control
Distribute a game

https://msdn.microsoft.com/en-us/library/bb165951.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/bb165951.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/bb165951.aspx?f=255&MSPPError=-2147217396

231 / 1211

232 / 1211

Cached files
When you build your project, Stride caches the assets and code in folders inside the project.

You might want to clean the cache if:

the cache is taking up too much space on disk

assets don't update in-game after you edit or delete them

Clean the cache from Visual Studio
1. To clean the code cache, under Build, select Clean Solution.

2. If you have the Stride Visual Studio extension installed, you can also clean the asset cache. Using VS
2022: To do this, under Extensions > Stride, select Clean intermediate assets for Solution.

3. Rebuild the project to rebuild the cache from scratch.

Clean the cache manually
If cleaning the cache from Visual Studio doesn't work, try deleting the files manually.

1. Delete the following folders:

233 / 1211

the binary cache: ~/MyGame/MyGame/Bin

the asset cache: ~/MyGame/MyGame/Cache

the obj folders in the platform folders for your game (eg ~/MyGame.iOS/obj)
2. If you're developing for iOS, on your Mac, also delete:
~/Library/Caches/Xamarin/mtbs/builds/MyGame

3. Rebuild the project to rebuild the cache from scratch.

Clear the Game Studio caches
In addition to the caches Stride creates for your project, Game Studio keeps caches for the editor.

Asset cache
To speed up asset loading in the editor, Game Studio saves a cache of asset references. It contains data
about every asset ever loaded in every project. This means it can grow very large over time.

By default, the folder is in: %temp%/Stride

To clean the cache, delete the folder and run Game Studio again.

Settings cache

TIP

To check or change where Game Studio saves the cache, see Edit > Settings > Environment >
Build cache directory.



234 / 1211

Game Studio saves editor information (such as window positions and recently-opened projects) in:
%AppData%/Stride

Game Studio also saves information about open tabs and the editor camera position in the .sdpkg.user
file in the project folder (eg ~/MyGame/MyGame/MyGame.sdpkg.user).

These files are small, but you might want to delete them if you get Game Studio into a bad state.
Deleting them doesn't affect anything in your project.

After you delete cache files, when you start Game Studio, it builds a new cache using the default settings.

See also
Project structure
Version control

TIP

You can also reset the Game Studio layout without clearing the cache in Edit > Settings >
Interface > Reset Game Studio layout.



235 / 1211

Organize your files in version control
We recommend you use a version control system such as Git, SVN, or Perforce Helix to save a history of
changes to your project.

How you organize and share your files is up to you, but there are some things to keep in mind.

Files you shouldn't add to version control
Bin and obj folders
We don't recommend you add the Bin or obj folders to version control. This is because:

Game Studio builds these folders every time you run the game, so you don't need to keep a history
of them.
You can't see if they match the source files they were generated from in a given commit.
They take up space and slow down version control synchronization.

Visual Studio also puts .obj folders inside each code folder. For the same reasons, we don't recommend
you add these to version control.

Resource files
Resource files are files imported into Game Studio and used by assets. They include image files (eg .png,
.jpg), audio files (eg .mp3, .wav), and models (eg .fbx). We recommend you save these files in the
Resources folder in your project folder.

We don't recommend you save resource files in the Assets folder. You might be used to organizing files
this way if you use Unity®, as Unity® requires resource files and asset files to be in the same folder.
Stride doesn't require this, and doing so has downsides.

For example, imagine an artist has edited 10GB of textures and committed them to source control. At the
same time, a designer needs to edit an asset quickly. To do this, the designer gets the latest version of
the asset from source control. However, because the assets and resource files are in the same folder, the
designer is forced to get the 10gb of files at the same time. If the files are in a separate folder, however,
the designer only has to get the folder they need. Additionally, as asset files are much smaller than
resource files, it's much faster to navigate the asset history in a dedicated asset folder.

Content creation files
Content creation files are created with external content creation tools, such as .psd files (Photoshop) or
.max files (3D Studio Max).

We don't recommend you save content creation files in your project folder. This is because the files are
often large and aren't used in the project directly. Instead, we recommend you save the files in a

236 / 1211

different version control repository - or, if your version control system supports partial checkouts (such
as SVN or Perforce), a different root folder. This means team members only get the files they need.

Suggested directory structure
Following these suggestions, an example folder structure might look like this:

You could even create separate folders for different kinds of content creation file:

Example
Imagine a team with two programmers, two 2D artists, and two 3D artists.

The programmers check out the MyGame project folder containing code, assets, and resources.
The 2D artists check out the game project and the PhotoshopProjects folder containing .psd files.

- MyGame
 - Assets
 - texture.sdtex
 - Bin
 - MyGame.Game
 - MyGame.Platform
 - obj
 - Resources
 - texture.png
- ContentCreationFiles
 - texture.psd

- MyGame
 - Assets
 - texture.sdtex
 - model.sdtex
 - Bin
 - MyGame.Game
 - MyGame.Platform
 - obj
 - Resources
 - texture.png
 - model.fbx
- PhotoshopProjects
 - texture.psd
- MayaProjects
 - model.mb

237 / 1211

The 3D artists check out the game project and the MayaProjects folder containing .mb (Maya project)
files.

Now imagine one of the 2D artists changes several .psd files and commits 2GB of changes to version
control. Because only the 2D artists have the PhotoshopProjects folder checked out, only the other 2D
artist gets this change. The other team members don't need it. This is an efficient way to share files
across projects.

See also
Project structure
Distribute a game

238 / 1211

Distribute a game
When you're ready to publish your game, create a release build from Visual Studio, then distribute it.

1. Create a release build
1. If you've built your game in Release mode before, in your project folder (eg

MyGame/Bin/MyPlatform/Release/), delete the Data folder. This folder might contain unnecessary
files, such as old versions of assets, so it's simplest to build it again from scratch.

2. Open your project in Game Studio.

3. In the toolbar, click the drop-down menu and select Visual Studio.

Your project opens in Visual Studio.

4. In Visual Studio, from the Solution Explorer right click your Windows project and select Publish

239 / 1211

5. Select the Target Folder in the publish window.

6. Select the Specified target Folder again.

7. Confirm the output folder and Click Finish.

8. You should now see the Publish view where you can manage the project export settings.

9. Finally you can click publish and see your project in the output folder you selected at step 6

Optionally you can also include the .NET runtime in your exported game to reduce a dependancy on
the user.

Select Show all settings -> Deployment mode -> Self-contained -> Save

240 / 1211

10. Under Build, select Publish Selection and click the Publish button.

Visual Studio creates a release build in your selected output folder.

To build using terminal instead of Visual Studio
1. Ensure the relevant .NET SDK is installed (Stride 4.2 is on .NET 8)

2. Open the folder of your project where the *.Windows.csproj file sits.

NOTE

You can only build for platforms you've added to your Stride project. For instructions about
how to do this, see Add or remove a platform.

To build for Android or iOS, you need Xamarin, which is included with Visual Studio licenses.
For instructions about how to install Xamarin with Visual Studio 2017, see this MSDN page .



TIP

You might want to rename the Release folder to something more descriptive (such as the title of
your game).



https://docs.microsoft.com/en-us/visualstudio/cross-platform/setup-and-install
https://docs.microsoft.com/en-us/visualstudio/cross-platform/setup-and-install
https://docs.microsoft.com/en-us/visualstudio/cross-platform/setup-and-install

241 / 1211

3. Type cmd in the search bar to open the folder easily in terminal.

4. Finally publish with the command

or the below to include the .NET runtime with your game

You can also append --output <YOUR_EXPORT_FOLDER> to specify where to export to.

dotnet publish

dotnet publish -r win-x64 --self-contained true -- framework net8.0-windows

242 / 1211

2. Delete unnecessary files
In the release folder in your project bin folder (eg MyGame/Bin/MyPlatform/Release), you can delete the
following unnecessary files:

.pdb files (debug information)

.xml files (API documentation)
files that contain vshost in their filenames (eg MyGame5.vshost.exe and
MyGame5.vshost.exe.manifest)
folders other than the x64, x86, or data folders
other unnecessary files, such as custom configuration files (ie files not created with Stride)

3. Distribute your game
After you create a release build, how you distribute it is up to you.

To run games made with Stride on Windows, users need:

.NET 8 Runtime (Unless you published with self-contained)
DirectX11 (included with Windows 10 and later), OpenGL, or Vulkan
Visual C++ 2015 runtimes (x86 and/or x64, depending on what you set in your project properties in
Visual Studio)

See also
Add or remove a platform
Version control
Project structure
Microsoft documentation

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-publish

243 / 1211

Game Studio
Beginner

Game Studio is the central tool for game and application production in Stride. In Game Studio, you can:

create and arrange scenes
import assets, modify their parameters and see changes in real time in the preview window
organize assets by folder, attach tags and get notifications from modified assets on the disk
build a game executable and run it directly

Game Studio is also integrated with your Visual Studio projects, so you can seamlessly sync and switch
between them.

Interface

The asset editor (1) is used to edit assets and scenes. Some asset types, such as scenes, have dedicated
editors where you can make complex changes to the asset. To open a dedicated editor (when available),
double-click the asset or right-click it and select Edit asset.

The Property Grid (2) displays the properties of the asset or entity you select. You can edit the
properties here.

The Solution Explorer (3) displays the hierarchy of the elements of your project, such as assets, code
files, packages and dependencies. You can create folders and objects, rename them, and move them.

244 / 1211

The Asset View (4) displays the project assets. You can create new assets using the New Asset button or
by dragging and dropping resource files into the Asset View. You can also drag and drop assets from the
Asset View to the different editors or the Property Grid to Create an instance of the asset or add a
reference to it. By default, the Asset View is in the bottom center.

The Asset Preview tab (5) displays a preview of the selected asset. The preview changes based on the
type of the asset you have selected. For example, you can play animations and sounds. This is a quick
way to check changes to an asset when editing it in the Property Grid. By default, the Asset Preview is in
the bottom right.

You can show and hide different parts of the Game Studio in the View menu. You can also resize and
move parts of the UI.

In this section
Scenes

Create a scene
Navigate in the Scene Editor
Manage scenes
Load scenes
Add entities
Manage entities

Assets
Create assets
Use assets
Archetypes
Game settings

Prefabs
Create a prefab
Use prefabs
Edit prefabs
Nested prefabs
Override prefab properties

World units

245 / 1211

Scenes
Beginner Level designer

Scenes are the levels in your game. A scene is composed of entities, the objects in your project.

The screenshot below shows a scene with a knight, a light, a background, and a camera entity:

Scenes are a type of asset. As they are complex assets, they have a dedicated editor, the Scene Editor.

In this section
Create and open a scene
Navigate in the Scene Editor
Manage scenes
Load scenes
Add entities
Manage entities

246 / 1211

Create and open a scene
Beginner Level Designer

When you create a new project, Game Studio creates an initial scene and populates it with basic entities
such as a light, a camera, and a skybox.

You can create scenes like any other asset. As they are complex assets, they have a dedicated editor, the
Scene Editor.

Create a scene
1. In the Asset View (by default in the bottom pane), click Add asset and select Scenes.

2. Select the appropriate scene template.

Template Result

Empty scene An empty scene with no entities or preconfigured rendering pipeline

Scene with HDR pipeline A scene containing basic entities and preconfigured for HDR rendering

Scene with LDR pipeline A scene containing basic entities and preconfigured for LDR rendering

247 / 1211

Open a scene in the Scene Editor
In the Asset View:

double-click the scene asset, or
right-click the asset and select Edit asset, or
select the asset and type Ctrl + Enter

Use the Scene Editor

The Scene Editor tabs (A) display the open scenes. You can switch between open scenes using the tabs.

TIP

You can have several scenes open simultaneously.


248 / 1211

The Entity Tree (B) shows the hierarchy of the entities included in the scene. The same entity hierarchy is
applied at runtime. You can use the Entity Tree to browse, select, rename, and reorganize your entities.

You can use the tool bar (C) to modify entities and change the Scene Editor display.

The main window (D) shows a simplified representation of your scene, with your entities positioned
inside it. For entities that have no shape (E), Game Studio represents them with 2D gizmos; for example,
cameras are represented with camera icons.

See also
Navigate in the Scene Editor
Manage scenes
Load scenes
Add entities
Manage entities

249 / 1211

Navigate in the Scene Editor
Beginner Level designer

You can move around the scene and change the perspective of the editor camera. The XYZ axes in the
bottom left show your orientation in 3D space.

Move around in the scene
There are several ways to move the editor camera around the Scene Editor.

Fly

Hold the right mouse button and move the mouse to change the camera direction. Hold the right
mouse button and use the WASD keys to move. This is similar to the controls of many action games.

Pan
Hold the right mouse button and the center mouse button and move the mouse.

Dolly

TIP

Holding the Shift key speeds up movement.


0:00

250 / 1211

To dolly (move the camera forward and backward), use the mouse wheel.

Orbit
Hold Alt and the left mouse button and move the mouse.

The point of rotation is always the center of the screen. To adjust the distance to the center, use the
mouse wheel.

0:00

251 / 1211

Focus on an entity

0:00

252 / 1211

After you select an entity, press the F key. This zooms in on the entity and centers it in the camera editor.

You can also focus by clicking the magnifying glass icon next to the entity in the Entity Tree.

Controls
Action Control

Move Arrow keys + right mouse button

WASDQE keys + right mouse button

Look around Hold right mouse button + move mouse

Dolly Middle mouse button + right mouse button + move mouse

Orbit Alt key + left mouse button

Zoom Mouse wheel

Alt + Right mouse button + move mouse

0:00

TIP

Focusing and then orbiting with Alt + left mouse button is useful for inspecting entities.


253 / 1211

Action Control

Pan Middle mouse button + move mouse

Focus F (with entity selected)

Change camera editor perspective
You can change the camera editor perspective using the view camera gizmo in the top-right of the
Scene Editor.

TIP

You can change the scene navigator controls in Edit > Settings under Scene Editor > Key
bindings.



254 / 1211

Snap camera to position
To change the angle of the editor camera, click the corresponding face, edge, or corner of the view
camera gizmo.

Click Camera position

Face Faces the selected face

Edge Faces the two adjacent faces at a 45° angle

Corner Faces the three adjacent faces at a 45° angle

Camera options

To display the Scene Editor camera options, click the camera icon in the top-right of the Scene Editor.

0:00

NOTE

This page explains how to use the Scene Editor camera. For information about how to use cameras
in your game, see Graphics — Cameras.



255 / 1211

Perspective and orthographic views
Perspective view is a "real-world" perspective of the objects in your scene. In this view, objects close to
the camera appear larger, and lines of identical lengths appear different due to foreshortening, as in
reality.

In orthographic view, objects are always the same size, no matter how far their distance from the
camera. Parallel lines never touch, and there's no vanishing point. It's easy to tell if objects are lined up
exactly in orthographic view.

256 / 1211

You can also switch between perspective and orthographic views by clicking the view camera gizmo as
it faces you.

Field of view
You can change the camera field of view. This changes the camera frustum, and has the effect of
zooming in and out of the scene. At high settings (90 and above), the field of view creates stretched
"fish-eye lens" views. The default setting is 45.

Near and far planes
The near and far planes determine where the camera's view begins and ends.

The near plane is the closest point the camera can see. The default setting is 0.1. Objects before this
point aren't drawn.

The far plane, also known as the draw distance, is the furthest point the camera can see. Objects
beyond this point aren't drawn. The default setting is 1000.

Game Studio renders the area between the near and far planes.

0:00

257 / 1211

Camera speed
The camera speed setting changes how quickly the camera moves in the editor.

See also
Create and open a scene
Load scenes
Add entities
Manage entities

258 / 1211

Manage scenes
Beginner Programmer Designer

Scenes and entities are arranged in a hierarchy, with the root scene at the top. This hierarchy is
displayed in the Entity Tree in the Scene Editor on the left.

The root scene contains all the scenes and entities in your game. It should contain common entities that
the other scenes and entities use, such as game logic scripts.

259 / 1211

Scenes are kept in different folders. This means that different people can work on them without
overwriting each other's work.

Set parent and child scenes
The relationship between parent and child scenes is set on the child, not the parent. In other words, child
scenes know about their parent scenes, but parent scenes don't know about their child scenes.

There are several ways to make a scene a child of another scene:

NOTE

When scenes load at runtime, their child scenes aren't automatically loaded too. You have to load
child scenes in code. For more information, see Load scenes.



260 / 1211

In the Scene Editor Entity Tree (left by default), drag the scene onto the scene you want to make its
parent.

Drag the scene from the Asset View (bottom by default) onto the scene you want to make its
parent in the Entity Tree.

In the scene Property Grid (on the right by default), next to Parent, specify the scene you want to
be the scene's parent.

Set the default scene
The default scene is the scene Stride loads at runtime. You can set this in the Game Settings asset.

1. In the Solution Explorer (the bottom-left pane by default), select the Assets folder.

2. In the Asset View (the bottom pane by default), select the GameSettings asset.

261 / 1211

3. In the Property Grid (the right-hand pane by default), next to Default Scene, click (Select an
asset).

The Select an asset window opens.

4. Select the default scene and click OK.

Stride loads this scene at runtime.

For more information about the Game Settings asset, see Game Settings.

Set the active scene
The active scene is the scene entities are added to when you drop them in the Scene Editor. Game
Studio adds the entities as children to the active scene.

To set the active scene, Entity Tree (left by default), right-click the scene and select active scene.

262 / 1211

The active scene has no effect on runtime.

Lock scenes and entities
You can lock scenes and entities so they can't be selected in the main window. This is useful when you
have lots of things in your scene. You can still select scenes and entities in the Entity Tree.

To lock or unlock a scene or entity, in the Entity Tree, click the padlock icon.

263 / 1211

Locked items have a gold locked padlock icon in the Entity Tree.

Load and unload scenes in the Scene Editor
You can load and unload scenes (with all their child scenes and entities) in the Scene Editor. Unloading
scenes in the editor is useful if, for example, you want to remove clutter from your editing view, or
improve editor performance.

The screenshots below show a root scene with child scenes loaded and unloaded. The root scene
contains entities that all the scenes use, including the skybox, scripts, asteroids, and player character. The
child scenes are sections of level.

To load or unload a scene, in the Scene Editor, in the Entity Tree on the left, next to the scene you want
to load or unload, click the eye icon.

Move a scene
As scenes aren't entities, they don't have transform components. However, you can move a scene using
its offset property.

TIP

When you lock a scene, all its child scenes and entities are locked too. To lock an entity along with
its child entities, hold Ctrl and click the padlock icon.



264 / 1211

To move a scene at runtime, use:

myScene.Offset = new Vector3(x, y, z);

Replace myScene with the name of the scene, and x,y,z with the XYZ coordinates you want to move the
scene to.

See also
Create and open a scene
Navigate in the Scene Editor
Load scenes
Add entities
Manage entities

265 / 1211

Load and unload scenes at runtime
Loading scenes
You can use UrlReference<Scene> properties on your scripts to assign Scene assets then load the via
code:

Alternatively you can load scenes by name. The following code loads three scenes and adds them as
children:

To include a scene in the build, in the Asset View, right-click the scene asset and select Include in
build as root asset.

public UrlReference<Scene> ChildSceneUrl { get; set; }

//...
var childScene = Content.Load(ChildSceneUrl);

parentScene.Children.Add(childScene);

var myChildScene0 = Content.Load<Scene>(url0);
var myChildScene1 = Content.Load<Scene>(url1);
var myChildScene2 = Content.Load<Scene>(url2);

myParentScene.Children.Add(myChildScene0);
myParentScene.Children.Add(myChildScene1);
myChildScene1.Add(myChildScene2);

NOTE

If you are not using UrlReference make sure all the scenes you want to load are included in the
build as root assets (indicated with blue icons in the Asset View).



266 / 1211

For more information about including assets in the build, see Manage assets.

For more information about scene hierarchies, see Manage scenes.

Unloading scenes
Before a scene is unloaded remove it from the scene hierarchy:

Once the scene asset is no longer required make sure to unload it:

Scene streaming script
Stride also includes a scene streaming script that uses a trigger to load scenes.

Add a scene streaming script
To add a scene streaming script, in the Asset View (bottom pane by default), click Add asset and select
Scripts > Scene streaming.

parentScene.Children.Remove(childScene);

//Alternatively
childScene.Parent = null;

Content.Unload(childScene);

NOTE

The scene streaming script is included as an example. It isn't always the most appropriate way to
load scenes. Feel free to modify it as much as you need.



267 / 1211

Game Studio adds a scene streaming script to your project assets.

Use the scene streaming script
1. Create a trigger entity. When this is triggered at runtime, Stride loads the scene. For more

information about creating triggers, see Triggers.

How the entity is triggered is defined in the collider properties. For more information, see Colliders.

2. Create an entity and position it where you want the scene to load.

3. With the entity selected, in the Property Grid (on the righy by default), click Add component and
select the scene streaming script.

268 / 1211

Game Studio adds the script to the entity as a component.

4. Under Url, specify the scene asset you want to load.

5. Under Trigger, specify the entity you created in step 1.

At runtime, when the trigger you created in step 1 is triggered, Stride loads the scene you specified in
step 4.

Scene streaming script properties

NOTE

If the scene streaming script doesn't appear in the list of components, reload the assemblies.


269 / 1211

Property Description

Pre Load
Depth

The point (in world units) at which the scene begins to load. For example, if 2.5, the
scene begins to load when the player is 2.5 units into the trigger area

Load Depth The point (in world units) at which the game freezes to finish loading the scene if it
hasn't loaded already. For example, if 5, the game freezes when the player is 5 units into
the trigger area

Priority The script priority. For more information, see Scheduling and priorities

See also
Colliders
Triggers
Create and open a scene
Navigate in the Scene Editor
Manage scenes
Add entities
Manage entities

270 / 1211

Add entities
Beginner Level Designer

After you create a scene, you need to add entities to your scene to build your level.

Create an entity from the Scene Editor
1. Above the Entity Tree, click the icon.

The Create menu opens:

Alternatively, right-click the Entity Tree or anywhere in the scene. If you create an entity in the
scene, Game Studio adds an entity in the location you click.

271 / 1211

2. Select Empty entity, or select an entity template.

Game Studio adds an entity to the active scene and displays it in the Entity Tree:

TIP

The active scene is the scene entities are added to. To set the active scene, Entity Tree (left by
default), right-click the scene and select active scene.



272 / 1211

The active scene has no effect on runtime.

Create an entity from an asset
You can add an entity by dragging and dropping an asset from the Asset View to the scene.

273 / 1211

Game Studio automatically creates an entity and adds the required component and reference based on
the asset you used. For example, if you drag a model asset to the scene, Game Studio creates an entity
with a model component with the model asset as its reference.

Set up a component
Components add special properties to entities that define their purpose in your project. For example,
you add lights to your scene by adding Light components to entities, add models by adding model
components, and so on. An entity with no component has no purpose.

To add a component to an entity:

1. Select the entity.

2. In the Property Grid, click Add component, and add component you want.

0:00

NOTE

You can only create entities by dragging assets with corresponding components. For example,
model components use model assets, so can be dragged; animations have no corresponding
component, so can't be dragged.



274 / 1211

Game Studio adds the component.

3. Set the properties of your new component.

Duplicate an entity
You can duplicate an entity along with all its properties. Duplicating an entity and then modifying the
properties of the new entity is often faster than creating an entity from scratch.

1. Select the entity you want to duplicate.

275 / 1211

2. Hold Ctrl and move the entity with the mouse.

The entity and all its properties are duplicated.

Alternatively, right-click the entity and select Duplicate selected entities.

0:00

276 / 1211

Rename an entity
1. Select the entity and press F2.
2. Type a name for the entity, and then press Enter.

See also
Manage scenes

277 / 1211

Manage entities
Beginner Level designer

To build the levels of your game, you need to translate (move), rotate, and resize entities in your scene.
These are known as transformations.

Transformation gizmos
You can select the transformation gizmos from Scene Editor toolbar.

Alternatively, press Space to switch between gizmos.

There are three types of transformation gizmo:

 The translation gizmo moves entities
 The rotation gizmo rotates entities
 The scale gizmo resizes entities

Game Studio displays the selected transformation gizmo at the origin of the entity.

278 / 1211

Translation gizmo
To select the translation gizmo, click the icon in the Scene Editor toolbar or press W.

The translation gizmo moves (translates) entities in the scene along the axis you select.

To move an entity along the X axis, drag it by the red arrow.
To move an entity along the Y axis (up and down), drag it by the green arrow.
To move the entity along the Z axis, drag it by the blue arrow.
To move the entity in free 3D, drag it by the central sphere.

Rotation gizmo
To select the rotation gizmo, click the icon in the Scene Editor toolbar or press E.

The rotation gizmo rotates entities in the scene along the axis you select.

To rotate an entity along the X axis (pitch), drag it by the red ring.
To rotate an entity along the Y axis (yaw), drag it by the green ring.
To rotate the entity along the Z axis (roll), drag it by the blue ring.

0:00

279 / 1211

Scale gizmo
To select the scale gizmo, click the icon in the Scene Editor toolbar or press R.

The scale gizmo resizes entities along a single axis ("stretching" or "squashing" them) or all axes (making
them larger or smaller without changing their proportions).

To resize an entity along the X axis, drag it by the red ring.
To resize an entity along the Y axis, drag it by the green ring.
To resize the entity along the Z axis, drag it by the blue ring.
To resize the entity in all axes, drag it by the central sphere.

0:00

280 / 1211

Change gizmo coordinate system
You can change how the gizmo coordinates work.

1. Select the entity whose gizmo coordinates you want to change.
2. In the Scene Editor toolbar, select the coordinate system you want.

Coordinate
system Function

World
coordinates

Uses world coordinates for transformations. The X, Y, and Z axes are the same for
every entity.

Local
coordinates

Uses local coordinates for transformations. The axes are oriented in the same
direction as the selected entity.

0:00

NOTE

The scale gizmo only works with the local coordinate system (see below). When you select the scale
gizmo, Game Studio switches to local coordinates.



281 / 1211

Coordinate
system Function

Camera
coordinates

Uses the current camera coordinates for transformations. The axes are oriented in
the same direction as the editor camera.

Snap transformations to grid
You can "snap" transformations to the grid. This means that the degree of transformation you apply to
entities is rounded to the closest multiple of the number you specify. For example, if you set the rotation
snap value to 10, entities rotate in multiples of 10 (0, 10, 20, 30, etc).

You can change the snap values for each gizmo in the scene view toolbar. Snap values apply to all
entities in the scene. For example:

Icon Function

Snap translation to multiple of 1

Snap rotation to multiple of 22.5

Snap scale to multiple of 1.1

See also
Create and open a scene
Navigate in the Scene Editor
Load scenes
Add entities

282 / 1211

Assets
Beginner

An asset is a representation of an element of your game inside Game Studio, such as a texture,
animation, or model.

Some assets require resource files. For example, texture assets need image files and audio assets need
audio files. Other types of assets (such as scenes, physics colliders, and game settings) don't use resource
files, and can be created entirely in Game Studio.

You can compile and optimize assets with a special compiler provided by Stride. Compiled assets are
packed together as reusable bundles.

You can:

create and browse assets in the Asset View

import existing assets, such as FBX files

283 / 1211

edit assets in the property editor

see a live preview in the Asset Preview

In this section
Create assets
Manage assets
Use assets

284 / 1211

Create assets
Beginner

There are two ways to create assets:

Use the Add asset button in the Asset View
Drag and drop resource files (such as image or audio files) to the Asset View tab

Use the Add asset button
1. In the Asset View, click

2. Select the type of asset you want to create.

Game Studio displays a list of asset templates. These are assets configured for a specific use.

3. Select the right template for your asset.

Game Studio adds the asset to the Asset View:

285 / 1211

Drag and drop resource files
You can drag compatible resource files directly into Game Studio to create assets from them. Game
Studio is compatible with common file formats.

Asset type Compatible resource file formats

Models, animations, skeletons .dae, .3ds, obj, .blend, .x, .md2, .md3, .dxf, .fbx

Sprites, textures, skyboxes .dds, .jpg, .jpeg, .png, .gif, .bmp, .tga, .psd, .tif, .tiff

Audio .wav, .mp3, .ogg, .aac, .aiff, .flac, .m4a, .wma, .mpc

To create an asset by dragging and dropping a resource file:

1. (Optional) If it isn't there already, move the resource file you want to use in the Resources folder of
your project. You don't have to do this, but it's good practice to keep resource files organized and
makes projects easier to share. For more information, see Project structure.

2. Drag the resource file from Explorer to the Asset View:

NOTE

Some assets, such as textures, require a resource file. When you add these assets, Game Studio
prompts you for a resource file.



NOTE

You can't use this method to create assets that don't use resource files (eg prefabs, materials, or
scenes).



286 / 1211

3. Select the kind of asset you want to create:

Game Studio adds the asset to the Asset View:

287 / 1211

Game Studio automatically imports all dependencies in the resource files and creates corresponding
assets. For example, you can add a model or animation resource file and Game Studio handles
everything else.

See also
Manage assets
Use assets

TIP

You can drag multiple files simultaneously. If you drop multiple files of different types at the same
time, Game Studio only adds only files that match your template selection. For example, if you add
an image file and a sound file, then select the audio asset template, only the sound file is added.



288 / 1211

Manage assets
Beginner

This page explains how to edit and manage your assets.

Edit assets in the Property Grid
You can edit most assets using the Property Grid. By default, this is in the top-right of Game Studio.

For example, to change the color of a material asset::

1. In the Asset View (in the bottom by default), select the material.

2. In the Property Grid, under Shading > Diffuse, next to Diffuse Map, click the colored box, which
displays the asset color (yellow in this example).

The color picker opens.

289 / 1211

3. Select a new color for the asset.

The Asset Preview (bottom right by default) displays asset changes in real time.

The Asset View indicates assets with unsaved changes with asterisks (*).

290 / 1211

Edit assets using dedicated editors
Game Studio has dedicated editors for the following asset types:

prefabs
scenes
sprite sheets
UI pages
UI libraries
scripts

For example, you edit scenes in the Scene Editor.

To open the dedicated editor for these types of asset:

double-click the asset, or

291 / 1211

right-click the asset and select Edit asset, or
select the asset and type Ctrl + Enter

Organize assets
We recommend you organize your assets into subfolders by type. This makes projects much easier to
manage, especially as they become large.

Assets are contained in the Assets folder of your project package. You can see the project in the
Solution Explorer (by default shown in the bottom left).

To create a subfolder, right-click the parent folder and select Create subfolder.
To move an asset, select one or more assets in the Asset View and drag and drop them to the
folder.

NOTE

When you move an asset, Game Studio updates all references to other assets inside the asset.


292 / 1211

Include assets in the build
By default, Stride doesn't include every asset when you build the game. This is because you might not
need every asset at runtime — for example, if the asset is incomplete.

Stride only includes assets which:

you've specifically marked for inclusion (root assets), or
are referenced by a root asset

Game Studio indicates whether an asset is included with a colored icon in the top-left of the asset
thumbnail.

Color Status

Blue The asset is a root asset and included in the build.

Green The asset is referenced by a root asset and included in the build.

TIP

To see the URL and type of an asset, move the mouse over the asset thumbnail.


293 / 1211

Color Status

Gray The asset isn't included in the build.

If you plan to load an asset at runtime using scripts, make it a root asset. To do this:

click the gray dot in the top-left of the thumbnail, or

right-click the asset and select Include in build as root asset

294 / 1211

Asset View options
To change the Asset View options, click the eye icon in the Asset View toolbar.

You can:

display assets in the selected folder only, the selected folder and subfolder
sort assets by name, type, unsaved changes, and modification date
switch between tile view (default) and grid view

295 / 1211

Filter assets
When browsing assets in the Asset View (in the bottom by default), you can filter by name, tag, type, or
a combination of all three.

The tag and name filters are "and" filters. For example, if you filter by tag:level and name:knight, the
Asset View only displays assets with the tag "level" and the name "knight".

Type filters are "or" filters. For example, if you filter by type:animation and type:texture, the Asset View
only displays assets that are animations or textures.

Add a filter
1. In the Asset View, type in the filter bar.

Game Studio displays a list of matching filters (name, type, or tag).

2. To filter by name, press Enter.

To filter by a tag or type, select tag or type filters in the drop-down list.

Game Studio applies the filter and shows matching assets in the Asset View.

You can add multiple filters. Name filters are green, tag filters are blue, and type filters are orange.

Toggle filters on and off
To toggle a filter on and off without removing it, click it. Disabled filters have darker colors.

Remove a filter
To remove a filter, click the X icon in the filter tag.

See also

296 / 1211

Create assets
Manage assets
Use assets

297 / 1211

Use assets
Beginner

There are four ways to use assets:

reference them in entity components
reference them in other assets
load them from code as content
load them from code as content using UrlReference

Reference assets in components
Many kinds of component use assets. For example, model components use model assets.

Components that use assets have asset docks in the property grid.

To add an asset to an entity component, drag the asset to the asset dock in the component properties
(in the property grid). You can drop assets in the text field or the empty thumbnail.

298 / 1211

Alternatively, click (Select an asset).

The Select an asset window opens.

After you add an asset to a component, the asset dock displays its name and a thumbnail image.

Reference assets in other assets
Assets can reference other assets. For example, a model asset might use material assets.

You can add asset references to assets the same way you add them to entity components (see above).

NOTE

The Select an asset window only displays assets of types expected by the component. For example,
if the component is an audio listener, the window only displays audio assets.



299 / 1211

Clear a reference
To clear a reference to an asset, in the asset dock, click (Clear reference).

Examine references
You can see the references in a selected asset in the References tab. By default, this is in the bottom
right of Game Studio.

The References tab displays the assets referenced by the selected asset.
The Referenced by tab displays the assets that reference the selected asset.

Load assets from code
When loading in assets at runtime we speak of "Content" rather than assets. The loaded content refers to
the asset and can then be used in your script.

TIP

If you can't see the References tab, make sure it's displayed under View > References.


// Load a model (replace URL with valid URL)
var model = Content.Load<Model>("AssetFolder/MyModel");

300 / 1211

Unload unneeded assets
When loading content from code, you should unload content when you don't need them any more. If
you don't, content stays in memory, wasting GPU.

To unload an asset, use Content.Unload(myAsset).

Load assets from code using UrlReference
UrlReference allows you to reference assets in your scripts the same way you would with normal assets
but they are loaded dynamically in code. Referencing an asset with a UrlReference causes the asset to be
included in the build.

You can reference assets in your scripts using properties/fields of type UrlReference or UrlReference<T>:

UrlReference can be used to reference any asset. This is most useful for the "Raw asset".
UrlReference<T> can be used to specify the desired type. i.e. UrlReference<Scene>. This gives Game
Studio a hint about what type of asset this UrlReference can be used for.

Examples
Loading a Scene

// Create a new entity to add to the scene
Entity entity = new Entity(position, "Entity Added by Script") { new ModelComponent { Model
= model } };

// Add a new entity to the scene
SceneSystem.SceneInstance.RootScene.Entities.Add(entity);

TIP

To find the asset URL, in Game Studio, move the mouse over the asset. Game Studio displays the
asset URL in a tooltip. URLs typically have the format AssetFolder/AssetName.



WARNING

When loading assets from scripts, make sure you:

include the asset in the build as described in Manage assets
make sure you add the script as a component to an entity in the scene



301 / 1211

Using UrlReference<Scene> to load the next scene.

Load data from a Raw asset JSON file
Use a Raw asset to store data in a JSON file and load using Newtonsoft.Json . To use Newtonsoft.Json
you also need to add the Newtonsoft.Json NuGet package to the project.

using System.Threading.Tasks;
//Include the Stride.Core.Serialization namespace to use UrlReference
using Stride.Core.Serialization;
using Stride.Engine;

namespace Examples
{
 public class UrlReferenceExample : AsyncScript
 {
 public UrlReference<Scene> NextSceneUrl { get; set; }

 public override async Task Execute()
 {
 //...
 }

 private async Task LoadNextScene()
 {
 //Dynamically load next scene asynchronously
 var nextScene = await Content.LoadAsync(NextSceneUrl);
 SceneSystem.SceneInstance.RootScene = nextScene;
 }
 }
}

//Include the Newtonsoft.Json namespace.
using Newtonsoft.Json;
using System.IO;
using System.Threading.Tasks;
//Include the Stride.Core.Serialization namespace to use UrlReference
using Stride.Core.Serialization;
using Stride.Engine;

namespace Examples
{
 public class UrlReferenceExample : AsyncScript
 {
 public UrlReference RawAssetUrl { get; set; }

https://www.newtonsoft.com/json
https://www.newtonsoft.com/json
https://www.newtonsoft.com/json

302 / 1211

See also
Create assets
Manage assets

 public override async Task Execute()
 {
 //...
 }

 private async Task<MyDataClass> LoadMyData()
 {
 //Open a StreamReader to read the content
 using (var stream = Content.OpenAsStream(RawAssetUrl))
 using (var streamReader = new StreamReader(stream))
 {
 //read the raw asset content
 string json = await streamReader.ReadToEndAsync();
 //Deserialize the JSON to your custom MyDataClass Type.
 return JsonConvert.DeserializeObject<MyDataClass>(json);
 }
 }
 }
}

303 / 1211

Archetypes
Intermediate Designer

An archetype is a master asset that controls the properties of assets you derive from it. Derived assets
are useful when you want to create a "remixed" version of an asset.

For example, imagine we have three sphere entities that share a material asset named Metal. The Metal
asset has properties including color, gloss, and so on.

If we change a property in the Metal asset, it applies to all three spheres. So, for example, if we change
the color property, all three spheres change color.

304 / 1211

Now imagine we want to change the color of only one sphere, but keep its other properties the same.
We could duplicate the material asset, change its color, and then apply the new asset to only one sphere.
But if we later want to change a different property across all the spheres, we have to modify both assets.
This is time-consuming and leaves room for mistakes.

The better approach is to derive a new asset from the archetype. The derived asset inherits properties
from the archetype and lets you override individual properties where you need them. For example, we
can derive the sphere's material asset and override its color. Then, if we change the gloss of the
archetype, the gloss of all three spheres changes.

You can derive an asset from an archetype, then in turn derive another asset from that derived asset. This
way you can create different layers of assets to keep your project organized:

Derive an asset from an archetype

Archetype
 Derived asset
 Derived asset

305 / 1211

In the Asset View, right-click the asset you want to derive an asset from and select Create derived
asset:

Game Studio adds a new derived asset to the project. This asset derives its properties from the
archetype asset.

The derived asset properties display the archetype asset under Archetype:

306 / 1211

You can right-click the archetype asset in the Property Grid and select Select the referenced asset to
quickly select the archetype asset:

Overridden properties
The Property Grid shows which properties of the derived asset differ from the archetype. Overridden
and unique properties are white, and inherited (identical) properties are gray.

In this screenshot, the Diffuse Map property is overridden. The other properties are inherited:

Reset a property to archetype value

307 / 1211

You can reset overridden or unique properties of a derived asset to the values in the archetype. To do
this, right-click the overridden property and select Reset to base value.

Clear an archetype
You can remove the link between the archetype and the derived asset. This means the derived asset no
longer inherits changes to the archetype; it becomes a completely independent.

To do this, in the Asset View, right-click the derived asset and select Clear archetype.

308 / 1211

See also
Assets
Prefabs

309 / 1211

Prefabs
Beginner Programmer Designer

A prefab is a "master" version of an object that you can reuse wherever you need. When you change the
prefab, every instance of the prefab changes too.

For example, imagine we make a simple tree object by assembling several entities. The entities contain
components such as models, materials, physics colliders, and so on, which in turn reference assets.

Now imagine we want to place several trees around the scene. We could simply duplicate the tree, but if
we want to modify it later, we have to edit each one individually. This is time-consuming and leaves
room for mistakes.

The better approach is to make the a tree prefab. Then we can place as many trees as we like, and when
we modify the prefab, every tree is instantly updated to match. This saves lots of time.

The most common use for prefabs is to create a small piece of your scene — like a car, NPC, or item of
furniture — and duplicate it as many times as you need. When you need to modify it — for example, if
you want to change its model — you can change it in one place and apply the change everywhere at
once.

You can make any entity or combination of entities of a prefab; they can be as simple or as complex as
you need. Prefabs can even contain other prefabs (known as nested prefabs).

310 / 1211

You can override specific properties in each prefab instance.

See also
Create a prefab
Use prefabs
Edit prefabs
Nested prefabs
Override prefab properties
Prefab models
Archetypes

311 / 1211

Create a prefab
Beginner Designer

In the Asset View, click Add asset and select Prefabs > Prefab.

Game Studio creates an empty prefab asset with the default name Prefab. Double-click the asset to open
the Prefab Editor and add entities.

Create a prefab from an entity
You can also create a prefab from an existing entity or entities.

1. In the Scene Editor, select the entity or entities you want to create a prefab from.

2. Right-click the selection and select Create prefab from selection:

TIP

Hold Ctrl to select multiple items.


312 / 1211

Game Studio creates a prefab asset from the entity or entities you selected. You can access the new
prefab from the Asset View.

313 / 1211

Create a prefab from an existing modified prefab
You can create new prefabs from modified prefabs. For example, you can instantiate a prefab, override
one of its properties, then use this modified prefab instance to create a new prefab.

See also
Prefab index
Use prefabs
Edit prefabs
Nested prefabs
Override prefab properties
Prefab models

NOTE

After you create a prefab from a selection, the original selection itself becomes a prefab.


314 / 1211

Use prefabs
Intermediate Programmer Designer

To instantiate a prefab, drag and drop it from the Asset View to the scene.

You can re-arrange entities in the prefab instance just like you do with other entities:

create child and parent entities
drag entities to add them to the prefab instance
drag entities from the prefab instance to make them independent entities

Manage prefab parent entities
By default, Game Studio creates an empty parent entity with the prefab's entities as its children. The
Entity Tree displays the prefab parent name in green next to the child entities.

This is useful because you can manage the prefab entities as a group and maintain their relative
positions. For example, imagine you have a car prefab assembled from several entities (a body, seats,
four wheels, etc). You want its component entities to stay grouped together as you move the car around
the scene. You can do this by moving the prefab parent entity.

If you don't want to create a parent entity with the prefab, hold Alt when you drop the prefab into the
scene. This is useful if you don't care about the relative positions of the prefab's entities and don't need
to move them together as a group. For example, imagine you have a prefab composed of several crate
entities arranged in a random fashion. It's not important that the crates maintain their relative position
after you place them; in fact, several identical stacks of "randomly" arranged crates looks artificial.

In this case, a parent entity is unnecessary. Instead, you can create several instances of the prefab, then
re-arrange their individual crate entities to create the effect you need.

315 / 1211

Relative positions maintained Relative positions ignored

Break link to prefab
After you add a prefab instance, you can break the link between the prefab and any of its child entities.
This means the child entity is no longer affected by changes you make to the prefab.

To do this, in the Scene Editor, right-click a child entity or entities and select Break link to prefab.

316 / 1211

Instantiate and add prefabs at runtime
To use prefabs at runtime, you need to instantiate them and then add them to the scene in code.

public class SpawnPrefabOnStart : StartupScript
{
 public Prefab MyPrefab { get; init; } // init here prevents other scripts from changing
this property

 public override void Start()
 {
 // A prefab may contain multiple entities
 var entities = MyPrefab.Instantiate();
 // Adding them to the scene this entity is on
 Entity.Scene.Entities.AddRange(entities);

317 / 1211

If you have a prefab named MyBulletPrefab in the root folder of your project, you can instantiate and add
it with the following code:

See also

 }
}

NOTE

Instantiate() by itself isn't enough to add a prefab instance to the scene. You also need to Add() or
AddRange() them to a scene . For example, if your prefab contains a model, the model is invisible
until you add the prefab instance. Likewise, if your prefab contains a script, the script won't work
until you add the prefab instance.



private void InstantiateBulletPrefab()
{
 // Note that "MyBulletPrefab" refers to the name and location of your prefab asset
 var myBulletPrefab = Content.Load<Prefab>("MyBulletPrefab");

 // Instantiate a prefab
 var instance = myBulletPrefab.Instantiate();
 var bullet = instance[0];

 // Change the X coordinate
 bullet.Transform.Position.X = 20.0f;

 // Adding just the bullet to the root scene
 SceneSystem.SceneInstance.RootScene.Entities.Add(bullet);
}

NOTE

At runtime, changes made to prefabs (myBulletPrefab in the above example) don't affect existing
prefab instances (bullet in the above example). Subsequent calls to Instantiate(Prefab) include
new changes. For example, imagine you have a tree prefab that contains a script to change the tree
color from green to red at runtime. The script won't affect existing instances of the prefab; it can
only change the color of future instances. This means prefabs instantiated after the code runs will
have the new color, but existing prefabs won't.



318 / 1211

Prefab index
Create a prefab
Edit prefabs
Nested prefabs
Override prefab properties
Prefab models

319 / 1211

Edit prefabs
Beginner Designer

You can edit prefabs in the Prefab Editor.

Open the Prefab Editor
To open the Prefab Editor from the Asset View:

Right-click the prefab you want to edit and select Edit asset:

Alternatively, double-click the prefab you want to edit:

To open the Prefab Editor from the Scene Editor, right-click any child of a prefab instance and select Open prefab in editor.

320 / 1211

Use the Prefab Editor

The Prefab Editor works similarly to the Scene Editor. For example, you can:

add and delete entities
use transformation gizmos to translate, rotate and scale entities
create parent-child relations between entities
add and modify entity components (scripts, materials, models, animations, etc)

For more information about managing entities, see Populate a scene.

321 / 1211

When you edit a prefab in the Prefab Editor, the changes are applied to the instances of the prefab in the scene in real time.

This video demonstrates what happens when we make changes to the prefab. The Scene Editor is on the left, and the Prefab Editor on the right:

322 / 1211

See also
Prefab index
Create a prefab
Use prefabs
Nested prefabs
Override prefab properties
Prefab models

323 / 1211

Nested prefabs
Beginner Designer

You can add prefabs to other prefabs. These are called nested prefabs.

For example, imagine you have a table prefab, a chair prefab, and a television prefab. Then you create a
living room prefab, which in turn contains the table, chair, and television prefabs. You might then create
a house prefab, which in turn contains the living room prefab, which in turn contains the table, chair, and
television prefabs. There's no limit to how many prefabs you can nest.

If you modify a nested prefab, all the dependent prefabs inherit the change automatically. For example, if
you change the shape of the table prefab, it changes in the living room and house prefabs too.

This video demonstrates an example of nested prefabs:

In the center pane, we already have a prefab named Lamp. In the right pane, we create a new prefab
named Boxes, comprising several box entities positioned together. We add the Boxes prefab to the
Lamp prefab. Changes made to the Boxes prefab are reflected in the Lamp prefab. These are in turn
reflected in the instances of the Lamp prefab in the scene (left pane).

See also
Prefab index
Create a prefab

324 / 1211

Use prefabs
Edit prefabs
Override prefab properties
Prefab models

325 / 1211

Override prefab properties
Intermediate Programmer Designer

If you modify a property in a prefab instance, the instance no longer inherits changes from the prefab for
that property. This is called an override.

In the following video, the Lamp prefab contains several box entities that belong to the Boxes parent.
When we delete the boxes from the instance, only that instance is affected. The prefab (shown on the
right) is unchanged.

If we add another box to the Boxes parent in the prefab, it doesn't appear in the overridden instance.
That's because we deleted the Boxes parent from that instance.

326 / 1211

View overridden properties
In the Property Grid, you can see which properties of the prefab instance differ from the base values in
the prefab.

Overridden and unique properties are white and bold:

Identical properties are gray:

327 / 1211

Reset a property to the prefab value
To reset an overridden property to the value in the parent prefab, right-click the property and click Reset
to base value.

Example
In this example, we have a prefab of a futuristic lamppost.

328 / 1211

The lamppost prefab is composed of three entities: a column, a pillar, and a spot light. These are listed in
the Entity Tree in the Prefab Editor.

Let's add five instances of the lamppost prefab to our scene.

329 / 1211

Now we'll modify one of the instances. In the Scene Editor, we select one spot light entity and, in the
spot light component properties, change its color to red. The Property Grid displays the modified Color
property in bold white. This means it's overriding the prefab property.

330 / 1211

We can see this in the scene view.

331 / 1211

Now let's see what happens when we go back to the Prefab Editor and change the color of the spot light
in the prefab to green.

Four of the lampposts now have a green light. The fifth is still red, as overridden properties don't change
when you modify the prefab.

332 / 1211

See also
Prefab index
Create a prefab
Use prefabs
Edit prefabs
Nested prefabs
Prefab models

333 / 1211

Prefab models
Beginner Designer

Prefab models convert prefabs to single drawcalls. This is useful for optimization, as Stride only renders
the final model instead of the separate entities in the prefab. When you make changes to the prefab,
Game Studio regenerates the prefab model.

Drawbacks
Prefab models don't inherit elements such as lights, colliders, or other components — they're only
models, and have to be used just like other models. For example, if you have a prefab comprising two
models with physics components, the prefab model creates a single model from the two models and
ignores the physics components. If you need to add components to a prefab model, add them to the
prefab model itself.

Prefab models don't expose materials. This means you can't view or edit them in the prefab model asset,
or in model components that use the prefab model.

Create a prefab model
1. In the Asset View, select Add asset > Model > Prefab model.

2. In the Property Grid (on the right by default), next to Prefab, click (Select asset).

334 / 1211

The Select an asset window opens.

3. Select the prefab you want to create a model from and click OK.

Game Studio adds the prefab model to the Asset View.

335 / 1211

See also
Create a prefab
Use prefabs
Edit prefabs
Nested prefabs
Override prefab properties
Archetypes

336 / 1211

Game settings
Beginner Programmer Designer

You can configure the global settings of your game in the Game Settings asset. By default, the Game
Settings asset is stored in your project's Assets folder.

Edit game settings
1. In the Solution Explorer (the bottom-left pane by default), select the Assets folder.

2. In the Asset View (the bottom pane by default), select the GameSettings asset.

3. In the Property Grid (the right-hand pane by default), edit the Game Settings properties.

337 / 1211

Default scene
You can have multiple scenes in your project. The default scene is the scene Stride loads at runtime.

To set the default scene:

1. In the GameSettings properties, next to Default Scene, click (Select an asset).

The Select an asset window opens.

2. Select the default scene and click OK.

For more information about scenes, see Manage scenes.

338 / 1211

Graphics compositor
You can have multiple graphics compositors in your project, but you can only use one at a time.

To set the graphics compositor:

1. In the GameSettings properties, next to Graphics compositor, click (Select an asset).

The Select an asset window opens.

2. Select the graphics compositor and click OK.

For more information, see Graphics compositor.

Audio

Property Description

HRTF
support

Enable HRTF audio. Note that only audio emitters with HRTF enabled will produce HRTF
audio. For more details, see HRTF.

For more details about audio, see Audio.

Editor
The editor settings control how Game Studio displays entities in the Scene Editor. These settings have
no effect on your game.

NOTE

How Game Studio displays entities is also affected by the Color space setting under Rendering.


339 / 1211

Property Description

Rendering mode How Game Studio renders thumbnails and Asset Previews

Animation
framerate

The framerate of animations shown in Game Studio. This doesn't affect
animation data.

Navigation

Dynamic navigation mesh properties
Property Description

Enabled Enable dynamic navigation on navigation components that have no assigned
navigation mesh

Included collision
groups

Set which collision groups dynamically-generated navigation meshes use. By
default, meshes use all collision groups

Build settings Advanced settings for dynamically-generated navigation meshes

For more details, see Dynamic navigation.

Navigation group properties
Property Description

Item The name of the group.

340 / 1211

Property Description

Height The height of the entities in this group. Entities can't enter areas with ceilings
lower than this value.

Maximum climb
height

The maximum height that entities in this group can climb.

Maximum slope The maximum incline (in degrees) that entities in this group can climb. Entities
can't go up or down slopes higher than this value.

Radius The larger this value, the larger the area of the navigation mesh entities use.
Entities can't pass through gaps of less than twice the radius.

For more details, see Navigation.

Physics

Property Description

Flags CollisionsOnly disables physics except for collisions. For example, if this is enabled,
objects aren't moved by gravity, but will still collide if you move them manually.
ContinuousCollisionDetection prevents fast-moving entities erroneously moving
through other entities. Note: other flags listed here currently aren't enabled in Stride.

Max sub
steps

The maximum number of simulations the physics engine can run in a frame to
compensate for slowdown.

Fixed time
step

The length in seconds of a physics simulation frame. The default is 0.016667 (one sixtieth
of a second).

Rendering

341 / 1211

Property Description

Default back
buffer width

This might be overridden depending on the ratio and/or resolution of the device.
On Windows, this is the window size. On Android/iOS, this is the off-screen target
resolution.

Default back
buffer height

This might be overridden depending on the ratio and/or resolution of the device.
On Windows, this is the window size. On Android/iOS, this is the off-screen target
resolution.

Adapt back buffer
to screen

Adapt the ratio of the back buffer to fit the screen ratio

Default graphics
profile

The graphics feature level required by the project

Color space The color space (gamma or linear) used for rendering. This affects the game at
runtime and how elements are displayed in Game Studio.

Display
orientation

The display orientation of the game (default, portrait, left landscape, or right
landscape).

Target graphics
platform

The target platform Stride builds the project for. If you set this to Default, Stride
chooses the most appropriate platform. For more information, see Set the
graphics platform.

TIP

To check which default platform your project uses, add a break point to your code (eg in a script),
run the project, and check the value of the GraphicsDevice.Platform variable.



342 / 1211

Streaming

Property Description

Streaming Enable streaming

Update interval How frequently Stride updates the streaming. Smaller intervals mean the streaming
system reacts faster, but use more CPU and cause more memory fluctuations.

Max resources
per update

The maximum number of textures loaded or unloaded per streaming update.
Higher numbers reduce pop-in but might slow down the framerate.

Resource
timeout (ms)

How long resources stay loaded after they're no longer used (when the memory
budget is exceeded)

Memory budget
(in MB)

When the memory used by streaming exceeds this budget, Stride unloads unused
textures. You can increase this to keep more textures loaded when you have
memory to spare, and vice versa.

For more details, see Streaming.

Textures

Property Description

Texture
quality

The texture quality when encoding textures. Fast uses the least CPU, but has the lowest
quality. Higher settings might result in slower builds, depending on the target platform.

NOTE

Currently, only textures can be streamed.


343 / 1211

Overrides
You can override settings for particular platforms, graphics APIs, and so on. For example, you can set
different texture qualities for different platforms.

1. With the GameSettings asset selected, in the Property Grid, under Overrides, click (Add).

Game Studio adds an override.

2. In the new override, next to Platforms, select the platforms you want the override to apply to. You
can select as many as you need.

344 / 1211

3. Optional: If you want this override to apply only to a specific GPU platform, choose it from the
Specific filter drop-down list.

You can add GPU platforms to this list under Platform filters (see Add a platform filter below).

4. In the Configuration drop-down menu, select the kind of setting you want to override (Editor,
Texture, Rendering or Physics).

345 / 1211

5. Set the options you want to override.

Add a platform filter
You can choose items in the Platform Filters list as a specific platform filter when you set an override
(see above).

1. With the GameSettings asset selected, in the Property Grid, expand Platform Filters.

The Property Grid displays a list of platform filters you can use.

346 / 1211

2. At the bottom of the list, click Add to Platform Filters.

Game Studio adds a new empty item.

3. In the item field, type the GPU filter you want to add.

347 / 1211

After you add a platform filter, you can select it under Override > Specific filter.

Splash screen

NOTE

If the new filter isn't listed, remove the override and re-add it.


348 / 1211

The splash screen is displayed when your game starts. The default is the Stride splash screen.

Property Description

Texture The image (eg company logo) displayed as the splash screen. By default, this is
StrideDefaultSplashScreen.

Color The color the splash screen fades in on top of. By default, this is black (#FF000000).

For more information, see Splash screen.

See also
Assets

NOTE

The splash screen is only displayed when the game is built in release mode.


349 / 1211

Splash screen
Beginner

The splash screen is the image (usually a logo) displayed when your game starts. It fades in over the
color you specify, then fades out.

The default splash screen is the Stride logo.

You can only specify one splash screen in Game Settings. If you want to add more, you need to
implement them manually.

Edit the splash screen
The splash screen settings are part of the Game settings asset.

1. In the solution explorer (the bottom-left pane by default), select the Assets folder.

NOTE

The splash screen is only displayed when the game is built in release mode.


350 / 1211

2. In the asset view (the bottom pane by default), select the GameSettings asset.

3. In the property grid (the right-hand pane by default), expand Splash screen.

Splash screen properties
Property Description

Texture The image (eg company logo) displayed as the splash screen. By default, this is
StrideDefaultSplashScreen.

Color The color the splash screen fades in on top of. By default, this is black (#FF000000).

351 / 1211

See also
Assets
Textures

TIP

Additionally, you might want to disable streaming on the properties of the splash screen texture
itself. This makes sure the texture is always loaded and displayed at the highest quality. For more
information, see Textures > Streaming.



352 / 1211

World units
In Stride, one unit is one meter. This is used by the physics and rendering engines.

Game Studio displays units as a grid.

See also
Physics

353 / 1211

Graphics
This section explains how to use Game Studio and the Stride API for graphics and rendering.

Shaders
Shaders are authored in the Stride's shading language, an extension of HLSL. They provide true
composition of modular shaders through the use of inheritance, shader mixins, and automatic weaving
of shader in-out attributes.

Effects
Effects in Stride use C#-like syntax to combine shaders. They provide conditional composition of shaders
to generate effect permutations.

Target everything
Stride shaders are converted automatically to the target graphics platform, either plain HLSL for
Direct3D, GLSL for OpenGL, or SPIR-V for Vulkan platforms.

Advanced graphics
The graphics module provides a set of methods to display the game. Although Stride is available on
multiple platforms, the whole system behaves like Direct3D 11 from the user perspective. You need a
basic knowledge of the rendering pipeline to use it.

In this section
Cameras
Materials
Textures
Lights and shadows
Post effects
Graphics compositor
Effects and shaders
Low-level API
Rendering pipeline
Sprite fonts
Voxel Cone Tracing GI
Graphics API

354 / 1211

Cameras
Beginner Designer

Cameras capture your scene and display it to the player. Without cameras, you can't see anything in
your game.

You can have an unlimited number of cameras in your scene.

Create a camera in Game Studio
In the Scene Editor, right-click and select Camera, then choose the kind of camera you want to create
(perspective or orthographic).

Game Studio creates an entity with a camera component attached.

Alternatively, select the entity you want to be a camera, and in the Property Grid, click Add component
and select Camera.

355 / 1211

Camera properties

Property Description

Projection The type of projection used by the camera (perspective or orthographic)

Field of view
(degrees)

The vertical field of view used for perspective projection

356 / 1211

Property Description

Orthographic
size

The height of the orthographic projection (the orthographic width is automatically
calculated based on the target ratio). This has the effect of zooming in and out

Near clip plane The nearest point the camera can see

Far clip plane The furthest point the camera can see

Custom aspect
ratio

Use a custom aspect ratio you specify. Otherwise, automatically adjust the aspect
ratio to the render target ratio

Custom aspect
ratio

The aspect ratio for the camera (when the Custom aspect ratio option is
selected)

Slot The camera slot used in the graphics compositor. For more information, see
Camera slots

Perspective and orthographic cameras
Perspective cameras provide a "real-world" perspective of the objects in your scene. In this view,
objects close to the camera appear larger, and lines of identical lengths appear different due to
foreshortening, as in reality. Perspective cameras are most used for games that require a realistic
perspective, such as third-person and first-person games.

With orthographic cameras, objects are always the same size, no matter their distance from the camera.
Parallel lines never touch, and there's no vanishing point. Orthographic cameras are most used for
games with isometric perspectives, such as some strategy, 4X, or role-playing games.

357 / 1211

Perspective Orthographic

Field of view (perspective mode only)
When the camera is set to perspective mode, the field of view changes the camera frustum, and has
the effect of zooming in and out of the scene. At high settings (90 and above), the field of view creates
stretched "fish-eye lens" views. The default setting is 45.

358 / 1211

Field of view: 45 (default) Field of view: 90

Orthographic size (orthographic mode only)
When the camera is set to orthographic mode, the orthographic size has the effect of zooming in and
out.

Orthographic size: 10 (default) Orthographic size: 50

Near and far planes
The near and far planes determine where the camera's view begins and ends.

The near plane is the closest point the camera can see. The default setting is 0.1. Objects before this
point aren't drawn.

The far plane, also known as the draw distance, is the furthest point the camera can see. Objects
beyond this point aren't drawn. The default setting is 1000.

Stride renders the area between the near and far planes.

359 / 1211

Near plane 0.1 (default); far plane: 50 Near plane: 7; far plane 1000 (default)

With a low far plane value, objects in the near
distance aren't drawn.

With a high near plane value, objects close to
the camera aren't drawn.

Camera scripts
You can control cameras using camera scripts. Stride includes three camera script templates: an FPS
camera script, a side-scrolling camera script, and a basic camera controller script.

Add a camera script in Game Studio
1. In the Asset View (in the bottom by default), click Add asset > Scripts and choose the camera

script you want to add.

360 / 1211

2. In the Scene Editor, select the entity with the camera you want to control.

3. In the Property Grid (on the right by default), click Add component and select the camera script
you want to use.

361 / 1211

Game Studio adds the camera script to the entity.

For more information about how to create and use scripts, see Scripts.

Camera slots
Camera slots link the graphics compositor to the cameras in your scene. You bind each camera to a slot,
then define which slot the compositor uses. This means you can change the root scene or graphics
compositor without having to assign new cameras each time.

For more information, see Camera slots.

Render a camera to a texture
You can send a camera's view to a texture and use the texture on objects in your scene. For example, you
can use this to display part of your scene on a TV screen in the same scene, such as security camera
footage. For more information, see Render textures.

See also

362 / 1211

Camera slots
Animate a camera
Graphics compositor

363 / 1211

Camera slots
Camera slots link the graphics compositor to the cameras in your scene. You bind each camera to a slot,
then define which slot the compositor uses. This means you can change the root scene or graphics
compositor without having to assign new cameras each time.

You don't have to create a different camera slot for each camera. Instead, you can just change which
cameras use each slot. The best practice is to disable the camera components on cameras you don't
need.

If multiple enabled cameras in your scene use the same camera slot, the result is undefined.

Create a camera slot
1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

The graphics compositor editor opens.

NOTE

Each camera slot must have a camera assigned to it. If you have an unused camera slot, delete it.

You can't assign a single camera to more than one slot. If you need to do this, duplicate the camera
entity and assign it to a different slot.



364 / 1211

For more information about the graphics compositor, see the Graphics compositor page.
2. In the graphics compositor editor, on the left, under Camera slots, click (Add).

Game Studio adds a new camera slot to the list:

365 / 1211

Bind a camera to a camera slot
1. In your scene, select the entity with the camera component you want to bind.

2. In the Property Grid (on the right by default), in the Camera component properties, under Slot,
select the slot you want to bind the camera to.

TIP

To name a camera slot, double-click it in the list and type a new name.


NOTE

The drop-down menu lists camera slots from the graphics compositor selected in the game
settings.



366 / 1211

The graphics compositor matches enabled cameras to their appropriate slots each frame.

Create a camera and assign a camera slot from a script
Use:

To change the camera at runtime, toggle the Enabled property.

See also
Cameras
Graphics compositor
Game Studio — Game settings
Game Studio — Manage scenes

var camera = new CameraComponent();
 camera.Slot = SceneSystem.GraphicsCompositor.Cameras[0].ToSlotId();

NOTE

Make sure you:

always have at least one enabled camera

don't have multiple cameras enabled and assigned to the same slot at the same time



367 / 1211

Animate a camera with a model file
Beginner Artist

Like other entities, you can animate cameras using animations imported from 3D model files such as
.3ds, .fbx, and .obj.

If the camera moves independently, the simplest method is to export the camera animation as a
separate file, enable the root motion option on the animation, then add the camera, animation, and
animation script to the same entity. If the animations include FOV or near or far plane animations, the
Stride camera updates accordingly. With this method, you don't need a model or a skeleton.

If you want the camera to move in tandem with another animation — for example, if the camera is held
by a cameraman character with its own model, skeleton and animation — use a model node link
component to link the camera entity to the cameraman's movements.

Animate a camera independently
To do this, you need the following assets in your project:

a camera entity, the camera to be animated
an animation, to animate the camera (exported separately in your modeling tool)
an animation script, to play the animation

1. In the Asset View, select the animation asset you want to use to animate the camera.

NOTE

To animate a camera using a model file, you first need to bake the animation using your modeling
tool (eg Maya, 3ds Max or Blender). Stride doesn't support cameras animated using target cameras.



368 / 1211

2. In the Property Grid, enable Root motion.

When root motion is enabled, Stride applies the root node animation to the TransformComponent
of the entity you add the animation to, instead of applying it to the skeleton.

3. In the Scene Editor, select the entity that contains the camera you want to animate.

4. In the Property Grid, click Add component and select Animations.

NOTE

For instructions about how import animations, see Import animations.


NOTE

If there is no skeleton specified in Skeleton, Stride always applies the animation to Transform
Component, even if root motion is disabled.



NOTE

For instructions about how add cameras, see Cameras.


369 / 1211

Game Studio adds an animation component to the entity.

5. Next to Animations, click (Add) and type a name.

Game Studio adds an animation to the list.

370 / 1211

6. Next to the animation you added, click (Select an asset).

The Select an asset window opens.

7. Select the animation you want to use to animate the camera and click OK.

8. Click Add component and select the animation script you want to use to animate the camera.

371 / 1211

Game Studio adds the script to the entity as a component.

9. Under the script component, next to Animations, click (Add).

10. Next to Clip, click (Select an asset).

The Select an asset window opens.

NOTE

For instructions about how to add animation scripts, see Animation scripts.


372 / 1211

11. Select the animation asset you want to use to animate the camera and click OK.

At runtime, the camera uses the animation. If the animation includes FOV or near or far plane
animations, the Stride camera updates accordingly.

Attach the camera to a node on another model
To move a camera in tandem with another model, create a separate entity for the camera, then use a
model node link component to link the entity to the correct node.

To do this, you need the following assets in your project:

a camera entity, the camera you want to animate
a model, to attach the camera to
a skeleton that matches the model
an animation, to animate the model
an animation script, to play the animation

373 / 1211

1. In the Asset View, select the model you want to link the camera to. Next to Skeleton, make sure a
skeleton is specified that matches the model.

2. Make sure the entity you want to attach the camera to has the model, animation clip, and animation
script components needed to animate it.

3. With the camera entity selected, in the Property Grid, click Add component and select Model
node link.

NOTE

FOV and near or far plane animations are ignored if you use this method.


NOTE

For instructions about how to add these, see Animation.


374 / 1211

Game Studio adds a model link component to the entity.

4. Next to Target, click and select the entity that has the model you want to link the camera to.

NOTE

The TransformComponent applies an offset to the model node position. If you don't want to
add an offset, make sure the TransformComponent is set to 0,0,0.



375 / 1211

Alternatively, leave the Target field blank. In the Entity Tree, drag the camera entity you want to
animate to the entity that contains the model. Stride links the entity to the model on the parent
entity.

5. In Node name, select the node you want to link the camera to.

376 / 1211

At runtime, the camera uses the animation.

See also
Cameras
Model node links
Animation
Animation scripts

NOTE

The entity you link to must have a model with a skeleton, even if the model isn't visible at
runtime.



377 / 1211

Materials
Materials define the appearance of 3D model surfaces and how they react to light. Without materials,
models are simply shapes, blank canvases.

Materials can affect both the geometry of a model (vertex shading) and its colors (pixel shading).

You can use multiple material layers to build more complex materials.

In practice, materials generate partial definitions of shaders integrated as part of the shading of models
(lights and shadows).

In this section
Material maps
Material attributes

Geometry attributes
Shading attributes
Misc attributes

Clear-coating shading
Material layers
Material slots
Materials for developers

378 / 1211

Material maps
Intermediate Artist Programmer

Material maps calculate how materials are rendered. They can use two kinds of values: color (RGB)
values or scalar (single float) values.

You can use material maps for several purposes, including gloss maps, diffuse maps, or blend maps (for
combining material layers)

Material maps can fetch values using one of several providers:

Vertex stream: a value taken from mesh attributes
Binary operator: a combination of any other two providers
Float4 / Float: a constant value
Color: a hex color value
Shader: a value provided by a ComputeColor shader. This lets you use procedural values
Texture: a value sampled from a texture

To choose the provider, click (Replace) and select it from the drop-down menu:

Vertex stream
This provider takes a value from an attribute of the mesh of the model you apply the material to.

It has two modes: Color Vertex Stream and Custom Vertex Stream. To switch between them, with
Vertex Stream selected as the provider, click (Replace) and choose the mode you want to use.

379 / 1211

Color vertex stream
Takes a color value from the mesh.

Property Description

Index The index in the named stream

Channel The channel (RGBA) to sample from the stream

Custom vertex stream
Takes a value from the mesh channel you specify.

Property Description

Name Semantic name of the channel to read data from

Channel The channel (RGBA) to sample from the stream

Binary operator
Perform a binary operation from two color/scalar value providers. You can nest as many material maps
inside binary operators as you need (including further binary operators).

To choose how the operation works, click (Replace) and select from the drop-down menu. The
operations are similar to options when blending layers in Photoshop.

380 / 1211

Result = LeftColor <operator> RightColor

Property Description

Operator A binary operator (eg add, multiply, etc)

Left The left color/scalar used in the operation

Right The right color/scalar used in the operation

Float4 / Float
Provided directly as a constant value over the whole material.

381 / 1211

In the case of RGB values, you control the RGBA value with the X, Y, Z and W values (Float4).

In the case of scalar values, you control the value with a slider (Float).

Color
A value provided from a color hex value. This is only available for material maps that use RGB values.

Shader
A value provided by a ComputeColor shader. This lets you use procedural values.

For an example of a ComputeColor shader, see the Particle materials tutorial.

Texture

382 / 1211

Sample the color/scalar from a texture.

For example, the images below demonstrate how the texture changes the way Stride blends materials.

Property Description

Texture A reference to a texture

383 / 1211

Property Description

Channel The channel (R, G, B, A) used to extract the scalar value. Only valid for scalar textures

Texcoord
Index

The texture coordinates (u,v) to use from the mesh with this texture

Filtering The sampling method (eg Linear, Point, Anisotropic, etc)

Address Mode
U / V Defines how (u,v) coordinates are addressed

Wrap: Tiles (u,v) at integer junctions. For example, if u ranges from 0.0 to 3.0, the
texture repeats three times on the U axis

Mirror: Flips (u,v) at integer junctions. For example, if u ranges from 0.0 to 1.0, the
texture is displayed as expected; but from 1.0 to 2.0, the texture is mirrored

Clamp: Clamps (u,v) to the range (0.0, 1.0)

Scale A scale applied to (u,v)

Offset An offset applied to (u,v)

See also
Material attributes
Material layers

Material slots
Materials for developers

384 / 1211

Material attributes
Intermediate Artist Programmer

Material attributes define the core characteristics of a material, such as its diffuse color, diffuse shading
model, and so on. Attributes are organized into geometry, shading, and misc.

There are two types of attribute:

attributes used as input values for a shading model (for example, the Diffuse attribute provides only
color used by the diffuse shading model)
attributes that can change the shading model (for example, diffuse shading models, such as the
lambert model, interprets the diffuse attribute color)

Attributes contribute to a layer of a material. If a material is directly used as a model material, all its root
attributes are considered part of the first layer.

You can also write custom shaders to use in material attributes.

In this section
Geometry attributes

385 / 1211

Shading attributes
Misc attributes

Clear coat shading

See also
Material maps
Material layers
Material slots
Materials for developers
Custom shaders

386 / 1211

Geometry attributes
Intermediate Artist Programmer

The material geometry attributes define the shape of a material.

Tessellation
Real-time tessellation uses a HW feature of the GPU to massively subdivide triangles. This increases the
realism and potential of deformations of the surface geometry.

You can choose none, flat tessellation, or point normal tessellation.

No tessellation Flat tessellation Point normal tessellation

387 / 1211

Flat tessellation
This option tessellates the mesh uniformly.

In the images below, notice how the flat tessellation adds extra triangles, but doesn't take the curve into
account:

No tessellation Flat tessellation

Property Description

Triangle size The size of a tessellated triangle in screen-space units

Adjacent edges average Adjust the triangle size values from the average of adjacent edges values

Point normal tessellation
This option tessellates the mesh using the curvature provided by the mesh normals.

The images below show how point normal tessellation adds extra triangles while taking the curvature of
the mesh into account:

388 / 1211

No tessellation Point normal tessellation

Property Description

Triangle size The size of a tessellated triangle in screen-space units

Adjacent edge
average

Adjust the triangle size and normal curvature values from the average of
adjacent edge values

Displacement
Under the Displacement properties, you can specify displacement map. This displaces the geometry of
the mesh.

Depending on the stage at which the displacement is applied, the results can be very different:

389 / 1211

Displacement with vertex shader Tessellation with displacement

Property Description

Displacement
Map

The displacement texture as a material color provider

Intensity The amount of displacement

Scale & Bias When enabled, the value coming from the texture is considered a positive value
ranging from 0.0 to 1.0 and the shader applies a scale to get the range -1.0 to 1.0

Shader Stage Specify which shader stage the displacement map should be applied to: vertex
shader or domain shader (used with tessellation)

Surface

Under the Surface properties, you can define a Normal maps to define macro surface normals. The
normal map provides per-pixel normal perturbation of the normal of the mesh. Normal maps create the

390 / 1211

appearance of bumps and indents in the mesh:

Flat Using a normal map

Property Description

Normal map The normal map color provider

Scale and
offset

Interpret values from the texture as positive values ranging from 0.0 to 1.0. The shader
applies a scale to get the range -1.0 to 1.0.

Reconstruct
Z

If there's no Z component in the texture, reconstruct it from the X and Y components.
This assumes that X + Y + Z = 1 and that Z is always positive, so no normal vector
can point to the back side of the surface. We recommend you enable this option, as
Stride might remove the Z component when you compress normal maps.

For more information about normal maps, see the normal maps page.

Micro surface
Under the Micro surface setting, you can provide a gloss map to provide per-pixel information for
gloss.

2 2 2

391 / 1211

If you select Float:

a value of 1.0 means the surface is highly glossy (the coarse normal isn't perturbed)
a value of 0.0 means the surface is very rough (the coarse normal is highly perturbed in several
directions)

The screenshots below show different levels of gloss on a material:

Diffuse = #848484, Lambert
Specular Metalness = 1.0, GGX

Gloss = 0.0 0.25 0.5 0.8 1.0

Property Description

Gloss
map

The gloss map color provider

Invert Inverts the gloss value (eg a value of 1.0 produces zero gloss instead of maximum). This
effectively turns the gloss value into a roughness value, as used in other game engines

If you have local reflections enabled, the scene is reflected in materials with a gloss map value higher
than the threshold you specify in the local reflections properties. For more information, see Local
reflections.

See also
Material maps
Material attributes

Shading attributes

392 / 1211

Misc attributes
Clear-coat shading

Clear-coating shading
Material layers
Material slots
Materials for developers
Custom shaders

393 / 1211

Shading attributes
Intermediate Artist Programmer

The material shading attributes define the color characteristics of the material and how it reacts to light.

Diffuse
The diffuse is the basic color of the material. A pure diffuse material is completely non-reflective and
"flat" in appearance.

NOTE

To display a material, you need to select at least one shading model (diffuse, specular or emissive
model) in the model attributes.



394 / 1211

The final diffuse contribution is calculated like this:

the diffuse defines the color used by the diffuse model
the diffuse model defines which shading model is used for rendering the diffuse component (see
below)

Currently, the diffuse attribute supports only a diffuse map.

Diffuse model
The diffuse model determines how the diffuse material reacts to light. You can use the Lambert or cel-
shading.

Lambert model
Under the Lambert model, light is reflected equally in all directions with an intensity following a cosine
angular distribution (angle between the normal and the light):

395 / 1211

Property Description

Diffuse map The diffuse map color provider

Diffuse model The shading model for diffuse lighting

Specular
A specular is a point of light reflected in a material.

NOTE

A pure Lambertian material doesn't exist in reality. A material always has a little specular reflection.
This effect is more visible at grazing angles (a mostly diffuse surface becomes shiny at grazing
angle).



396 / 1211

The specular color can be defined using a metalness map (which uses the diffuse color as a base color),
or a specular map (the specular color is defined separately from the diffuse color).

Metalness map
The metalness map simplifies parametrization between the diffuse and specular color.

By taking into into account the fact that almost all materials always have some "metalness"/reflectance in
them, using the metalness map provides realistic materials with minimal parametrization.

The final specular color is calculated by mixing a fixed low-reflection color and the diffuse color.

With the metalness color at 0.0, the effective specular color is equal to 0.02, while the diffuse color
is unchanged. The material is not metal but exhibits some reflectance and is sensitive to the Fresnel
effect.
With the metalness color at 1.0, the effective specular color is equal to the diffuse color, and the
diffuse color is set to 0. The material is considered a pure metal.

The screenshots below show the result of the metalness factor on a material with the following
attributes:

Gloss = 0.8
Diffuse = #848484, Lambert
Specular GGX

397 / 1211

Pure diffuse (no metalness) Metalness = 0.0 Metalness = 1.0

- The diffuse color is dominant - The diffuse color is dominant - The diffuse color isn't visible

- The specular color isn't visible - The specular color is visible
(0.02)

- The specular color is visible

Specular map
The specular map provides more control over the actual specular color, but requires you to modify the
diffuse color accordingly.

Unlike the metalness workflow, this lets you have a different specular color from the diffuse color even in
low-reflection scenarios, allowing for materials with special behavior.

Specular model
A pure specular surface produces a highlight of a light in a mirror direction. In practice, a broad range of
specular materials, not entirely smooth, can reflect light in multiple directions. Stride simulates this using
the microfacet model, also known as Cook-Torrance (academic paper) .

The microfacet is defined by the following formula, where Rs is the resulting specular reflectance:

NOTE

You can combine metalness and specular workflows in the same material by adding separate layers.


http://www.cs.columbia.edu/%7Ebelhumeur/courses/appearance/cook-torrance.pdf
http://www.cs.columbia.edu/%7Ebelhumeur/courses/appearance/cook-torrance.pdf
http://www.cs.columbia.edu/%7Ebelhumeur/courses/appearance/cook-torrance.pdf

398 / 1211

Property Description

Fresnel Defines the amount of light that is reflected and transmitted. The models supported
are:
Schlick: An approximation of the Fresnel effect (default)
Thin glass: A simulation of light passing through glass
None: The material as-is with no Fresnel effect

Visibility Defines the visibility between of the microfacets between (0, 1). Also known as the
geometry attenuation - Shadowing and Masking - in the original Cook-Torrance.
Stride simplifies the formula to use the visibility term instead:

and

Schlick GGX (default)
Implicit: The microsurface is always visible and generates no shadowing or masking
Cook-Torrance
Kelemen
Neumann
Smith-Beckmann
Smith-GGX correlated
Schlick-Beckmann

Normal
Distribution

Defines how the normal is distributed. The gloss attribute is used by this part of the
function to modify the distribution of the normal.
GGX (default)
Beckmann
Blinn-Phong

Emissive
An emissive material is a surface that emits light.

399 / 1211

With HDR, a Bloom and a Bright filter post-processing effects, we can see the influence of an emissive
material:

Property Description

Emissive
map

The emissive map color provider

Intensity The factor to multiply by the color of the color provider

Use alpha Use the alpha of the emissive map as the main alpha color of the material (instead of
using the alpha of the diffuse map by default)

See also

400 / 1211

Geometry attributes
Misc attributes
Material maps
Material layers
Materials for developers
Custom shaders

401 / 1211

Misc attributes
Intermediate Artist Programmer

Occlusion
Under the Occlusion properties, you can set an occlusion map. This is the default occlusion attribute.
The occlusion map use geometry occlusion information baked into a texture to modulate the ambient
and direct lighting.

The screenshots below demonstrate the use of occlusion maps and cavity maps:

Occlusion Map Cavity Map Final Composition

402 / 1211

Occlusion Map Cavity Map Final Composition

Coarse occlusion of the
ambient light

Fine-grained occlusion of
direct light

Result

Property Description

Occlusion
Map

The occlusion map scalar provider that determines how much ambient light is
accessible on the material. A value of 1.0 means that the material is fully lit by
ambient lighting. A value of 0.0 means that the material is not lighted by the ambient
lighting

Direct
Lighting
Influence

Applies to Occlusion Map and influences direct lighting

Cavity Map The cavity map scalar provider is multiplied with direct lighting. It lets you define very
fine grained cavity where direct light can't enter. The cavity map is usually defined for
thin concave cavity

Diffuse Cavity A factor for diffuse lighting influence of the cavity map. A value of 1.0 means the
cavity map fully influences the diffuse lighting

Specular
Cavity

A factor for specular lighting influence of the cavity map. A value of 1.0 means the
cavity map fully influences the specular lighting

Transparency
Under the Transparency properties, you can specify values that change the transparency of the material.
You can coose Blend, Additive, or Cutoff.

Additive
The additive transparency takes into account the diffuse and diffuse/emissive alpha.

If the Alpha property is less than 0.5, only the specular highlights are visible. The material itself is
completely invisible.

403 / 1211

Alpha = 0.25 Alpha = 0.5

We only see the specular highlight in additive
mode

Transparency is fully additive. Specular highlights
at maximum

If the Alpha <= 1.0, the material is semi-opaque with the diffuse/emissive component. If the diffuse
component has an alpha, it's transparent.

Alpha = 0.75 Alpha = 1.0

Specular highlights, diffuse with alpha and
semi-opaque diffuse

Specular highlights, diffuse with alpha and
opaque diffuse

Property Description

Alpha The alpha value is interpreted like this:

Alpha <= 0.5, the material is rendered in additive mode without the diffuse component
(only specular highlights)

404 / 1211

Property Description

Alpha <= 1.0, the material is rendered in semi-opaque mode with the diffuse/emissive
component. If the diffuse component has an alpha, it's displayed as transparent

Tint Apply a color tint to the transparency layer

Cuttoff
Renders a material when the current alpha color is above the threshold you specify with the Alpha slider.

The following screenshots show the influence of the cutoff Alpha value.

Alpha = 0.01 Alpha = 0.5 Alpha = 1.0

Clear coat
Clear-coat shading uses physically-based rendering to simulate vehicle paint.

405 / 1211

For details, see clear-coat shading.

See also
Geometry attributes
Shading attributes
Clear-coat shading
Material maps
Material layers
Material slots
Materials for developers
Custom shaders

406 / 1211

Clear-coat shading
Intermediate Artist Programmer

Clear-coat shading uses physically-based rendering to simulate vehicle paint.

Real vehicles typically have three layers of paint applied to the body, as in the diagram below:

407 / 1211

To keep the shading simple, Stride only simulates the base coat (including optional metal flakes) and
clear coat layers. Stride blends the layers depending on how far the camera is from the material. This
reduces visual artifacts caused by the metal flake normal map (which becomes more visible as the
camera moves away from the material).

Clear-coat shading has several advantages over creating the effect manually with material layers:

layers are blended based on distance
increased performance
improved visualization

Add a clear-coat material
Stride includes a clear-coat material template. To add it, in the Asset View, click Add asset and select
Material > PBR material: clear coat.

408 / 1211

Alternatively, to set clear-coat properties yourself:

1. Select the material you want to use clear-coat shading.

2. In the Property Grid, under the Misc properties, next to Clear coat, click (Replace) and choose
Clear coat.

NOTE

For clear-coat shading to work correctly, make sure you enable Diffuse, Specular and Specular
model under the material Shading properties.



409 / 1211

Properties
You can access the clear-coat shader properties under Misc > Clear coat. They're split into three parts:
the base paint and optional metal flake properties simulate the base coat, and the clear coat
properties simulate the clear coat.

The metal flake properties simulate a metallic paint effect. To disable the effect, remove the metal flake
normal map.

410 / 1211

Property Description

Base paint
diffuse map

The diffuse map used by the base paint layer (the lowest layer). This determines the
color of the layer.

Base paint
gloss map

The gloss map used by the base paint layer. For a coherent result, use the metal flake
normal map as a mask.

411 / 1211

Property Description

Metal flakes
diffuse map

The diffuse map used by the metal flake layer (the layer above the base paint). For a
coherent result, use a value close to the base paint value.

Metal flakes
gloss map

The gloss map used by the metal flake layer. For a coherent result, use the metal flake
normal map as a mask.

Metal flakes
metalness
map

The metalness map used by the metal flake layer. For best results, use high values.

Metal flake
normal map

The normal map used by the metal flake layer. This shapes the flake geometry. A metal
flake normal map (StrideClearCoatMetalFlakesNM) is included in the Stride assets
package. If the texture has a high UV scale, enable Use random texture coordinates
below to reduce tiling effects. To disable the metal flakes effect, remove the normal
map.

Coat gloss
map

The gloss map used by the clear coat layer. Change this value to simulate different
kinds of paint (eg matte).

Clear coat
metalness
map

The metalness map used by the clear coat layer

Orange peel
normal map

The normal map used by the clear coat layer to create an "orange peel" effect. This
reflects light in different angles, simulating paint imperfections whereby the texture
appears bumpy, like the skin of an orange. An orange peel normal map
(StrideClearCoatOrangePeelNM) is included in the Stride assets package.

Layer
transition
distance

The distance (in meters) at which the base paint layer transitions to the metal flake
layer. This helps fight visual artifacts caused by the metal flake normal map (which
becomes more visible as the camera moves away from the material).

Reduce tiling and artifacts
Properties that use binary operators should use normalized values (ie between 0.0 and 1.0). For
example, in the screenshot below, the left operator uses a value of 0.5.

412 / 1211

Values over 1.0 might produce tiling artifacts, as in the image below (note the grid pattern):

StrideClearCoatMetalFlakesNM
The metal flakes in the metal flake normal map included in the Stride assets package
(StrideClearCoatMetalFlakesNM) are quite large. For this reason, we recommend you:

use a high UV scale factor which tiles the texture (thereby shrinking the flakes)

413 / 1211

enable Use random texture coordinates, preventing an obvious tiling effect

Alternatively, use a normal map with a higher density of smaller metal flakes.

See also
Material maps
Material attributes

Geometry attributes
Shading attributes
Misc attributes

Material layers
Material slots
Materials for developers

NOTE

The Use random texture coordinates option is costly, so we don't recommend you use it for
mobile platforms.



414 / 1211

Material layers
Intermediate Artist Programmer

You can combine layers of materials to build more complex materials. For example, this screenshot
shows the blending of a rust material (left) with a gold material (right):

This diagram shows the definition of the materials blended in the screenshot above:

415 / 1211

Blend maps
Blend maps are material maps that determine how Game Studio blends layers. For example, you can use
a texture as a blend map:

416 / 1211

Note how the blend map texture corresponds to the patterning on the result.

Blend maps work the same way as any other kind of material map. For more information, see Material
maps.

Shading models
Stride blends materials differently depending on whether their shading models (eg diffuse models,
specular models, etc) are different.

If you blend materials that have identical shading models, Stride collects the attributes of the materials,
then applies the shading models to all of them. This saves GPU.

If the materials have different shading models, Stride applies each material's shading models to that
material's attributes, then blends the results. This uses more GPU.

Add a layer
1. Select the material you want to add a layer to.

2. In the Property Grid (on the right by default), next to Layers, click (Add).

417 / 1211

Game Studio adds a layer to the material.

3. Next to the layer, click (Select an asset).

418 / 1211

The Select an asset window opens.

4. Specify a material you want to add as a layer and click OK.

Game Studio adds the material as a layer.

5. Next to Blend Map, click (Replace) and select the type of blend map you want to use to blend
the layers. For more information about blend maps, see Material maps.

419 / 1211

Game Studio blends the material layers using the blend map you specified. You can add as many layers
as you need.

Layer properties
Property Description

Material The material blended in this layer

Blend Map The blend map used to blend this layer with the layer above

Layer
Overrides

UV Scale: A UV scale applied to all textures UV of the material of the layer (excluding
the occlusion map)

See also
Material maps
Material attributes
Material slots
Materials for developers

420 / 1211

Material slots
Intermediate Artist Programmer

Models can use multiple materials. You can set the materials in the model's material slots.

421 / 1211

For example, the second material slot in this model specifies the material for the visor and the shoulder
and chest plate stripes. By changing the material in this slot, we change the material used in these parts
of the model.

The material slots themselves — their number and position — are defined in the model source file (eg
.fbx, .obj, etc). You can't edit material slots in Game Studio; you can only change which materials are
used in each slot.

Set materials on a model
You can change the materials a model uses in two places:

Under the Materials properties of the model itself:

422 / 1211

In the model component of an entity or prefab:

NOTE

This affects every instance of this model.


423 / 1211

This only affects this instance or prefab.

Meshes and material slots

424 / 1211

Models imported from modeling software can contain meshes. Meshes can share materials via material
slots.

The association between a mesh and a material slot is defined in the model source file. You can't change
these associations in Game Studio, but you can change them in code at runtime.

To change the association between a mesh and a material, use:

To change or add a material to the list of materials:

Merging meshes
When Stride draws a model with meshes, it performs one GPU draw call for each mesh. By default, to
improve performance, at build time, Stride merges meshes that share materials.

MyModelComponent.Model.Meshes[submeshIndex].MaterialIndex = materialIndex;

MyModelComponent.Materials[ExistingOrNewMaterialIndex] = myMaterial;

425 / 1211

In the example above, there are five meshes and five draw calls. After merging, there are three meshes
and three draw calls.

Disable mesh merging

NOTE

When Stride merges meshes, it merges the vertex and index buffers. This means you can't draw the
meshes separately at runtime, and you can't change the original mesh position (transformation
matrix). The meshes become a single mesh with a single material and a single transformation matrix
(relative to the model).



NOTE

When Stride merges meshes, it changes the draw order of elements. In the case of transparent
materials, this can produce different results.



NOTE

When you create a physics collider from a model, Stride builds separate convex hulls for each mesh
in the model. If the meshes are merged, only one mesh remains per material, so convex hulls are
also built from merged meshes.



426 / 1211

You might want to disable mesh merging if you want to:

animate a mesh

change the material of a mesh at runtime

To disable mesh merging on a model:

1. Select the model you want to disable mesh merging for.

2. In the Property Grid, disable Merge meshes.

Disable merging for specific meshes
To disable merging only for specific meshes, enable their corresponding nodes.

1. Select the model that contains the meshes.

2. In the Property Grid, under Skeleton, make sure the model has a skeleton associated with it.

For more information about skeletons, see Animation.

3. In the Asset View, select the skeleton.

427 / 1211

4. In the Property Grid, under Nodes, select the nodes that correspond to the meshes you don't want
to merge.

TIP

To see which nodes correspond to which mesh, open the model source file in a modeling
application such as Maya.



428 / 1211

See also
Material maps
Material attributes
Material slots

NOTE

Make sure you don't disable nodes that are animated at runtime.


429 / 1211

Materials for developers
Advanced Programmer

This diagram shows the Material interfaces and implementation classes:

430 / 1211

431 / 1211

The interface IMaterialDescriptor is the root interface for a material description.
The IMaterialShaderGenerator is the main interface used to generate a material shader of the
material.
Each attribute and layer implements this interface to modify the final material shader.
The MaterialDescriptor is the editor-time description of the material before being compiled into a
material shader.
The Material class is the runtime material shader generated from the MaterialDescriptor

Modifying parameters at runtime
The file MaterialKeys contains most material keys you might need to use, have a look through it to figure
out which one you might need to get to modify the parameter you are interested in.

Let's say you have this fairly simple material:

432 / 1211

And you want to clone that material, but change its color to red at runtime. Searching through the
different keys contained in MaterialKeys you would find MaterialKeys.DiffuseValue and use it as the key
to set the new color value you want:

If you aren't too sure which parameter keys your material uses, the best way to figure it out would be to
inspect the material's variables with a debugger. Here's an example of that through Rider's Threads &
Variables window:

var clone = SerializerExtensions.Clone(MyMaterial);
clone.Passes[0].Parameters.Set(MaterialKeys.DiffuseValue, new Color4(1, 0, 0));

433 / 1211

See also
Material maps
Material attributes
Material layers
Material slots

434 / 1211

Textures
Beginner Artist Programmer

Textures are images mainly used in materials. Stride maps textures to the surfaces the material covers.

Textures can add color information to a material — for example, to add a brick pattern to a wall or a
wood pattern to a table. The values of the pixels in a texture (texels) can also be used for other
calculations, such as in specular maps, metalness maps, or normal maps.

Materials typically contain multiple textures; for example, a material might contain a color texture, a
normal map texture, and a roughness texture.

Textures can also be used outside materials; for example, you can draw them directly to the UI, or use
them in sprites.

Supported file types
You can use the following file types as textures:

.dds

.jpg

.jpeg

.png

.gif

.bmp

.tga

.psd

.tif

.tiff

Add a texture
In the Asset View, click Add asset > Texture, then select a template for the texture (color, grayscale or
normal map):

NOTE

Stride only imports the first frame of animated image files, such as animated gifs or PNGs. They
don't animate in Stride; they appear as static images.
Stride currently doesn't support movie files.



435 / 1211

Alternatively, drag the texture file from Explorer to the Asset View:

NOTE

Render targets are a different kind of texture, and don't use images. Instead, they render the output
from a camera. For more information, see Render targets.



436 / 1211

Then select a texture template (color, grayscale or normal map):

Game Studio adds the texture to the Asset View:

437 / 1211

Texture properties
The following properties are common to all textures.

Property Description

Width The width of the texture in-game

Height The height of the texture in-game

Use
percentages

Use percentages for width and height instead of actual pixel size

Type Use Color for textures you want to display as images, Normal map for normal maps,
and Grayscale to provide values for other things (eg specular maps, metalness maps,

438 / 1211

Property Description

roughness maps). Color textures and normal maps have additional properties (see
below).

Generate
mipmaps

Generate different versions of the texture at different resolutions to be displayed at
different distances. Improves performance, removes visual artifacts, and reduces pop-
in when using streaming, but uses more memory. Unnecessary for textures always at
the same distance from the camera (such as UIs).

Compress Compress the final texture to a format based on the target platform and usage. The
final texture is a multiple of 4. For more information, see Texture compression.

Stream Stream the texture dynamically at runtime. This improves performance and scene
loading times. Not recommended for important textures you always want to be
loaded, such as splash screens. For more information, see Streaming.

Color texture properties
The following properties apply if you set the texture type to color.

Property Description

sRGB
sampling

Store the texture in sRGB format and convert to linear space when sampled.
Recommended for all color textures, unless they're explicitly in linear space.

Color key
enabled

Use the color set in the Color key color property for transparency at runtime. If
disabled, the project uses transparent areas of the texture instead

439 / 1211

Property Description

Color key
color

The color used for transparency at runtime. Only applied if Color key enabled is
selected.

Alpha The texture alpha format (None, Mask, Explicit, Interpolated, or Auto)

Premultiply
alpha

Premultiply all color components of the images by their alpha component

Normal map properties
The following property applies if you set the texture type to normal map.

Property Description

Invert Y Have positive Y-component (green) face up in tangent space. This depends on the tools
you use to create normal maps.

For more information about normal maps, see the Normal maps page.

Grayscale textures
Grayscale texture use only the R channel of the image (finalRGBA = originalRRRR).

To make the channel monochrome, in the Sprite component properties, set the Type as Grayscale.
For more information about the sprite component properties, see Use sprites.

NOTE

If you add a texture to a scene (as a sprite component), and set the texture type to grayscale, it
appears red, not monochrome. This is because the image uses the R (red) channel.



440 / 1211

You can use grayscale textures to provide values in material maps. For example, you can use a texture as
a blend map to blend two material layers:

Note how the blend map texture corresponds to the patterning on the result.

For more information, see Material maps.

Global texture settings
For instructions about how to access the global texture settings, see the Game Settings page.

Property Description

Texture
quality

The texture quality when encoding textures. Fast uses the least CPU, but has the lowest
quality. Higher settings might result in slower builds, depending on the target platform.

441 / 1211

See also
Normal maps
Texture compression
Texture streaming
Materials
Sprites
Render textures
Skyboxes and backgrounds

442 / 1211

Normal maps
Intermediate Artist Programmer

Normal maps are textures that add the appearance of surface detail, such as cracks and bumps, without
changing the actual geometry of a model. They contain information about how meshes should reflect
light, creating the illusion of much more complex geometry. This saves lots of processing power.

No normal map With a normal map

443 / 1211

Original mesh Simplified mesh
Simplified mesh and normal
map

4m triangles 500 triangles 500 triangles

(Images courtesy of Paolo Cignoni, shared under Attribution-ShareAlike 1.0 Generic (CC BY-SA 1.0)

Normal maps usually represent small changes of the normal vector (the vector which points away from
the surface). Stride uses the most common convention: the X and Y components follow the tangent and
the bitangent of the surface, and the Z component follows the normal vector of the surface. This means
that a value of (0, 0, 1) coincides with the normal vector and represents no change, while a value of
(-1, 0, 0) tilts to the "left" (ie negative X value in the tangent (local) space).

https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/

444 / 1211

Use a normal map
1. In the Asset View, select the texture you want to use as a normal map.

2. In the Property Grid, make sure the type is set to normal map.

445 / 1211

This means Stride assumes the texture is in linear color space and converts it to a format suited for
normal maps.

3. In the Asset View, select the material you want to use the normal map.

4. In the Property Grid, under the material Geometry properties, expand Surface.

446 / 1211

5. Next to Normal map, click (Replace) and make sure Texture is selected.

6. Next to Normal map, click (Select an asset).

447 / 1211

7. Select the normal map texture and click OK.

For more information about materials, see Materials.

Normal map properties
Normal map textures have two properties in addition to the common texture properties.

448 / 1211

Property Description

Invert Y Have positive Y components (green pixels) face up in tangent space. This option depends
on the tools you use to create normal maps.

For information about normal map properties in materials, see Materials — Geometry attributes.

See also
Textures
Materials
Normal mapping on Wikipedia

http://en.wikipedia.org/wiki/Normal_mapping
http://en.wikipedia.org/wiki/Normal_mapping
http://en.wikipedia.org/wiki/Normal_mapping

449 / 1211

Texture compression
Beginner Artist Programmer

Compressed textures use up to 50% less space and are faster to load. Compression produces results
similar to JPEG compression. The animation below was recorded with the camera positioned extremely
close to the texture; at normal distances, the difference isn't noticable.

For color textures, compression is best used for visually busy images, where the effects are less
noticeable. You probably don't want to compress textures with fine edges, such as logos used in splash
screens.

Compression converts the texture to a multiple of 4. If the texture isn't already a multiple of 4, Stride
expands it.

Compression removes data from the image based on the texture type:

Texture
type Compression

Color Compresses all RGBA channels. If the Alpha property is set to None in the texture
properties, the alpha channel is removed

Grayscale Removes all RGBA channels except red

Normal
map

Removes the blue and alpha channels (alpha isn't used in normal maps anyway). The
blue channel is reconstructed from the red and green channels (assuming a pixel has a
vector length of 1)

Textures index

450 / 1211

Normal maps
Materials
Sprites
Render textures

451 / 1211

Streaming
Beginner Artist Programmer

When you stream textures, Stride only loads them when they're needed. This significantly decreases the
time it takes to load a game or scene, uses less memory, and makes your game easier to scale.

How Stride streams textures
Instead of loading a texture when Stride loads the scene (with all its mipmaps), Stride only loads it when
it's used (eg a model using the texture is onscreen).

When the texture is no longer needed (ie no objects that use the texture are onscreen), Stride unloads it.

Currently, there's no loading priority for textures. For example, Stride doesn't load textures based on
distance; instead, Stride loads them all in sequence.

Using streaming with mipmaps
If mipmaps (different-resolution versions of textures displayed at different distances) are enabled in the
texture properties, the lower-resolution mipmaps load first, as they're smaller in size. The gif below
shows this process happening in slow motion.

In most situations, the process is very quick. We recommend you enable mipmaps for streaming as it
means lower-resolution versions of textures act as placeholders until the higher-quality versions can

NOTE

Currently, only textures can be streamed.


452 / 1211

load, reducing pop-in.

When not to use streaming
Streaming is enabled by default for all textures. You might want to disable streaming on important
textures you always want to display immediately and in high quality, such as:

splash screens

textures on player models

textures used in particles (particles often have a short lifespan, so might disappear before the
texture loads)

Enable or disable streaming on a texture
1. In the Asset View, select the texture.

2. In the Property Grid, under Format, use the Stream check box.

453 / 1211

Global streaming settings
You can access the global streaming settings in the Game Settings asset. These settings apply to all
textures that have streaming enabled.

For instructions about how to access the global streaming settings, see the Game Settings page.

Properties

Property Description

Streaming Enable streaming

Update interval How frequently Stride updates the streaming. Smaller intervals mean the streaming
system reacts faster, but use more CPU and cause more memory fluctuations.

454 / 1211

Property Description

Max resources
per update

The maximum number of textures loaded or unloaded per streaming update.
Higher numbers reduce pop-in but might slow down the framerate.

Resource
timeout (ms)

How long resources stay loaded after they're no longer used (when the memory
budget is exceeded)

Memory budget
(in MB)

When the memory used by streaming exceeds this budget, Stride unloads unused
textures. You can increase this to keep more textures loaded when you have
memory to spare, and vice versa.

Access the streaming manager in code
Use Streaming.

For example, to disable streaming globally, use:

To start streaming a texture:

To disable streaming at load time:

Options
There are three StreamingOptions:

The KeepLoaded option keeps the texture in memory even when the memory budget is exceeded.

If mipmaps are enabled, the ForceHighestQuality option loads only the highest-quality version of
the texture.

The KeepLoaded option keeps the texture in memory even when it's not used.

For example:

Streaming.EnableStreaming = false;

Streaming.StreamResources(myTexture);

var texture = Content.Load<Texture>("myTexture",
ContentManagerLoaderSettings.StreamingDisabled);

455 / 1211

To change the StreamingOptions at runtime, use SetResourceStreamingOptions. For example:

See also
StreamingManager API
Textures index
Texture compression
Game Settings

var myOptions = new StreamingOptions() { KeepLoaded = true };
Streaming.StreamResources(myTexture, myOptions);

var myNewOptions = new StreamingOptions() { KeepLoaded = false };
Streaming.SetResourceStreamingOptions(myTexture, myNewOptions);

456 / 1211

Skyboxes and backgrounds
Beginner Designer Programmer

Skyboxes are backgrounds that create the illusion of space and distance. Typical skybox backgrounds
include skies, clouds, mountains, and other scenery. As skyboxes are prerendered, they require little GPU
and CPU.

You can use cubemaps or 360° panoramic textures as skyboxes. You can also use them to light the
scene.

Alternatively, you can display a 2D background, which is often useful for 2D games.

Cubemaps
A cubemap is a six-sided texture. When these textures are assembled in a cube around the scene, the
cubemap simulates spacious 3D surroundings.

NOTE

Currently, Stride doesn't support skydomes or local skyboxes.


457 / 1211

Currently, Game Studio can't convert image files to cubemaps (.dds files). Use another application to
create a cubemap from separate image files, such as:

Nvidia conversion tool
ATI conversion tool

Create a cubemap in Game Studio
You can capture a cubemap from a position in your scene.

1. In the scene editor, position the camera at the point where you want to capture the cubemap. The
direction the camera faces doesn't matter, only the position.

Typically, you should capture cubemaps at the center of your scene to create the best all-round
view.

2. In the scene editor toolbar, open the Lighting options menu.

https://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop
https://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop
https://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop
http://developer.amd.com/tools-and-sdks/archive/games-cgi/cubemapgen
http://developer.amd.com/tools-and-sdks/archive/games-cgi/cubemapgen
http://developer.amd.com/tools-and-sdks/archive/games-cgi/cubemapgen

458 / 1211

3. Under Cubemap, click Generate.

4. Browse to the location on disk you want to save the cubemap, specify a name, and click Save.

Game Studio creates a cubemap .dds file in the location you specified.

360° panoramic textures
Instead of using a cubemap, you can use a 360° panoramic texture as a 3D background.

360° panorama Appearance in game

Image courtesy of Texturify

Add a cubemap or 360° panoramic texture to the project
You add these like other color textures.

In the Asset View, click , select Textures > Color texture, and browse to the file.

TIP

We recommend you save the cubemap in your project Resources folder. For more information, see
Organize your files in version control.



NOTE

Remember that post effects affect the appearance of your skybox. If it doesn't look how you expect,
try changing your post effect settings.



http://texturify.com/
http://texturify.com/
http://texturify.com/

459 / 1211

Alternatively, drag and drop the file from Windows Explorer to the Asset View, then select Color
texture.

Create a skybox
To create a skybox, add a cubemap or 360° panoramic texture to a background component.

Stride includes an entity with a background component in the project by default. Only one background
can be active in a scene at a time. If there are multiple backgrounds, Stride only loads the first.

You can add background components to as many entities as you need. You might want to include more
than one background, for example, if you want to switch skyboxes at runtime.

460 / 1211

Add a background entity
1. In the Scene view, select the entity you want to add the component to.

This can be an empty entity. Its position in the scene doesn't matter.

2. In the Property Grid (on the right by default), click Add component and select Background.

3. Under Texture, select the cubemap or 360° panoramic texture you want to use in the skybox.

Use a skybox as a light source
You can use a skybox to light the scene. Stride analyzes the skybox texture and generates lighting using
image-based lighting (Wikipedia) . For more information, see Skybox lights.

Change the skybox at runtime
The following code changes the cubemap in a background:

https://en.wikipedia.org/wiki/Image-based_lighting
https://en.wikipedia.org/wiki/Image-based_lighting
https://en.wikipedia.org/wiki/Image-based_lighting

461 / 1211

Convert cubemaps to panoramas and vice versa
Various tools exist to convert a panoramas to cubemaps and vice versa, including:

Panorama Converter
Panorama to Cubemap
Convert Cubemap to Equirectangular

Set a 2D background
Instead of using a 3D skybox, you can display the texture as a static background. This displays the
texture as a flat image that stays static no matter how you move the camera. This is often useful for 2D
games.

To do this, in the Background component properties, select 2D background.

If you enable this with a cubemap, Stride uses the first face of the cubemap as the background.

Use a video as a skybox
For details, see Videos - Use a video as a skybox.

public Texture cubemapTexture;
public void ChangeBackgroundParameters()
{
 // Get the background component from an entity

var background = directionalLight.Get<BackgroundComponent>();

// Replace the existing background
background.Texture = cubemapTexture;

// Change the background intensity
background.Intensity = 1.5f;

}

http://gonchar.me/blog/goncharposts/2150
http://gonchar.me/blog/goncharposts/2150
http://gonchar.me/blog/goncharposts/2150
https://jaxry.github.io/panorama-to-cubemap/
https://jaxry.github.io/panorama-to-cubemap/
https://jaxry.github.io/panorama-to-cubemap/
https://www.360toolkit.co/convert-cubemap-to-spherical-equirectangular.html
https://www.360toolkit.co/convert-cubemap-to-spherical-equirectangular.html
https://www.360toolkit.co/convert-cubemap-to-spherical-equirectangular.html

462 / 1211

See also
Skybox lights
Lights and shadows

463 / 1211

Lights and shadows
Beginner Designer Artist

Lights in Stride are provided by light components. There are several kinds of light.

In this section
Add a light
Point lights
Ambient lights
Directional lights
Skybox lights
Spot lights
Light probes
Light shafts
Shadows

464 / 1211

Add a light
Beginner Designer Artist

To add a light to a scene, add a light component to an entity.

1. Select the entity you want to be a light.

2. In the Property Grid (on the right by default), click Add component and select Light.

Game Studio adds a light component to the entity.

465 / 1211

3. Under the Light component properties, next to Light, from the drop-down menu, select the kind of
light you want this entity to use.

466 / 1211

You can choose:

Point light
Ambient light
Directional light
Skybox light
Spot light

For information about each type of light, see its respective page.

See also
Point lights
Ambient lights
Directional lights
Skybox lights

467 / 1211

Spot lights
Light probes
Shadows

468 / 1211

Point lights
Beginner Designer Artist

Point lights emit light in all directions within a sphere. They're useful for simulating sources of local
light, such as lamps and lightbulbs. They cast shadows.

The Scene Editor shows the position of point lights with the following icon:

Once selected, the point light gizmo displays the sphere in which it projects light:

469 / 1211

Properties

Property Description

Color The color of the light (RGB)

Radius The sphere influence radius in world units. Beyond this range, the light doesn't affect
models

Shadow
If shadows are enabled, the light casts shadows.

470 / 1211

Property Description

Filter: Produces soft shadows instead of hard shadows via PCF (Percentage Closer
Filtering)

Size: The size of texture to use for shadowing mapping. Larger textures produce
better shadows edges, but are much more costly. For more information, see Shadows

Bias
Parameters These parameters are used to avoid some artifacts of the shadow map technique.

Depth Bias: The amount of depth to add to the sampling depth to avoid shadow acne

Normal Offset Scale: A factor multiplied by the depth bias toward the normal

Intensity The intensity of the light. The color is multiplied by this value before being sent to the
shader. Note: negative values produce darkness and have unpredictable effects

Culling Mask Which entity groups are affected by this light. By default, all groups are affected

See also
Add a light
Point lights
Ambient lights
Skybox lights
Spot lights
Light shafts
Light probes
Shadows

471 / 1211

Ambient lights
Beginner Designer Artist

Ambient lights are uniform lights that illuminate the entire scene. Because they don't come from any
specific direction or source, ambient lights illuminate everything equally, even objects in shadow or
obscured by other objects. They don't cast shadows.

Ambient lights aren't realistic light sources. Instead, they contribute to the overall brightness and
aesthetic of a scene.

An example of an object lit uniformly with ambient lighting (with a pure diffuse material):

Properties

472 / 1211

Property Description

Color The color of the light (RGB)

Intensity The intensity of the light. The color is multiplied by this value before being sent to the
shader. Note: negative values produce darkness and have unpredictable effects

Culling
Mask

Which entity groups are affected by the light. By default, all groups are affected

See also
Add a light
Point lights
Directional lights
Skybox lights
Spot lights
Light probes
Shadows

473 / 1211

Directional lights
Beginner Designer Artist

Directional lights come uniformly from one direction. They're often used for simulating large, distant
light sources such as the sun, and cast shadows. By default, new scenes you create in Stride contain a
directional light.

The Scene Editor shows the position of directional lights with the following icon:

When you select a directional light, the gizmo displays the light's main direction:

474 / 1211

Properties

Property Description

Color The color of the light (RGB)

Shadow See Shadow properties below

Intensity The intensity of the light. The color is multiplied by this value before being sent to the
shader. Note: negative values produce darkness and have unpredictable effects

Culling
Mask

Defines which entity groups are affected by this light. By default, all groups are affected

Shadows cast by directional lights

475 / 1211

Like point lights and spot lights, directional lights cast shadows. However, shadows cast by directional
lights can spawn across a large view range, so they require special treatment to improve their realism.

Directional lights use an additional technique, cascaded shadow mapping. This consists of rendering
the depth of occluding objects from the point of view of the light to a texture, then rendering the scene
taking the occluder information into account.

This method slices the depth range from the camera's point of view into different sections or "cascades"
of different resolutions. The nearer each cascade is to the camera, the higher resolution it has, and the
higher-resolution its shadows are.

Put simply, the closer shadows are to the camera, the better quality they are. This means you can spend
more memory on shadows closer to the camera, where you can see them, and less on distant shadows.

You can have one, two, or four cascades. The more cascades you use, the more memory you save, but
the lower resolution your shadows become over distance.

This an example of a shadow map generated from a directional light, using four cascades:

476 / 1211

See shadow cascades in the editor
In the Property Grid, under the Shadow properties, enable the Debug option.

Cascades debug off Cascades debug on

The different colors indicate the cascade for each distance range (Green: 0, Blue: 1, Purple: 2, Red: 3).

Directional light shadow properties

477 / 1211

Property Description

Filter Filtering produces soft shadows instead of hard shadows. Currently, the
implemented technique is PCF (Percentage Closer Filtering)

Size The size of the shadow map texture. For the directional light, this value is x1 by
default, as a directional light has more visual impact than lights with shorter ranges

Cascade
Count

The number of cascades used for slicing the range of depth covered by the light.
Values are 1, 2 or 4 cascades; a typical scene uses 4 cascades

Stabilization
mode The technique used to reduce shadow map flickering. Flickering is a result of the

potential aliasing introduced by the shadow map when a texel from the perspective
of the light covers more space than a texel from the camera's perspective.

Projection snapping tries to snap the projection matrix of the light to a texel
dependent on the resolution of the shadow map texture

View snapping tries to snap the target of the view matrix of the light (center of the
camera view cascade frustum)

Both projection and view snapping force the shadow matrix to cover a larger region,
increasing the aliasing of the shadow map texture. Note that when using depth range
camera is set to automatic, the stabilization mode is ignored

Depth Range How the visible depth range from the camera's perspective is calculated. This directly
affects how near and how far cascades splits occur

Blend
Cascades

Smooths the transition between cascades

Partition
mode How the cascade split distance is determined.

478 / 1211

Property Description

Manual: the split is defined manually for each cascade, in percentage of the visible
depth range. A value of 0.1 for a cascade means that the cascade is rendered on the
distance 0.1 * (VisibleDepthMax - VisibleDepthMin)

Logarithmic: the split is automatically calculated using a logarithmic scale

The PSSM factor lets you blend from a pure logarithmic scale (0.0f) to a pure uniform
scale (1.0f)

Depth Bias The amount of depth to add to the sampling depth to avoid the phenomenon of
shadow acne

Normal Offset
Scale

A factor multiplied by the depth bias toward the normal

Debug Displays the shadow map cascades in the Scene Editor

See also
Add a light
Point lights
Ambient lights
Skybox lights
Spot lights
Light probes
Light shafts
Shadows

479 / 1211

Skybox lights
Beginner Designer Programmer

A skybox light is an ambient light emitted by a skybox. Stride analyzes the skybox texture and generates
lighting using image-based lighting (Wikipedia) .

Skybox lights are good for exterior scenes, where the skybox is visible. They're less useful for interior
scenes, such as in rooms where the skybox is only visible through windows; as the skybox light
nonetheless lights the entire room, this creates an unnatural effect.

How skyboxes light the scene
These images show the difference between ambient and skybox lighting on two pure diffuse materials:

Ambient lighting Skybox lighting

These images show the effect of skybox lighting on a material with different metal and gloss properties:

https://en.wikipedia.org/wiki/Image-based_lighting
https://en.wikipedia.org/wiki/Image-based_lighting
https://en.wikipedia.org/wiki/Image-based_lighting

480 / 1211

Material Plastic Metal 100% Gloss 50% Metal 100% Gloss 100%

Notice how the skybox texture colors are reflected.

Set up a skybox light
To use a skybox as a light, you need to add a skybox asset, then select it in a Light component.

1. In the Asset View, click

2. Select Miscellaneous > Skybox.

The Select an asset window opens.

3. Choose a skybox texture from the project assets and click OK.

481 / 1211

Game Studio adds the skybox asset with the texture you specified.
4. Select the entity you want to be the skybox light.

5. In the Property Grid (on the right by default), click Add component and select Light.

6. In the Light component properties, under Light, select Skybox.

482 / 1211

7. Click (Select an asset):

8. Select the skybox asset you want to use as a light source and click OK.

483 / 1211

The Light component uses the skybox asset to light the scene.

Skybox asset properties
When you use a skybox as a light, Stride uses it both in compressed form (spherical harmonics
(Wikipedia)) and as a texture to light different kinds of material. You can control the detail of both in
the skybox asset properties.

Property Description

Texture The texture to use as skybox (eg a cubemap or panoramic texture)

Specular Only Use the skybox only for specular lighting

Diffuse SH order The level of detail of the compressed skybox, used for diffuse lighting (dull
materials). Order5 is more detailed than Order3.

Specular
Cubemap Size

The texture size used for specular lighting. Larger textures have more detail.

Skybox light properties

https://en.wikipedia.org/wiki/Spherical_harmonics
https://en.wikipedia.org/wiki/Spherical_harmonics
https://en.wikipedia.org/wiki/Spherical_harmonics
https://en.wikipedia.org/wiki/Spherical_harmonics

484 / 1211

Property Description

Intensity The light intensity

Culling Mask Which entity groups are affected by the light. By default, all groups are affected

Example code
The following code changes the skybox light and its intensity:

See also
Skyboxes and backgrounds

public Skybox skybox;
public void ChangeSkyboxParameters()
{
 // Get the light component from an entity

var light = Entity.Get<LightComponent>();

// Get the Skybox Light settings from the light component
var skyboxLight = light.Type as LightSkybox;

// Replace the existing skybox
skyboxLight.Skybox = skybox;

// Change the skybox light intensity
light.Intensity = 1.5f;

}

485 / 1211

Spot lights
Beginner Designer Artist

Spot lights produce a cone of light in a specific direction. They're useful for simulating light from objects
such as lampposts and flashlights. They cast shadows. You can control them with scripts or animation to
create dramatic lighting effects.

The Scene Editor shows the position of the spot light with the following icon:

Once selected, the gizmo of the spot light displays its main direction, range and the outer cone:

486 / 1211

Properties

Property Description

Color The color of the light (RGB)

487 / 1211

Property Description

Range The range in world units. Beyond the this range, the light doesn't affect models.

Angle Inner The inner angle of the spot cone where the light intensity influence is at one

Angle Outer The outer angle of the spot cone where the light intensity influence is zero

Shadows
Cast shadows

Filter: Produces soft shadows instead of hard shadows via PCF (Percentage Closer
Filtering)

Size: The size of texture to use for shadowing mapping. Larger textures produce better
shadows edges, but are much more costly. For more information, see Shadows

For spot lights, the default value is medium, as a spot light has usually a medium
visual impact

Bias
Parameters These parameters are used to avoid some artifacts of the shadow map technique.

Depth Bias: The amount of depth to add to the sampling depth to avoid shadow acne

Normal Offset Scale: A factor multiplied by the depth bias toward the normal

Intensity The intensity of the light. The color is multiplied by this value before being sent to the
shader. Note: negative values produce darkness and have unpredictable effects

488 / 1211

Property Description

Culling Mask Defines which entity groups are affected by this light. By default, all groups are
affected

See also
Add a light
Point lights
Ambient lights
Directional lights
Light shafts
Skybox lights
Light probes
Shadows

489 / 1211

Light probes
Beginner Designer Artist

Light probes capture the lighting at the position you place them. They simulate indirect light, the effect
of light bouncing off surfaces and illuminating other surfaces. They can make a dramatic difference to
the mood and appearance of your scene.

The screenshot below shows a point light surrounded by light probes in the Scene Editor. The probes
form 3D areas (shown in the Scene Editor by the yellow wireframe connecting the probes).

490 / 1211

Stride colors pixels within a light probe area to simulate the effect of light bouncing from nearby
surfaces. To find a color for a given pixel, Stride interpolates from the lighting captured by the four
surrounding light probes.

For example, in the screenshot below, notice how the red of the wall is reflected on the other objects. In
the Scene Editor, this is also visible on the surface of the light probes themselves.

491 / 1211

Light probes affect all objects in the area they cover, including static and dynamic objects. You don't
need to enable any extra options on the entities that light probes affect.

1. Enable light probes in the graphics compositor
Stride enables light probes by default in new projects. To make sure light probes are enabled:

1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

The graphics compositor editor opens.

492 / 1211

2. Select the forward renderer node.

3. In the Property Grid (on the right by default), make sure the Light probes checkbox is selected.

For more information about the graphics compositor, see the Graphics compositor page.

2. Create a light probe
Right-click the scene or Entity Tree and select Light > Light probe.

493 / 1211

Alternatively, create an empty entity and add a Light probe component in the Property Grid.

494 / 1211

Light probes appear as spheres in the Scene Editor. Before you capture a light bounce for the first time,
they have a completely black surface.

495 / 1211

3. Place light probes
Light probes must be placed in a way that creates a 3D volume. This means:

You need at least four light probes in the scene — enough to create the four points of a
tetrahedron, as below:

496 / 1211

At least one light probe must be on a different plane from the rest. For example, the probes in the
screenshot below won't work, as they are on a flat plane and create no volume:

497 / 1211

A typical method is to place light probes in a grid across your scene covering a general area, as in the
screenshots below:

498 / 1211

4. Capture lighting
1. In the Scene Editor toolbar, click the lighting options button to open the lighting options menu.

2. Next to Bounces, set the number of light bounces you want to capture.

Multiple bounces simulate the effect of light bouncing between surfaces multiple times. This
generally has the effect of brightening the lighting. Three or four bounces should be enough;

TIP

You can quickly duplicate light probes just like other entities. To do this, select a light probe, hold
Ctrl, and move it with the mouse.



499 / 1211

beyond this, changes are almost unnoticeable. The number of bounces has no impact on runtime
performance.

3. To capture the lighting, click Compute.

You can see the lighting on the surface of the light probes in the Scene Editor.

Reset light probes
To reset the light probes, in the lighting options menu, click Reset. This is useful after you change the
lights in your scene and need to capture the lighting from scratch.

Show and hide light probes in the Scene Editor
Under the gizmo options in the Scene Editor toolbar, use the Light probes checkbox.

500 / 1211

Show and hide light probe volumes in the Scene Editor
Under the gizmo options in the Scene Editor toolbar, use the Light probe volumes checkbox.

501 / 1211

See also
Add a light
Point lights
Ambient lights
Directional lights
Skybox lights
Spot lights
Shadows

502 / 1211

Light shafts
Beginner Designer Artist

Light shafts, also called god rays, are visible rays of light.

Stride light shafts are based on shadow maps and use raymarching rather than post effects, so they're
visible even when the light source isn't. Any light source that casts shadows (ie point lights, directional
lights and spot lights) can cast light shafts.

To create light shafts, use three components together: lights, light shafts, and light shaft bounding
volumes.

1. Enable light shafts in the graphics compositor
By default, Stride disables light shafts in new projects. To enable them:

1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

503 / 1211

The graphics compositor editor opens.
2. Select the forward renderer node.

3. In the Property Grid (on the right by default), next to Light shafts, click (Replace) and select
LightShafts.

504 / 1211

4. Make sure the light shafts checkbox is selected.

For more information about the graphics compositor, see the Graphics compositor page.

2. Add a light shaft component
1. In your scene, select the entity with the light you want to create light shafts. This must be a light

that casts shadows (ie a point light, directional light, or spot light).

2. In the Property Grid, in the Light component properties, make sure the Shadow checkbox is
selected.

505 / 1211

3. Click Add component and select Light shaft.

506 / 1211

Game Studio adds a light shaft component to the entity.

3. Add a bounding volume
The light shaft bounding volume defines the area in which light shafts are created. You can add the
bounding volume to the same entity that has the directional light, but it's usually simpler to add it to a
separate entity.

1. In the Asset View, click Add asset.

2. Under Models, select a model in the shape you want the volume to be. For example, if you use a
cube, light shafts will be created in a cube-shaped area.

507 / 1211

The Select an asset window opens.

3. You don't need a material for the model, so click Cancel to create a model without a material.

508 / 1211

4. In the scene, create an empty entity. For now, it doesn't matter where you put it; you can reposition
it later.

5. With the entity selected, in the Property Grid, click Add component and select light shaft
bounding volume.

6. In the light shaft bounding volume component properties, next to light shaft, click (Select an
asset).

7. In the entity picker, select the entity with the directional light you want to create light shafts and
click OK.

8. In the light shaft bounding volume component properties, next to Model, click (Select an
asset).

9. In the Select an asset window, select the model you created and click OK.

509 / 1211

This model defines the shape of the light shaft bounding volume.
10. Using the transform component, position and scale the entity to cover the area where you want to

create light shafts.

TIP

To show or hide navigation light shaft bounding volumes in the Scene Editor, in the Scene
Editor toolbar, open the gizmo options menu and use the Light shaft bounding volumes
checkbox.



510 / 1211

Light shaft properties

Property Description

Density Higher values produce brighter light shafts

Sample count Higher values produce better light shafts but use more GPU

Process bounding volumes
separately

Preserves light shaft quality when seen through separate bounding
boxes, but uses more GPU

Light shaft graphics compositor properties
To access these properties, in the graphics compositor editor, select the forward renderer node and
expand Light Shafts.

These properties apply globally to all the light shafts in the scene.

511 / 1211

Property Description

Bounding volume buffer
downsample level

Lower values produce more precise volume buffer areas, but
use more GPU

Light buffer downsample level Lower values produce sharper light shafts, but use more GPU

Optimize light shafts
Light shafts work best in dark environments. You can adjust the light and light shaft component
properties to achieve different results — for example, by changing the light color (in the light
component properties) or the light shaft density (in the light shaft component properties).

Multiple light shafts viewed through one another can become visually noisy, as in the screenshot below:

To reduce this effect, in the light shaft component properties, reduce the density and increase the
sample count.

512 / 1211

Alternatively, add additional bounding volumes and process them separately. To do this:

1. Create additional bounding volumes and position them to cover the areas where you want to create
light shafts. Make sure the bounding volumes don't overlap, as this makes light shafts extra-bright.

2. In the light shaft component properties, make sure Process bounding volumes separately is
selected.

See also
Directional lights
Shadows
Graphics compositor

NOTE

Processing bounding volumes separately uses more GPU.


513 / 1211

Shadows
Beginner Designer Artist

Shadows bring significant information and realism to a scene.

Shadows off Shadows on

Only directional lights, point lights, and spot lights can cast shadows.

Shadow maps
Stride uses shadow mapping to render shadows. To understand shadow maps, imagine a camera in the
center of the sun, so you're looking down from the sun's perspective.

514 / 1211

Everything the sun sees is in light. Everything hidden from the sun (ie behind occluders) is in shadow.

From this perspective, Stride creates a shadow map for each light that casts shadows. This tells us how
far each visible pixel is from the light. When Stride renders the scene, it checks the position of each pixel
in the shadow map to learn if it can be "seen" by the light. If the light can see the pixel, the light is
illuminated. If it can't, the pixel is in shadow.

For example, these are shadow maps from the first-person shooter sample included in Stride, generated
by a directional light.

515 / 1211

516 / 1211

The shadow atlas
Shadow maps for each light that casts a shadow are saved in a region of the shadow atlas texture. You
can choose how much of the shadow atlas each light uses. The larger the shadow map, the better the
shadow quality, but the less space you have for shadow maps from other light sources.

NOTE

Note that the directional light in the example above creates four shadow maps, one for each
cascade. For more information, see the Directional lights page.



517 / 1211

Higher-quality shadow (uses a large area of
the shadow atlas)

Lower-quality shadow (uses a smaller area of
the shadow atlas)

Generally, you should give more space to light sources that cast the most visible shadows.

The size of each area in the shadow map depends on several factors:

the shadowMapSizeFactor based on the LightShadowMap.Size property (/8, /4, /2, x1, or x2)

518 / 1211

the projected size of the light in screenspace (lightSize)
for directional lights, the lightSize is equal to the max (screenWidth, screenHeight)
for spot lights, the lightSize is equal to the projection of the projected sphere at the target spot
light cone

the ShadowMapBaseSize equals 1024

The final size of the shadow map is calculated like this:

If you've enabled shadows on a light in your scene, but it isn't casting shadows, make sure there's
enough space in the shadow atlas to create a shadow map for the light. For more information, see
Troubleshooting — Lights don't cast shadows.

See also
Point lights
Directional lights
Spot lights
Troubleshooting — Lights don't cast shadows

// Calculate the size factor
var shadowMapSizeFinalFactor = shadowImportanceFactor * shadowMapSizeFactor;
// Multiply the light projected size by the size factor
var shadowMapSize = NextPowerOfTwo(lightSize * shadowSizeFinalFactor);
// Clamp to a maximum size
shadowMapSize = min(shadowMapSize, ShadowMapBaseSize * shadowSizeFinalFactor);

519 / 1211

Voxel Cone Tracing Global Illumination
How to set up an existing project with Voxel Cone Tracing
GI
Prerequesites:
VoxelGI requires Graphics Profile Level 11 or Higher (Direct3D 11.0 / OpenGL ES 3.1). This can be set in
the Game Settings asset under the Rendering category.

Since Stride is modular, we need to add a reference to the Stride.Voxels plugin:

1. In the Solution Explorer, right-click on the user project

2. Select Add Dependency

3. Select Stride.Voxels in the list and press OK

4. Close and re-open the project.

Graphics Compositor
Voxel Cone Tracing requires several changes to the graphics compositor.

To make this easier, we prepared a graphics compositor ready to use with Voxel GI in the asset
templates:

1. In the Asset View, click

2. Start to type Voxel in the search bar

520 / 1211

3. Select Graphics Compositor (Voxel Cone Tracing)

4. In your Game Settings asset, change the graphics compositor to the newly created one:

Setup scene: Volume and Light
1. In the scene explorer, above the Entity Tree, click the icon and select Lights then Voxel volume

521 / 1211

2. Click the icon again and select Lights then Voxel light

At that point, the scene rendering will likely crash due to the light not being setup correctly (with
error No Voxel Volume Component selected for voxel light.), but that's expected.

3. In the property grid, change the Light Volume to the previously created entity:

4. At that point, you can click the Resume button in scene renderer, and everything should be setup!

Play with it
To do a quick test, you can disable Skybox light (keep only directional light), go in shadow area and see if
some ambient light spread there. You can also play with emissive materials.

Video tutorial
Here's a youtube alternative tutorial made by David Jeske on how to set it up:

522 / 1211

Howto setup Real Time Voxel Global Illumination in Stride3Howto setup Real Time Voxel Global Illumination in Stride3……

https://www.youtube.com/watch?v=NEMZ_HJzJ7w

523 / 1211

Post effects
Post effects are usually applied after your game has completed the rendering of a frame, but before the
UI is drawn. You can use post effects to tune or embellish an image — for example, by producing a more
natural, realistic look, or creating stylized cinematic effects.

Post effects are usually applied to an image. This means they have no connection with vertices or
meshes. They only work with the color values of each pixel (and sometimes their depth).

Typically, you set up a post effect by specifying:

input buffers (eg color, depth)
one or several output buffers
parameters to customize the behavior of the post effect during its rendering pass

Stride provides several predefined post effects. You can also extend the system to create your own color
transform effects.

Add or edit a post effect
You add and edit post effects in the graphics compositor.

1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

NOTE

Depth-aware post effects ̶ ie depth of field, ambient occlusion, and local reflections ̶ nullify MSAA
(multisample anti-aliasing).



524 / 1211

The graphics compositor editor opens.

2. Select the Post-processing effects node.

3. In the Property Grid (on the right by default), enable the post effects you want to use and
configure their properties.

TIP

If there's no post-process effects node, right-click and select Create > post-processing effects
to create one. On the new forward renderer node, on the PostEffects slot, click and drag a
link to the post-processing effects node.



525 / 1211

For details about each post effect and its properties, see the pages below.

In this section
Anti-aliasing
Fog
Outline
Ambient occlusion
Bloom
Bright filter
Color transforms

Film grain

526 / 1211

Gamma correction
ToneMap
Vignetting
Custom color transforms

Depth of field
Lens flare
Light streaks
Local reflections

See also
Graphics compositor

527 / 1211

Anti-aliasing
Anti-aliasing smooths jagged edges. For post-processing, Stride uses fast-approximate anti-aliasing
(FXAA), a single-pass screen-space technique with low performance impact.

Stride also includes MSAA (multisample anti-aliasing), but this isn't a post effect. You can enable MSAA
in the forward renderer properties.

Properties

NOTE

Currently, the anti-aliasing post-effect doesn't work correctly on Android devices.


528 / 1211

Property Description

Dither The amount of dither. Less dither produces better results, but is slower.

Quality The quality of the effect. This directly affects performance.

Input luminance
from alpha

Retrieve the luminance from the alpha channel of the input color. This is slower but
more accurate. If disabled, the effect uses the green component of the input color
as an approximation for the luminance.

See also
Ambient occlusion
Fog
Outline
Bloom
Bright filter
Color transforms
Depth of field
Lens flare
Light streaks

529 / 1211

Ambient occlusion
Intermediate Artist

Ambient occlusion darkens areas where light is occluded by opaque objects, such as corners and crevices. You can
use it to add subtle realism to scenes.

NOTE

As with other depth-aware post effects, enabling ambient occlusion nullifies MSAA (multisample anti-aliasing).


530 / 1211

Properties

531 / 1211

Property Function

Samples The number of pixels sampled to determine how occluded a point is. Higher values reduce noise, but
affect performance. Use with Blur count to find a balance between results and performance.

Projection
scale

Scales the sample radius. In most cases, 1 (no scaling) produces the most accurate result.

Intensity The strength of the darkening effect in occluded areas

Sample bias The angle at which Stride considers an area of geometry an occluder. At high values, only narrow
joins and crevices are considered occluders.

Sample
radius

Use with projection scale to control the radius of the occlusion effect

Blur count The number of times the ambient occlusion image is blurred. Higher numbers reduce noise, but can
produce artifacts.

Blur scale The blur radius in pixels

Edge
sharpness

How much the blur respects the depth differences of occluded areas. Lower numbers create more
blur, but might blur unwanted areas (ie beyond occluded areas).

Buffer size The resolution the ambient occlusion is calculated at. The result is upscaled to the game resolution.
Larger sizes produce better results but use more memory and affect performance.

See also
Anti-aliasing
Fog
Outline
Bloom
Bright filter
Color transforms
Depth of field

532 / 1211

Lens flare
Light streaks
Local reflections

533 / 1211

Bloom
Intermediate Artist

The bloom effect takes the brightest areas of an image, extends them, and bleeds them into the
surrounding areas to simulate bright light overwhelming the camera.

It uses the result of the bright filter effect as input.

Properties

Property Description

Radius Radius of the bloom. Note that high values can affect performance.

Amount Amount/strength of bloom.

Sigma Ratio This affects the fall-off of the bloom. It's the standard deviation (sigma) used in the
Gaussian blur formula when calculating the kernel of the bloom.

Distortion Stretches the image horizontally or vertically.

Afterimage Simulates afterimage (Wikipedia) — the effect of bright spots "burning" into the
retina the longer you look at them, before fading away.

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Gaussian_blur
http://en.wikipedia.org/wiki/Gaussian_blur
http://en.wikipedia.org/wiki/Gaussian_blur
http://en.wikipedia.org/wiki/Afterimage
http://en.wikipedia.org/wiki/Afterimage
http://en.wikipedia.org/wiki/Afterimage

534 / 1211

Property Description

Fade Out
Speed

The factor by which the afterimage (if enabled) decreases at each frame (1 means
infinite persistence, while 0 means no persistence at all)

Sensitivity How sensitive the afterimage (if enabled) is to light. The higher this value is, the
faster the effect is created when the camera focuses on a light.

Expanded
filtering

Reverses FXAA and bloom, and uses a richer convolution kernel during blurring. This
helps reduce temporal shimmering.

See also
Anti-aliasing
Fog
Outline
Ambient occlusion
Bright filter
Color transforms
Depth of field
Lens flare
Light streaks

535 / 1211

Bright filter
Intermediate Artist

The bright filter extracts the brightest areas of an image. The bright filter itself isn't a post effect, but its
result is used later by other effects such as bloom, light streaks, and lens flare.

Properties

Property Description

Threshold The threshold used to determine if a color passes or fails the bright filter.

Steepness Increasing the steepness has a similar effect to increasing the threshold, but causes less
aliasing risk. However, the effect is more washed out. For better temporal stability, if your
scene has HDR spreads, setting the steepness to a value somewhere in the middle of the
expected maximum allows for smooth filtering of bright spots. For sharpness, we
recommend you keep a threshold.

Color The result of the bright filter is modulated by this color value, then affects the color of
other post effects. If set to white, the color isn't modified.

In this section
Anti-aliasing
Fog
Outline
Ambient occlusion
Bloom
Color transforms
Depth of field
Lens flare
Light streaks

536 / 1211

Color transforms
Intermediate Artist Programmer

Color transforms are special effects designed to be combined in a chain at runtime. You can define a
series of color transforms to apply to an image. Each transform uses the previous transform's output as
its own input. At runtime, the series of transforms is squashed into one shader and rendered in a single
draw call for maximum performance.

You can also write your own custom color transforms to create unique effects.

In this section
Film grain
Gamma correction
ToneMap

537 / 1211

Film grain
Beginner Artist Programmer

The film grain adds noise at each frame to simulate the grain of films used in real cameras.

The pattern is procedurally generated and changes at each frame.

To simulate real film grain, the noise should be more visible in areas of medium light intensity, and less
visible in bright or dark areas.

The pattern locally modifies the luminance of the pixels affected.

Properties
Property Description

Amount Amount/strength of the effect

Grain Size Size of the grain

Animate When enabled, the procedural pattern changes at each frame

Luminance Factor How strongly the original pixel luminance is affected by the grain pattern

538 / 1211

See also
Gamma correction
ToneMap
Vignetting

539 / 1211

Gamma correction
Beginner Artist Programmer

All post effect calculations are made in a linear space (ie RGB space). This means doubling the color value
of a pixel doubles the light it emits. This guarantees correct lighting calculations.

However, real-world computer monitors don't behave this way: for dark color values they tend to emit
much less light than they should. For this reason, after our other post effects have been applied, we
apply gamma correction to transform our image from a linear space to a sRGB space (or gamma space).

A buffer in the sRGB space displays correctly on a monitor or a TV screen.

Non-gamma-corrected images have dark areas appear darker than they're supposed to.

Properties
Property Description

Value Gamma value. A typical value is around 2.2.

See also
Gamma correction (Wikipedia)
Film grain
ToneMap
Vignetting
Custom color transforms

http://en.wikipedia.org/wiki/Gamma_correction
http://en.wikipedia.org/wiki/Gamma_correction
http://en.wikipedia.org/wiki/Gamma_correction

540 / 1211

ToneMap
Tone-mapping takes an HDR buffer as input, and remaps its color to a [0, 255] range so we can display
it on a screen.

There are many ways to remap colors from an HDR space to an LDR, depending on the formula you
choose.

Stride supports several tone-mapping operators out of the box:

Reinhard (the classic operator)
Exponential
Logarithmic
Drago
Hejl-Dawson
Mike-Day
U2-Filmic

See also
Film grain
Gamma correction
Vignetting

541 / 1211

Vignetting
Beginner Artist Programmer

The vignetting effect darkens the angles or the borders of an image.

This is an artifact appears with real-world cameras. You can use it in your game to change the mood of
the scene or focus on the center of the image.

Properties
Property Description

Amount Amount/strength of the effect

Radius Radius of the vignette from the center of the screen. A low value thickens the makes
border and narrows the central space

Color The vignette color

See also
Film grain
Gamma correction
ToneMap
Custom color transforms

542 / 1211

Custom color transforms
Advanced Programmer

You can write your own custom color transform effects. For example, you can create:

water droplets on the camera
screen transitions (such as fade-ins and fade-outs)
effects simulating pain or intoxication (eg by applying tints or other effects)
object outlines

To create a custom color transform, you need to write two files: an effect shader (containing the effect
itself), and a C# class (to make the effect accessible in Game Studio).

1. Create a shader
1. Make sure you have the Stride Visual Studio extension installed. This is necessary to convert the

shader files from SDSL (Stride shading language) to .cs files.

2. In Game Studio, in the toolbar, click (Open in IDE) to open your project in Visual Studio.

3. In the Visual Studio Solution Explorer, right-click the project (eg MyGame.Game) and select New
item.

543 / 1211

4. Select Class.

544 / 1211

5. In the Name field, specify a name with the extension .sdsl (eg MyColorTransformShader.sdsl), and
click Add.

545 / 1211

The Stride Visual Studio extension automatically generates a .cs file from the .sdsl file. The Solution
Explorer lists it as a child of the .sdsl file.

6. Open the .sdsl file, remove the existing lines, and write your shader.

546 / 1211

Shaders are written in Stride Shading Language (SDSL), which is based on HLSL. For more
information, see Shading language.

For example, the shader below multiplies the image color by the MyColor parameter:

2. Create a C# class
1. In the Visual Studio Solution Explorer, right-click the project (eg MyGame.Game) and select Add >

New item.

shader MyColorTransformShader : ColorTransformShader
{
 [Color]
 float4 MyColor;

 override float4 Compute(float4 color)
 {
 return color * MyColor;
 }
};

NOTE

Make sure the shader name in the file (eg MyColorTransformShader in the code above) is the
same as the filename (eg MyColorTransformShader.sdsl).



547 / 1211

2. Select Class, specify a name (eg MyColorTransform.cs), and click Add.

548 / 1211

Open the file and write the class.

For example, the code below creates the class MyColorTransform, which uses the shader and supplies
a value for the color MyColor (defined in the shader).

using Stride.Core;
using Stride.Core.Mathematics;
using Stride.Rendering;
using Stride.Rendering.Images;

namespace MyGame
{
 [DataContract("MyColorTransform")]
 public class MyColorTransform : ColorTransform
 {
 /// <inheritdoc />
 public MyColorTransform()
 : base("MyColorTransformShader")
 {
 }

549 / 1211

3. Save all the files in the solution (File > Save All).

4. In Game Studio, reload the assemblies.

The Asset View lists the class and effect shader in the same directory as your scripts (eg
MyGame.Game).

 public Color4 MyColor { get; set; }

 public override void UpdateParameters(ColorTransformContext context)
 {
 Parameters.Set(MyColorTransformShaderKeys.MyColor, MyColor);

 // Copy parameters to parent
 base.UpdateParameters(context);
 }
 }
}

NOTE

Make sure the class name in the file (eg MyColorTransform in the class above) is the same as the
filename (eg MyColorTransform.cs).



550 / 1211

If this happens, restart Game Studio (File > Reload project).

3. Use a custom color transform
1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

The graphics compositor editor opens.

NOTE

In some situations, Game Studio incorrectly detects the shader as a script, as in the screenshot
below:



551 / 1211

2. Select the Post-processing effects node.

3. In the Property Grid, under Color transforms, click (Change) and select your color transform
(eg MyColorTransform).

To enable and disable the effect, use the check box next to the item.

To edit the public properties you specified in the class, expand the item.

552 / 1211

When you adjust the properties, Game Studio updates the effect automatically.

See also
Shading language
Custom shaders
Graphics compositor
Post effects
Color transforms
Stride Visual Studio extension

WARNING

Unfortunately, this part of Game Studio has a memory leak problem. Every time you change a value
in the graphics compositor, it uses 60MB of memory. To prevent Game Studio using too much
memory, we recommend you restart it after you change a property a few times. This is a known
issue.



553 / 1211

Depth of field
Intermediate Artist

By default, rendering produces a very sharp image, which can look artificial. Depth of field effects
simulate the behavior of a real camera lens focusing an object, leaving background and foreground
objects out of focus.

To create the effect, Stride creates several versions of the original image with different intensities of blur,
and interpolates between them. The more layers used, the better the quality, but at performance cost.

Properties

Property Description

Size Size of the bokeh (Wikipedia) , expressed as a factor of the image width so it's

https://en.wikipedia.org/wiki/Bokeh
https://en.wikipedia.org/wiki/Bokeh
https://en.wikipedia.org/wiki/Bokeh

554 / 1211

Property Description

resolution-independent. The bigger the size, the worse the performance

DOF
Areas

Areas of the depth of field. There are three main zones defined by their distance from the
camera: near out-of-focus area (from X to Y), in-focus area (from Y to Z), and far out-of-
focus area (from Z to W)

Technique The technique affects both the performance and the shape of the bokeh.

Circular Gaussian is fast but unrealistic.

Hexagonal Triple Rhombi is heavier than Gaussian.

Hexagonal McIntosh is the heaviest.

https://en.wikipedia.org/wiki/Bokeh
https://en.wikipedia.org/wiki/Bokeh
https://en.wikipedia.org/wiki/Bokeh

555 / 1211

Property Description

Auto
Focus

Automatically updates the DOF areas so the camera focuses on the object at the center
of the screen

See also
Anti-aliasing
Fog
Outline
Ambient occlusion
Bloom
Bright filter
Color transforms
Lens flare
Light streaks

556 / 1211

Lens flare
Intermediate Artist

The lens flare effect simulates the artifacts produced by the internal reflection or scattering of the light
within a real-world lens.

The artifacts are generally aligned along the line defined by the original bright spot and the center of the
screen. The most noticeable artifact is often exactly symmetrical to the real spot light with respect to the
center of the screen.

Properties

Property Description

Amount Strength of the light streak

Color Aberration Strength Strength of the color aberration artifacts

Halo Factor Strength of the main artifact

See also
Anti-aliasing

557 / 1211

Fog
Outline
Ambient occlusion
Bloom
Bright filter
Color transforms
Depth of field
Light streaks

558 / 1211

Light streaks
Intermediate Artist

Similar to the bloom effect, the light streak effect uses the result of the bright filter to make the bright
areas bleed along a direction. It creates star-pattern beams from the light point.

Properties

Property Description

Amount Strength of the light streak

Streak Count Number of beams emitted by a bright point. The more streaks, the higher the
performance cost.

Attenuation How fast the light attenuates along a streak (0 for immediate attenuation, 1 for
no attenuation)

Phase Phase (angle) of the star-like pattern

559 / 1211

Property Description

Color Aberration
Strength

Strength of the color aberration along the streaks.

Notice the streaks involve multiple colors (yellow, purple, green, pink).

Is Anamorphic Simulates the behavior of anamorphic lenses, widely used in Hollywood
productions.

The effect above is achieved by using two light streaks with a phase of 0,
enabling anamorphic mode, and slightly distorting the bright pass result
horizontally.

See also
Anti-aliasing
Fog
Outline
Ambient occlusion
Bloom
Bright filter
Color transforms
Depth of field
Lens flare

560 / 1211

Local reflections
Intermediate Artist Programmer

When local reflections are enabled, the scene is reflected in glossy materials.

Local reflections dramatically increase the realism of scenes. They're most obvious when they reflect
bright spots onto other surfaces. The effect is especially striking in dark scenes, which have high contrast,
and in conditions with lots of reflective surfaces and highlights.

WARNING

Currently, local reflections aren't compatible with mobile platforms and cause crashes.


NOTE

As with other depth-aware post effects, enabling local reflections nullifies MSAA (multisample anti-
aliasing).



561 / 1211

Where to use local reflections
Local reflections are a screenspace effect, which means they only reflect objects that are already on the
screen; they don't reflect objects that are offscreen or obscured by other objects. Put simply, if the
camera can't see an object at that moment, then that object isn't reflected.

This means local reflections work well in enclosed areas such as corridors and rooms, but less well in
open spaces, where you'd expect more of the world to be reflected. They also work best on bumpy
surfaces, which hide imperfections in reflections, and less well on very glossy, mirror-like surfaces.
Missing reflections are noticeable in mirrors, for example.

Algorithm
Stride processes local reflections in four passes:

1. The raycast pass performs screenspace ray tracing over the depth buffer to find intersections.

2. The resolve pass resolves the rays and calculates the reflection color.

3. The temporal pass uses the history buffer to blur constantly between the current and previous
frames. This reduces noise in the reflection, but produces an animated "jittering" effect that is
sometimes noticeable. You can adjust or disable this step to create the effect you want.

4. The combine pass mixes the results of the effect with the rendered image.

Enable local reflections
To use local reflections, enable the effect in the graphics compositor.

562 / 1211

1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

The graphics compositor editor opens.

2. Select the post-processing effects node.

TIP

If there's no post-process effects node, right-click and select Create > post-processing effects
to create one. On the new forward renderer node, on the PostEffects slot, click and drag a
link to the post-processing effects node.



563 / 1211

3. In the Property Grid (on the right by default), enable Local reflections.

After you enable local reflections, the scene is reflected in glossy materials. You can use the gloss
threshold (see below) to set how glossy materials should be to reflect the scene.

Properties
The local reflections properties affect all reflections in the scene.

Raycast properties

BRDF bias
The reflection spread. Higher values provide finer, more mirror-like reflections. This setting has no effect
on performance. The default value is 0.82.

564 / 1211

BRDF: 0.6 BRDF: 0.8 BRDF: 1.0

Depth resolution
Downscales the depth buffer to optimize raycast performance. Full gives better quality, but half improves
performance. The default is half.

Gloss threshold
The amount of gloss a material must have to reflect the scene. For example, if this value is set to 0.4,
only materials with a gloss map value of 0.4 or above reflect the scene. The default value is 0.55.

For more information about gloss, see Materials — geometry attributes.

Max steps
The maximum number of raycast steps allowed per pixel. Higher values produce better results, but worse
performance. The default value is 60.

NOTE

If the Invert check box is selected in the material micro surface properties, the opposite is true. For
example, if the reflections gloss value is set to 0.4, only materials with a gloss map value of less
than 0.4 reflect the scene.



565 / 1211

Resolution
The raycast resolution. There are two options: full and half. Full gives better quality, but half improves
performance. The default value is half.

Ray start bias
The offset of the raycast origin. Lower values produce more correct reflection placement, but produce
more artifacts. We recommend values of 0.03 or lower. The default value is 0.01.

Start bias: 0.01 Start bias: 0.1

Larger gap between reflection and box (more
correct)

Narrower gap between reflection and box (less
correct)

Resolve properties

Resolution

NOTE

This is the most important property for controlling performance.


566 / 1211

Calculates reflection color using raycast results. There are two options: full and half. Full gives the best
results, but half improves performance. The default value is full.

Samples
The number of rays used to resolve the reflection color. Higher values produce less noise, but worse
performance. The default value is 4.

Reduce highlights
Reduces the brightness of particularly bright areas of reflections. This has no effect on performance.

Reduce highlights: on Reduce highlights: off

Edge fade factor
The point at which the far edges of the reflection begin to fade. This has no effect on performance. The
default value is 0.1.

Edge fade factor: 0 Edge fade factor: 0.5

Use color buffer mips

567 / 1211

Downscales the input color buffer and uses blurred mipmaps when resolving the reflection color. This
produces more realistic results by blurring distant parts of reflections in rough (low-gloss) materials. It
also improves performance on most platforms. However, it uses more memory, so you might want to
disable it on (for example) mobile platforms.

Temporal properties

Temporal effect
Enables the temporal pass. This reduces noise, but produces an animated "jittering" effect that is
sometimes noticeable. The temporal effect is enabled by default.

Temporal effect: on Temporal effect: off

568 / 1211

Response
How quickly reflections blend between the reflection in the current frame and the history buffer. Lower
values produce reflections faster, but with more jittering. Note the jittering in the reflection below:

If the camera in your game doesn't move much, we recommend values closer to 1. The default value is
0.9.

Scale
The intensity of the temporal effect. Lower values produce reflections faster, but with more noise. The
default value is 4.

See also
Materials
Materials — geometry attributes
Post effects
Graphics compositor

NOTE

If the temporal effect is disabled, the other temporal properties have no effect.


569 / 1211

Graphics compositor
Advanced Programmer

The graphics compositor organizes how scenes are rendered. You can use it to customize almost every
part of the rendering pipeline. For example, you can:

use one or multiple cameras
filter entities
render to one or more render textures, with different viewports
set HDR or LDR rendering
apply post effects to a render target, selected before or after rendering a camera
clear a render target or clear only the depth buffer (eg to always render on top of a render target in
a FPS game, or render the UI)
modify the compositor from scripts (or any animation system), for example to modify post effects

Create a graphics compositor
Stride includes a graphics compositor when you create a project.

If you need to create another graphics compositor, in the Asset View, click Add asset and select Misc >
Graphics compositor.

NOTE

This page requires a basic understanding of graphics pipelines.


570 / 1211

You can choose one of two presets:

Level 10 (HDR with post effects)
Level 9 (LDR with no post effects)

Set the graphics compositor
You can have multiple graphics compositors in your project, but you can only use one compositor at a
time. At runtime, Stride uses the graphics compositor you specify in Game Settings.

You can also change the graphics compositor at runtime in a script.

Open the graphics compositor editor
You customize the graphics compositor in the graphics compositor editor.

571 / 1211

In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

The graphics compositor editor opens.

Nodes
The graphics compositor editor is divided into nodes. You can set the properties of each node in the
Property Grid on the right.

Entry points
In the Entry Points node, you configure the pipeline for each entry point.

NOTE

The graphics compositor editor is an experimental feature.


572 / 1211

There are three entry points:

Game, to render your game
Editor, to render the Game Studio editor
Single view (referred to as Utility in the Property Grid), to render other things, such as light probes
and cubemaps

Each entry point can use a separate rendering pipeline. For example, the game and editor might share
the same forward renderer and post-processing effects while your single view uses a separate forward
renderer.

Connect an entry point to a renderer
1. Select the Entry point node.

2. In the Property Grid, next to the entry point you want to connect (Editor, Game or Utility), select
the renderer you want to connect to.

573 / 1211

For information about the different renderers, see Scene renderers.

Forward renderer
In a typical setup, the forward renderer renders almost everything in your scene. It renders, in order:

1. opaque objects
2. transparent objects
3. post effects

The forward renderer is also where you set virtual reality options. You configure the forward renderer
properties in the forward entry node.

Debug renderer
The debug renderer is used by scripts to print debug information. For more information, see Debug
renderers.

Post-processing effects
The post-processing effects node comes after the forward renderer and controls the post effects in
your game. For more information, see post-processing effects.

Create a node
To create a node, right-click the graphics compositor editor and select the type of node you want to
create:

574 / 1211

See also
Camera slots
Scene renderers

Custom scene renders
Debug renderers

575 / 1211

Scene renderers
Intermediate Designer

Scene renderers let you customize the collect and draw phases of the rendering. For more information
about these stages, see Render features.

You select scene renderers in the entry points node properties.

For more information about selecting renderers, see the Graphics compositor page.

Clear
Clears a frame, with a solid color.

NOTE

Currently, all renderers must have a camera, or be a child of a renderer that has a camera. This
applies even to renderers that don't necessarily use cameras, such as the single stage renderer (eg
to render a UI).



576 / 1211

Properties
Property Description

Clear flags
What to clear in the render frame (Color only, Depth only, or Color and depth)

Color The color used to clear the color texture of the render frame. Only valid when Clear
Flags is set to Color or Color and depth

Depth
value

The depth value used to clear the depth texture of the render frame

Stencil
value

The stencil value used to clear the stencil texture of the render frame

Camera renderer
Uses Child to render a view from a camera slot. The render camera renderer takes the input from a
camera in the scene so it can be displayed somewhere.

Properties

577 / 1211

Property Description

Camera Specify a camera slot to render from

Child Specify a renderer for the camera (eg a forward renderer or a custom renderer)

Scene renderer collection
The scene renderer collection executes multiple renderers (eg camera renderer, render texture, etc) in
sequence. This lets you set multiple renderers for an entry point. You can add as many renderers to the
collection as you need.

To add a renderer to the collection, next to Children, click (Add) and select the renderer you want to
add.

Forward renderer
In a typical setup, the forward renderer renders almost everything in your scene. It renders, in order:

1. opaque objects
2. transparent objects
3. post effects

The forward renderer is also where you set VR options. For more information, see Virtual reality.

You configure the forward renderer properties in the forward entry node.

NOTE

Stride executes the renderers in list order.


578 / 1211

Single stage renderer

Force aspect ratio scene renderer
Uses ForceAspectRatioSceneRenderer to force an aspect ratio and applies a letterbox if the ratio is
different from the screen. Use this before the render camera.

Property Description

Child Specify a renderer for the camera (eg a forward renderer or a custom renderer)

Fixed aspect ratio The aspect ratio to force the view to

Force aspect ratio Enable forced aspect ratio

Render texture
Renders to a render texture, which you can display in your scene (eg to display security camera footage
on a screen). For more information, see Render textures.

579 / 1211

Property Description

Child Specify a renderer for the camera (eg a forward renderer or a custom renderer)

Render texture Specify a texture to render to

Render mask

The render mask filters which groups are rendered. You can use it to only render particular models. For
more information, see Render groups and render masks

See also

580 / 1211

Graphics compositor
Camera slots
Custom scene renders
Debug renderers
Render groups and render masks

581 / 1211

Custom scene renderers
To create a custom renderer, directly implement the ISceneRenderer or use a delegate through the
DelegateSceneRenderer.

Implement an ISceneRenderer
The SceneRendererBase provides a default implementation of ISceneRenderer. It automatically binds the
output defines on the renderer to the GraphicsDevice before calling the DrawCore method.

Use a delegate
To develop a renderer and attach it to a method directly, use DelegateSceneRenderer:

See also
Scene renderers

[DataContract("MyCustomRenderer")]
[Display("My Custom Renderer")]
public sealed class MyCustomRenderer : SceneRendererBase
{
 // Implements the DrawCore method
 protected override void DrawCore(RenderContext context, RenderDrawContext drawContext)
 {
 // Access to the graphics device
 var graphicsDevice = drawContext.GraphicsDevice;
 var commandList = drawContext.CommandList;
 // Clears the current render target
 commandList.Clear(commandList.RenderTargets[0], Color.CornflowerBlue);
 // [...]
 }
}

var sceneRenderer = new DelegateSceneRenderer(
 (drawContext) =>
 {
 // Access to the graphics device
 var graphicsDevice = drawContext.GraphicsDevice;
 var commandList = drawContext.CommandList;
 // Clears the current render target
 commandList.Clear(commandList.RenderTargets[0], Color.CornflowerBlue);
 // [...]
 });

582 / 1211

Debug renderers

583 / 1211

Debug renderer
The debug renderer is a placeholder renderer you can use with scripts to print debug information. By
default, the debug renderer is included in the graphics compositor as a child of the game entry point.

Create a debug renderer
To create a debug renderer, right-click the graphics compositor editor and select Debug renderer.

Connect a debug renderer to an entry point
In most cases, you want the debug renderer to share an entry point with one or more forward renderers.
To do this, use a scene renderer collection and select the debug renderer and forward renderer(s) as
children, as in the screenshot below:

584 / 1211

Use a debug renderer
To use the debug renderer, reference it in your script and add debug render stages.

For example, the Debug physics shapes script included in Stride uses the debug renderer to display
collider shapes at runtime.

using System.Linq;
using System.Threading.Tasks;
using Stride.Input;
using Stride.Engine;
using Stride.Physics;
using Stride.Rendering;
using Stride.Rendering.Compositing;

namespace MyGame
{
 public class DebugPhysicsShapes : AsyncScript
 {
 public RenderGroup RenderGroup = RenderGroup.Group7;

 public override async Task Execute()
 {
 //set up rendering in the debug entry point if we have it
 var compositor = SceneSystem.GraphicsCompositor;
 var debugRenderer =
 ((compositor.Game as SceneCameraRenderer)?.Child as
SceneRendererCollection)?.Children.Where(
 x => x is DebugRenderer).Cast<DebugRenderer>().FirstOrDefault();
 if (debugRenderer == null)

585 / 1211

 return;

 var shapesRenderState = new RenderStage("PhysicsDebugShapes", "Main");
 compositor.RenderStages.Add(shapesRenderState);
 var meshRenderFeature = compositor.RenderFeatures.OfType<MeshRenderFeature>
().First();
 meshRenderFeature.RenderStageSelectors.Add(new SimpleGroupToRenderStageSelector
 {
 EffectName = "StrideForwardShadingEffect",
 RenderGroup = (RenderGroupMask)(1 << (int)RenderGroup),
 RenderStage = shapesRenderState,
 });
 meshRenderFeature.PipelineProcessors.Add(new WireframePipelineProcessor {
RenderStage = shapesRenderState });
 debugRenderer.DebugRenderStages.Add(shapesRenderState);

 var simulation = this.GetSimulation();
 if (simulation != null)
 simulation.ColliderShapesRenderGroup = RenderGroup;

 var enabled = false;
 while (Game.IsRunning)
 {
 if (Input.IsKeyDown(Keys.LeftShift) && Input.IsKeyDown(Keys.LeftCtrl)
&& Input.IsKeyReleased(Keys.P))
 {
 if (simulation != null)
 {
 if (enabled)
 {
 simulation.ColliderShapesRendering = false;
 enabled = false;
 }
 else
 {
 simulation.ColliderShapesRendering = true;
 enabled = true;
 }
 }
 }

 await Script.NextFrame();
 }
 }
 }
}

586 / 1211

For information about how to use this script, see Colliders.

See also
Scene renderers

Custom scene renders
Physics — Colliders

587 / 1211

Render textures
Intermediate Designer Programmer

With render textures, you can send a camera's view to a texture and use the texture on objects in your
scene. For example, you can use this to display part of your scene on a TV screen in the same scene, such
as security camera footage.

For API details, see Textures and render textures.

1. Create an extra camera slot
Camera slots link the graphics compositor to the cameras in your scene. You need to add a camera slot
for a new camera to use. For more information about camera slots, see Camera slots.

1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

The graphics compositor editor opens.

2. On the left, under Camera slots, click (Add).

588 / 1211

Game Studio adds a new camera slot.

2. Create a camera and bind it to the slot
1. In your scene, add a camera component to the entity you want to be your camera.

TIP

To rename a camera slot, double-click it in the list and type a new name.


589 / 1211

2. Position the entity so the camera captures the area of the scene you want to render to a texture.

3. In the entity Property Grid, enable the Camera component using the checkbox.

4. in the Camera component properties, under Slot, select the slot you created in the previous step.

590 / 1211

3. Create a render target texture
In the Asset View, click Add asset and select Texture > Render target.

Game Studio adds a render target texture to your project assets.

591 / 1211

4. Place the render target texture in the scene
There are various ways you can use the render target texture.

Example 1: Use the render target texture in a material
1. In the material properties, under Shading, next to Diffuse map, click (Replace) and select

Texture.

2. Click (Select an asset).

3. Select the Render texture asset and click OK.

592 / 1211

Example 2: Use the render target texture in a sprite component
1. Create an entity and position it where you want to display the texture.

2. With the entity selected, in the Property Grid, click Add component and add a sprite component.

593 / 1211

3. In the sprite component properties, next to Source, click (Replace) and select Texture.

4. Click (Select an asset).

594 / 1211

The Select an asset window opens.
5. Select the Render texture asset and click OK.

6. If you don't want the texture to be semi-transparent, under the Source properties, clear the Is
transparent checkbox.

5. Set up the graphics compositor
To display a render texture in your scene, you need at least two renderers:

595 / 1211

one to render your main camera
one to render the second camera to the render texture

This page describes the simplest way to do this from scratch, using two cameras and two renderers.
Depending on your pipeline, you might need to create a different setup.

1. In the graphics compositor editor, select the Entry points node.

2. In the Property Grid on the right, next to Game renderer, click (Replace) and select None to
delete your existing renderers.

WARNING

These instructions involve deleting your existing renderers for the game entry point. You might want
to make a backup of your project in case you want to restore your pipeline afterwards.



596 / 1211

3. Click (Replace) and select Scene renderer collection.

This lets you set multiple renderers for the game entry point.

1. Render the main camera
1. Under Game renderer, next to Children, click (Add) and select Camera renderer.

597 / 1211

2. Next to Camera, click (Replace) and select your main game camera.

3. Next to Child, select the renderer for your main game camera (eg the forward renderer).

598 / 1211

2. Render the texture
1. Under Game renderer, next to Add to Children, click (Add) and select Camera renderer.

599 / 1211

Game Studio adds a camera renderer to the list of children.

2. Expand the second camera renderer.

600 / 1211

3. Next to Camera, click (Replace) and select the camera you want to render to a texture.

4. Next to Child, click (Replace) and select RenderTextureSceneRenderer.

601 / 1211

5. Under the RenderTextureSceneRenderer, next to Child, click (Replace) and select the renderer
for your main game camera (eg the forward renderer).

602 / 1211

6. Next to Render texture, click (Select an asset).

The Select an asset window opens.

7. Select the render texture and click OK.

603 / 1211

Game Studio adds the render texture to the renderer.

604 / 1211

Your game is now ready to render the camera to the texture in the scene.

Set a render mask
You can use the render mask to filter which groups are rendered in the render texture.

Next to Render mask, click Change values and select the render groups you want the camera to render.

For more information, see Render groups and masks.

Sample
For an example of rendering to a texture in a project, see the Animation sample included with Stride.

See also
Cameras
Camera slots
Low-level API – Textures and render textures
Render groups and masks
Graphics compositor

605 / 1211

Scene renderers

606 / 1211

Render groups and masks
Intermediate Designer

With render groups and render masks, you can choose which parts of your scene are rendered by
different cameras. For example, you can have a model be visible to Camera A but invisible to Camera B.

Set a render group
1. In the scene, select the entity with the component (such as a model or UI component) you want to

add to a render group.

2. In the Property Grid, next to Render group, select the group you want the entity to belong to.

Set a render mask
The render mask filters which groups are rendered.

1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

607 / 1211

The Graphics Compositor Editor opens.

2. Select the Entry points node.

608 / 1211

3. In the Property Grid, expand the renderer you want to render the model.

4. Next to Render mask, click Change values and select the render groups you want the camera to
render.

609 / 1211

See also
Cameras
Camera slots
Graphics compositor
Scene renderers
Render textures

610 / 1211

Effects and shaders
Stride uses a programmable shading pipeline. You can write custom shaders, create Effects from them,
and use them for drawing. The EffectSystem class provides an easy way to load an effect.

Load an effect
Use:

You can then bind the effect as pipeline state.

An effect also often defines a set of parameters. To set these, you need to bind resources before
drawing.

Shaders
Shaders are authored in the Stride's shading language, which is an extension of HLSL. They provide true
composition of modular shaders via inheritance, shader mixins and automatic weaving of shader in-out
attributes.

Effects
Effects in Stride use C#-like syntax to further combine shaders. They provide conditional composition of
shaders to generate effect permutations.

As some platforms can't compile shaders at runtime (eg iOS, Android, etc), effect permutation files
(.sdeffectlog) are used to enumerate all permutations ahead of time.

Target everything
Stride shaders are converted automatically to the target graphics platform — either plain HLSL for
Direct3D, GLSL for OpenGL, or SPIR-V for Vulkan platforms.

For mobile platforms, shaders are optimized by a GLSL optimizer to improve performance.

In this section

var myEffect = EffectSystem.LoadEffect("MyEffect").WaitForResult();

NOTE

Converting to OpenGL Compute shaders are not supported in SDSL yet.


611 / 1211

Effect language
Shading language

Shader classes, mixins and inheritance
Composition
Compile shaders
Templates
Shader stage input/output automatic management

Custom shaders

612 / 1211

Effect language
Create shaders in C#
You can create a shader at runtime with ShaderSource objects. Shaders come in three types:

ShaderClassSource correspond to a unique shader class
ShaderMixinSource mix several ShaderSource, set preprocessor values, define compositions
ShaderArraySource are used for arrays of compositions

This method produces shaders at runtime. However, many platforms don't support HLSL and have no
ability to compile shaders at runtime. Additionally, the approach doesn't benefit from the reusability of
mixins.

Stride Effects (SDFX)
Many shaders are variations or combinations of pre-existing shaders. For example, some meshes cast
shadows, others receive them, and others need skinning. To reuse code, it's a good idea to select which
parts to use through conditions (eg "Skinning required"). This is often solved by "uber shaders":
monolithic shaders configured by a set of preprocessor parameters.

Stride offers the same kind of control, keeping extensibility and reusability in mind. The simple code
blocks defined by shader classes can be mixed together by a shader mixer. This process can use more
complex logic, described in Stride Effect (*.sdfx) files.

General syntax
An .sdfx file is a small program used to generate shader permutations. It takes a set of parameters (key
and value in a collection) and produces a ShaderMixinSource ready to be compiled.

An example .sdfx file:

using Stride.Effects.Data;

namespace StrideEffects
{

params MyParameters
{

bool EnableSpecular = true;
};

effect BasicEffect
{

using params MaterialParameters;
using params MyParameters;

613 / 1211

Add a mixin
To add a mixin, use mixin <mixin_name>.

Use parameters
The syntax is similar to C#. The following rules are added:

When you use parameter keys, add them using params <shader_name>. If you don't, keys are treated
as variables.

You don't need to tell the program where to check the values behind the keys. Just use the key.

mixin ShaderBase;
mixin TransformationWAndVP;
mixin NormalVSStream;
mixin PositionVSStream;
mixin BRDFDiffuseBase;
mixin BRDFSpecularBase;
mixin LightMultiDirectionalShadingPerPixel<2>;
mixin TransparentShading;
mixin DiscardTransparent;

if (MaterialParameters.AlbedoDiffuse != null)
{

mixin compose DiffuseColor = ComputeBRDFDiffuseLambert;
mixin compose albedoDiffuse = MaterialParameters.AlbedoDiffuse;

}

if (MaterialParameters.AlbedoSpecular != null)
{

mixin compose SpecularColor = ComputeBRDFColorSpecularBlinnPhong;
mixin compose albedoSpecular = MaterialParameters.AlbedoSpecular;

}
};

}

using params MaterialParameters;

if (MaterialParameters.AlbedoDiffuse != null)
{

mixin MaterialParameters.AlbedoDiffuse;
}

614 / 1211

The parameters behave like any variable. You can read and write their value, compare their values, and
set template parameters. Since some parameters store mixins, they can be used for composition and
inheritance, too.

Custom parameters
You can create your own set of parameters using a structure definition syntax.

Compositions
To add a composition, assign the composition variable to your mixin with the syntax below.

Partial effects
You can also break the code into sub-mixins to reuse elsewhere with the syntax below.

NOTE

Even if they're defined in the SDFX file, don't forget the using statement when you want to use
them.



params MyParameters
{

bool EnableSpecular = true; // true is the default value
}

// albedoSpecular is the name of the composition variable in the mixin
mixin compose albedoSpecular = ComputeColorTexture;

or

mixin compose albedoSpecular = MaterialParameters.AlbedoSpecular;

partial effect MyPartialEffect
{

mixin ComputeColorMultiply;
mixin compose color1 = ComputeColorStream;
mixin compose color2 = ComputeColorFixed;

}

// to use it

615 / 1211

You can use the MyPartialEffect mixin like any other mixin in the code.

See also
Shading language

mixin MyPartialEffect;
mixin compose myComposition = MyPartialEffect;

616 / 1211

Shading language
Stride provides a superset of the HLSL Shading language , bringing advanced and higher level language
constructions, with:

extensibility to allow shaders to be extended easily using object-oriented programming concepts
such as classes, inheritance, and composition
modularity to provide a set modular shaders each focusing on a single rendering technique, more
easily manageable
reusability to maximize code reuse between shaders

Stride Shading Language (SDSL) is automatically transformed to an existing shading language (HLSL,
GLSL, GLSL ES).

In this section
Shader classes, mixins, and inheritance
Composition
Templates
Shader stage input/output automatic management

http://msdn.microsoft.com/en-us/library/windows/desktop/bb509561%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb509561%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb509561%28v=vs.85%29.aspx

617 / 1211

Shader classes, mixins and inheritance
Stride Shading Language (SDSL) is an extension of HLSL, which makes it closer to C# syntax and
concepts. The language is object-oriented:

shader classes are the foundation of the code
shader classes contain methods and members
shader classes can be inherited, methods can be overridden
member types can be shader classes

SDSL uses an original way to handle multiple inheritance. Inheritance is performed through mixins, so
the order of inheritance is crucial:

the order of inheritance defines the actual implementation of a method (the last override)
if a mixin appears several times in the inheritance, only the first occurrence is taken into account (as
well as its members and methods)
to can call the previous implementation of a method, use base.<method name>(<arguments>)

Keywords
SDSL uses the keywords as HLSL, and adds new ones:

stage: method and member keyword. This keyword makes sure the method or member is only
defined once and is the same in the compositions.
stream: member keyword. The member is accessible at every stage of the shader. For more
information, see Automatic shader stage input/out.
streams: sort of global structure storing variables needed across several stages of the shader. For
more information, see Automatic shader stage input/out.
override: method keyword. If this keyword is missing, the compilation returns an error.
abstract: used in front of a method declaration (without a body).
clone: method keyword. When a method appears several times in the inheritance tree of a shader
class, this keyword forces the creation of multiple instances of the method at each level of the
inheritance instead of one. For more information, see Composition.
Input: for geometry and tessellation shaders. For more information, see Shader stages.
Output: for geometry and tessellation shaders. For more information, see Shader stages.
Input2: for tessellation shaders. For more information, see Shader stages.
Constants: for tessellation shaders. For more information, see Shader stages.

Abstract methods
Abstract methods are available in SDSL. They should be prefixed with the abstract keyword. You can
inherit from a shader class with abstract methods without having to implement them; the compiler will

618 / 1211

simply produce a harmless warning. However, you should implement it in your final shader to prevent a
compilation error.

Annotations
Like HLSL, annotations are available in SDSL. Some of the most useful ones are:

[Color] for float4 variables. The ParameterKey will have the type Color4 instead of Vector4. It also
specifies to Game Studio that this variable should be treated as a color, so you can edit it in Game
Studio.
[Link(...)] specifies which ParameterKey to use to set this value. However, an independent default
key is still created.
[Map(...)] specifies which ParameterKey to use to set this value. No new ParameterKey is created.
[RenameLink] prevents the creation of a ParameterKey. It should be used with [Link()].

Example code: annotations

Example code: inheritance

shader BaseShader
{

[Color] float4 myColor;

[Link("ProjectKeys.MyTextureKey")]
[RenameLink]
Texture2D texture;

[Map("Texturing.Texture0")] Texture2D defaultTexture;

};

shader BaseInterface
{

abstract float Compute();
};

shader BaseShader : BaseInterface
{

float Compute()
{

return 1.0f;
}

};

shader ShaderA : BaseShader

619 / 1211

Example code: the importance of inheritance order
Notice what happens when we change the inheritance order between ShaderA and ShaderB.

{
override void Compute()
{

return 2.0f;
}

};

shader ShaderB : BaseShader
{

override void Compute()
{

float prevValue = base.Compute();
return (5.0f + prevValue);

}
};

shader MixAB : ShaderA, ShaderB
{
};

shader MixBA : ShaderB, ShaderA
{
};

// Resulting code (representation)

shader MixAB : BaseInterface, BaseShader, ShaderA, ShaderB
{

float Compute()
{

// code from BaseShader
float v0 = 1.0f;

// code from ShaderA
float v1 = 2.0f;

// code from ShaderB
float prevValue = v1;
float v2 = 5.0f + prevValue;

return v2; // = 7.0f

620 / 1211

Static calls
You can also use a variable or call a method from a shader without having to inherit from it. To do this,
use <shader_name>.<variable or method_name>. It behaves the same way as a static call.

Note that if you statically call a method that uses shader class variables, the shader won't compile. This is
a convenient way to only use a part of a shader, but this isn't an optimization. The shader compiler
already automatically removes any unnecessary variables.

Code example: static calls

}
};

shader MixBA : BaseInterface, BaseShader, ShaderA, ShaderB
{

float Compute()
{

// code from BaseShader
float v0 = 1.0f;

// code from ShaderB
float prevValue = v0;
float v1 = 5.0f + prevValue;

// code from ShaderA
float v2 = 2.0f;

return v2; // = 2.0f
}

};

shader StaticClass
{

float StaticValue;
float StaticMethod(float a)
{

return 2.0f * a;
}

// this method uses a
float NonStaticMethod()
{

return 2.0f * StaticValue;
}

621 / 1211

See also
Effect language
Shading language index

Composition
Templates
Shader stage input/output automatic management
Shader stages

};

// this shader class is fine
shader CorrectStaticCallClass
{

float Compute()
{

return StaticClass.StaticValue * StaticMethod(5.0f);
}

};

// this shader class won't compile since the call is not static
shader IncorrectStaticCallClass
{

float Compute()
{

return StaticClass.NonStaticMethod();
}

};

// one way to fix this
shader IncorrectStaticCallClassFixed : StaticClass
{

float Compute()
{

return NonStaticMethod();
}

};

622 / 1211

Composition
Beginner Programmer

In addition to the inheritance system, SDSL introduces the concept of composition. A composition is a
member whose type is another shader class. It's defined the same way as variables.

You can compose with an instance of the desired shader class or an instance of a shader class that
inherits from the desired one.

Example code
shader CompositionBase
{

float4 Compute()
{

return float4(0.0);
}

};

shader CompositionShaderA : CompositionBase
{

float4 myColor;

override float4 Compute()
{

return myColor;
}

};

shader CompositionShaderB : CompositionBase
{

float4 myColor;

override float4 Compute()
{

return 0.5 * myColor;
}

};

shader BaseShader
{

CompositionBase Comp0;
CompositionBase Comp1;

623 / 1211

The compositions are compiled in their own context, meaning that the non-stage variables are only
accessible within the composition. It's also possible to have compositions inside compositions.

Example code: access root context
If you want to access the root compilation context, you can use the following format:

This is error-prone, since CompositionShaderC expects BaseShader to be available in the root context.

Example code: array of compositions
You can also create an array of compositions the same way you use an array of values. Since there's no
way to know beforehand how many compositions there are, you should iterate using a foreach
statement.

float4 GetColor()
{

return Comp0.Compute() + Comp1.Compute();
}

};

shader CompositionShaderC : CompositionBase
{

BaseShader rootShader = stage;

float4 GetColor()
{

return rootShader.GetColor();
}

};

shader BaseShaderArray
{

CompositionBase Comps[];

float4 GetColor()
{

float4 resultColor = float4(0.0);

foreach (var comp in Comps)
{

resultColor += comp.Compute();
}

624 / 1211

Example code: stage behavior
The behavior of the stage keyword is straightforward: only one instance of the variable or method is
produced.

Example code: stage member behavior

return resultColor;
}

};

shader BaseShader
{

stage float BaseStageValue;
float NonStageValue;

};

shader TestShader : BaseShader
{

BaseShader comp0;
BaseShader comp1;

};

// resulting shader (representation)
shader TestShader
{

float BaseStageValue;
float NonStageValue;
float comp0_NonStageValue;
float comp1_NonStageValue;

};

shader BaseShader
{

stage float BaseStageMethod()
{

return 1.0;
}

float NonStageMethod()
{

return 2.0;
}

};

625 / 1211

Keep in mind that even in composition, you can call for base methods, override them, and so on.
Overriding happens in the same order as the compositions.

This behavior is useful when you need a value in multiple composition but you only need to compute it
once (eg the normal in view space).

Clone behavior
The clone keyword has a less trivial behavior. It prevents the stage keyword to produce a unique
method.

shader TestShader : BaseShader
{

BaseShader comp0;
BaseShader comp1;

};

// resulting shader (representation)
shader TestClass
{

float BaseStageMethod()
{

return 1.0;
}

float NonStageMethod()
{

return 2.0;
}
float comp0_NonStageMethod()
{

return 2.0;
}
float comp1_NonStageMethod()
{

return 2.0;
}

};

shader BaseShader
{

stage float BaseStageMethod()
{

return 1.0;

626 / 1211

}

stage float BaseStageMethodNotCloned()
{

return 1.0;
}

};

shader CompShader : BaseShader
{

override clone float BaseStageMethod()
{

return 1.0 + base.BaseStageMethod();
}

override float BaseStageMethodNotCloned()
{

return 1.0f + base.BaseStageMethodNotCloned();
}

};

shader TestShader : BaseShader
{

CompShader comp0;
CompShadercomp1;

};

// resulting shader (representation)
shader TestShader
{

// cloned method
float base_BaseStageMethod()
{

return 1.0;
}

float comp0_BaseStageMethod()
{

return 1.0 + base_BaseStageMethod();
}

float BaseStageMethod() // in fact comp1_BaseStageMethod
{

return 1.0 + comp0_BaseStageMethod; // 3.0f
}

627 / 1211

This behavior is useful when you want to repeat a simple function but with different parameters (eg
adding color on top of another).

See also
Effect language
Shading language index

Shader classes, mixins, and inheritance
Templates
Shader stage input/output automatic management
Shader stages

// not cloned method
float base_BaseStageMethodNotCloned()
{

return 1.0f;
}

float BaseStageMethodNotCloned()
{

return 1.0f + base_BaseStageMethodNotCloned(); // 2.0f
}

};

628 / 1211

Templates
Shader templating is available in SDSL. Unlike many templating systems, sdsl requires strong typed
templates. The available types are:

value types from HLSL (float, int, float2, float3, float4)
2D textures
sampler states
semantics (used to replace semantics on variables)
link types (used to replace link annotations)

An instantiated shader behaves the same way as any other shader. The value, texture and sampler
template parameters are accessible like any other variable. However, it's impossible to modify their value;
attempting to do so results in a compilation error. If a template variable is incorrectly used (eg using a
sampler as a semantic), it should result in a compilation error. However, the behavior is officially
unknown.

Code: Templating

See also
Effect language
Shading language index

Shader classes, mixins, and inheritance
Composition

shader TemplateShader<float speed, Texture2D myTexture, SamplerState mySampler, Semantic
mySemantic, LinkType myLink>
{

[Color]
[Link("myLink")]
float4 myColor;

stream float2 texcoord : mySemantic;

float4 GetValue()
{

return speed * myColor * myTexture.Sample(mySampler, streams.texcoord);
}

};

// To instantiate the shader, use:
TemplateShader<1.0f, Texturing.Texture0, Texturing.Sampler0, TEXCOORD0, MyColorLink>

629 / 1211

Shader stage input/output automatic management

630 / 1211

Automatic shader stage input/output
Advanced Programmer

When you write a HLSL shader, you have to precisely define your vertex attributes and carefully pass
them across the stage of your final shader.

Here's an example of a simple HLSL shader that uses the color from the vertex.

struct VS_IN
{

float4 pos : POSITION;
float4 col : COLOR;

};

struct PS_IN
{

float4 pos : SV_POSITION;
float4 col : COLOR;

};

PS_IN VS(VS_IN input)
{

PS_IN output = (PS_IN)0;

output.pos = input.pos;
output.col = input.col;

return output;
}

float4 PS(PS_IN input) : SV_Target
{

return input.col;
}

technique10 Render
{

pass P0
{

SetGeometryShader(0);
SetVertexShader(CompileShader(vs_4_0, VS()));
SetPixelShader(CompileShader(ps_4_0, PS()));

}
}

631 / 1211

Imagine you want to add a normal to your model and modify the resulting color accordingly. You have
to modify the code that computes the color and adjust the intermediate structures to pass the attribute
from the vertex to the pixel shader. You also have to be careful of the semantics you use.

Code: Modified HLSL shader

struct VS_IN
{

float4 pos : POSITION;
float4 col : COLOR;
float3 normal : NORMAL;

};

struct PS_IN
{

float4 pos : SV_POSITION;
float4 col : COLOR;
float3 normal : TEXCOORD0;

};

PS_IN VS(VS_IN input)
{

PS_IN output = (PS_IN)0;

output.pos = input.pos;
output.col = input.col;
output.normal = input.normal;

return output;
}

float4 PS(PS_IN input) : SV_Target
{

return input.col * max(input.normal.z, 0.0);
}

technique10 Render
{

pass P0
{

SetGeometryShader(0);
SetVertexShader(CompileShader(vs_4_0, VS()));
SetPixelShader(CompileShader(ps_4_0, PS()));

}
}

632 / 1211

This example is simple. Real projects have many more shaders, so a single change might mean rewriting
lots of shaders, structures, and so on.

Schematically, adding a new attribute requires you to update all the stages and intermediate structures
from the vertex input to the last stage you want to use the attribute in.

SDSL
SDSL has a convenient way to pass parameters across the different stages of your shader. The stream
variables are:

variables
defined like any shader member, with the stream keyword
used with the stream prefix (omitting it results in a compilation error). When the stream is
ambiguous (same name), you should provide the shader name in front of the variable (ie streams.
<my_shader>.<my_variable>)

Streams regroup the concepts of attributes, varyings and outputs in a single concept.

An attribute is a stream read in a vertex shader before being written to.
A varying is a stream present across shader stages.
An output is a stream assigned before being read.

Think of streams as global objects that you can access everywhere without specifying as a parameter of
your functions.

NOTE

You don't have to create a semantic for these variables; the compiler creates them automatically.
However, keep in mind that the variables sharing the same semantic will be merged in the final
shader. This behavior can be useful when you want to use a stream variable locally without
inheriting from the shader where it was declared.



633 / 1211

After you declare a stream, you can access it at any stage of your shader. The shader compiler takes care
of everything. The variables just have to be visible from the calling code (ie in the inheritance hierarchy)
like any other variable.

Code: Stream definition and use:

Code: Stream specification

Example of SDSL shader
Let's look at the same HLSL shader as the first example but in SDSL.

Code: Same shader in SDSL

shader BaseShader
{

stream float3 myVar;

float3 Compute()
{

return streams.myVar;
}

};

shader StreamShader
{

stream float3 myVar;
};

shader ShaderA : BaseShader, StreamShader
{

float3 Test()
{

return streams.BaseShader.myVar + streams.StreamShader.myVar;
}

}

shader MyShader : ShaderBase
{

stream float4 pos : POSITION;
stream float4 col : COLOR;

override void VSMain()
{

634 / 1211

Now let's add the normal computation.

Code: Modified shader in SDSL

In SDSL, adding a new attribute is as simple as adding it to the pool of streams and using it where you
want.

streams.ShadingPosition = streams.pos;
}

override void PSMain()
{

streams.ColorTarget = streams.col;
}

};

shader MyShader : ShaderBase
{

stream float4 pos : POSITION;
stream float4 col : COLOR;
stream float3 normal : NORMAL;

override void VSMain()
{

streams.ShadingPosition = streams.pos;
}

override void PSMain()
{

streams.ColorTarget = streams.col * max(streams.normal.z, 0.0);
}

};

635 / 1211

See also
Effect language
Shading language index

Shader classes, mixins and inheritance
Composition
Templates
Shader stages

636 / 1211

Shader stages
The function for each stage has a predefined name, so we recommend you don't change it.

HSMain for hull shader
HSConstantMain for patch constant function
DSMain for domain shader
VSMain for vertex shader (takes no arguments)
GSMain for geometry shader
PSMain for pixel shader (takes no arguments)
CSMain for compute shader (takes no arguments)

These are all void methods.

The geometry and tessellation shaders need some kind of predefined structure as input and output.
However, since Stride shaders are generic, it's impossible to know beforehand what the structure will be.
As a result, these shaders use Input and Output structures that are automatically generated to fit the final
shader.

Vertex shader
A vertex shader has to set the variable with the semantic SV_Position. In ShaderBase, it's ShadingPosition.

For example:

Pixel shader
A pixel shader has to set the variable with the semantic SV_Target. In ShaderBase, it is ColorTarget.

For example:

override stage void VSMain()
{

...
streams.ShadingPosition = ...;
...

}

override stage void PSMain()
{

...
streams.ColorTarget = ...;

637 / 1211

Geometry shader
An example of geometry shader:

Input can be used in the method body. It behaves like the streams object and contains the same
members.

Output is only used in the declaration of the method. You should append the streams object to your
geometry shader output stream.

Tessellation shader
An example of a tessellation shader:

...
}

[maxvertexcount(1)]
void GSMain(triangle Input input[3], inout PointStream<Output> pointStream)
{

...
// fill the streams object
streams = input[0];

 ...

// always append streams
pointStream.Append(streams);
...

}

[domain("tri")]
[partitioning("fractional_odd")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(3)]
[patchconstantfunc("HSConstantMain")]
[maxtessfactor(48.0)]
void HSMain(InputPatch<Input, 3> input, out Output output, uint uCPID :
SV_OutputControlPointID)
{

...
output = streams;

}

void HSConstantMain(InputPatch<Input, 3> input, const OutputPatch<Input2, 3> output, out

638 / 1211

Input and Input2 both behave like streams.

Compute shader
An example of a compute shader:

You can inherit from ComputeShaderBase and override the Compute method.

See also
Effect language
Shading language index

Shader classes, mixins, and inheritance
Composition
Templates
Shader stage input/output automatic management

Constants constants)
{

...
output = streams;
...

}

[domain("tri")]
void DSMain(const OutputPatch<Input, 3> input, out Output output, in Constants constants,
float3 f3BarycentricCoords : SV_DomainLocation)
{

...
output = streams;
...

}

NOTE

Don't forget to assign output to streams at the end of your stage.


[numthreads(2, 3, 5)]
void CSMain()
{

...
}

639 / 1211

Custom shaders
Intermediate Programmer

You can write your own shaders in Visual Studio and use them in material attributes. For example, you
can write a shader to add textures to materials based on the objects' world positions, or generate noise
and use it to randomize material properties.

As shaders are text files, you can add comments, enable and disable lines of code, and edit them like any
other code file. This makes them easy to maintain and iterate.

You can also use custom shaders to create custom post effects. For more information, see Custom color
transforms.

Create a shader
1. Make sure you have the Stride Visual Studio extension installed. This is necessary to convert the

shader files from SDSL (Stride shading language) to .cs files.

2. In Game Studio, in the toolbar, click (Open in IDE) to open your project in Visual Studio.

3. In the Visual Studio Solution Explorer, right-click the project (eg MyGame.Game) and select Add >
New item.

640 / 1211

4. Select Class.

641 / 1211

5. In the Name field, specify a name with the extension .sdsl (eg MyShader.sdsl), and click Add.

642 / 1211

The Stride Visual Studio extension automatically generates a .cs file from the .sdsl file. The Solution
Explorer lists it as a child of the .sdsl file.

6. Open the .sdsl file, remove the existing lines, and write your shader.

Shaders are written in Stride Shading Language (SDSL), which is based on HLSL. For more
information, see Shading language.

For example, this shader creates a green color (RGBA 0;1;0;1):

643 / 1211

7. Save all the files in the solution (File > Save All).

8. In Game Studio, reload the assemblies.

The Asset View lists the shader in the same directory as your scripts (eg MyGame.Game).

namespace MyGame
{
 shader MyShader : ComputeColor
 {
 override float4 Compute()
 {
 return float4(0, 1, 0, 1);
 }
 };
}

NOTE

Make sure the shader name in the file (eg MyShader above) is the same as the filename.


NOTE

To be accessible from the Game Studio Property Grid, the shader must inherit from
ComputeColor. As ComputeColor always returns a float4 value, properties that take float values
(eg metalness and gloss maps) use the first component (the red component) of the value
returned by ComputeColor.



644 / 1211

If this happens, restart Game Studio (File > Reload project).

Use a custom shader
You can use custom shaders in any material attribute.

1. In the Asset View, select the material you want to use the shader in.

2. In the Property Grid, next to the property you want to control with the shader, click (Change)
and select Shader.

NOTE

In some situations, Game Studio incorrectly identifies the shader as a script, as in the
screenshot below:



645 / 1211

3. In the field, type the name of your shader (eg MyShader).

The property uses the shader you specify.

Arguments and parameters
Template arguments
Template arguments (generics) don't change at runtime. However, different materials can use different
instances of the shader with different values.

TIP

When you make a change to the .sdsl file in Visual Studio and save it, Game Studio automatically
updates the project with your changes. If this doesn't happen, restart Game Studio (File > Reload
project).



NOTE

If you delete a shader from the project assets, to prevent errors, make sure you also remove it from
the properties of materials that use it.



646 / 1211

When the shaders are compiled, Stride substitutes template arguments with the value you set in the
Property Grid.

For example, the code below defines and uses the template argument Frequency:

Parameters
Parameters can be changed at runtime.

For example, the code below defines and uses the dynamic parameter Frequency:

To modify the value at runtime, access and set it in the material parameter collection. For example, to
change the Frequency, use:

shader ComputeColorWave<float Frequency> : ComputeColor, Texturing
{
 override float4 Compute()
 {
 return sin((Global.Time) * 2 * 3.14 * Frequency);
 }
};

shader ComputeColorWave: ComputeColor, Texturing
{
 cbuffer PerMaterial
 {
 stage float Frequency = 1.0f;
 }

 override float4 Compute()
 {
 return sin((Global.Time) * 2 * 3.14 * Frequency);
 }
};

myMaterial.Passes[myPassIndex].Parameters.Set(ComputeColorWaveKeys.Frequency, MyFrequency);

647 / 1211

Compositions
This composition lets you set the Frequency in the Game Studio Property Grid:

Then you can set the value in the material properties:

Custom shader sample
For an example of a custom shader, see the custom material shader sample project included with
Stride.

NOTE

ComputeColorWaveKeys.Frequency is generated by the Stride Visual Studio extension from the shader
file.



shader ComputeColorWave : ComputeColor, Texturing
{
 compose ComputeColor Frequency;

 override float4 Compute()
 {
 return sin((Global.Time) * 2 * 3.14 * Frequency.Compute().r);
 }
};

648 / 1211

In the project, the ComputeColorWaveNormal shader is used in the displacement map and surface
material properties.

See also
Shading language
Custom color transforms
Material attributes
Stride Visual Studio extension

649 / 1211

Compile shaders
Beginner Programmer

Stride converts Stride shaders (sdsl and .sdfx files) into the shader language used by the graphics
platform.

Platform Shader language

Direct3D HLSL

OpenGL GLSL

Vulkan SPIR-V

iOS OpenGL ES

Stride can convert the shaders at runtime (when the game is running) or at build time (when the editor
builds the game assets). When Stride generates shaders at runtime, rendering stops until the shader is
compiled. This is usually something you want to avoid in your release build — especially on mobile
platforms, which have less CPU, so the pause can be more noticable.

How Stride converts shaders at runtime
Stride can't know in advance which shaders will be used at runtime. This is because users might generate
new shader permutations by, for example, changing material parameters or modifying post-effect
parameters from scripts. Additionally, the final shaders depend on the graphics features on the execution
platform.

1. When Stride needs a new shader at runtime, it checks its database to see if the shader has already
been converted. If the shader is in the database, Stride uses it.

2. If the shader hasn't already been converted, Stride compiles it — either locally (on the device) or
remotely (in Game Studio), depending on the package User Settings (see below).

3. If Record used effects is enabled in the package User Settings (see below), Stride notifies Game
Studio that it needs a new shader.

4. Game Studio notifies you that there are new shaders to import.

650 / 1211

In the Asset View, the Import effects button becomes available.

5. If you click Import effects, Game Studio updates the Effect Log (or creates it if it doesn't exist) and
adds them to the game database to be used the next time you build (see step 1).

Change how Stride compiles shaders
1. In Game Studio, in the Solution Explorer, select the package and click Package properties.

651 / 1211

2. In the Property Grid, set the properties.

The Effect compiler property specifies how to compile the shader.

Local: Convert the shader on the device. This is recommended for release versions of your game.

Remote: Convert the shader on the developer machine. There's no reason to use this for release
versions of your game, as it won't be able to connect to the developer machine.

LocalOrRemote: Convert the shader on the developer machine; if this fails, try to convert it on the
device. Like the Remote setting, this has no use for release versions of your game.

None: Don't convert shaders. Note that the application will crash if it requires a shader that isn't in
the database. Currently, using this feature doesn't save any space your application, so there's no
advantage in using it. However, it might be useful for making sure you have every shader in the
database; if the game crashes, you know the database is missing at least one shader.

If you enable Record used effects, Game Studio adds new shaders to the Effect Log as soon as they're
needed. We recommend you disable this for release versions of your game, as it can't connect to the
developer machine.

Compile shaders remotely when developing for iOS
As iOS devices can't connect directly to PC, to convert Stride shaders remotely when developing for iOS,
you need to use a Python script as a relay between the device, a Mac, and the developer PC.

652 / 1211

1. Make sure your PC and Mac are connected to the same network.

2. On your Mac, install Python. You can download Python from the Python site .

3. Download and unzip ios-tcreplay.zip.

4. Open Terminal, navigate to the folder where you unzipped the file, and execute stride-ios-relay.py
MyPcName, where MyPcName is the name of your developer PC.

The iOS device should now be able to communicate with the PC via your Mac to build shaders remotely.

Error messages
If your application tries to connect to Game Studio to compile a shader or to notify Game Studio that it
needs new shaders, but can't connect, the Visual Studio output displays this error:

"[RouterClient]: Error: Could not connect to connection router using mode Connect.
System.AggregateException: One or more errors occurred. ---> System.Net.Sockets.SocketException: No
connection could be made because the target machine actively refused it 127.0.0.1:31254"

TIP

To find the name of your developer PC, on the PC, press the Windows key, type About, and
press Enter. The PC name is listed under PC name.



https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/

653 / 1211

Low-level API
Advanced Programmer

The GraphicsDevice class is the central class for displaying your game. It's used to create resources and
present images on the screen. You can access it as a member of the Game and ScriptComponent classes.

Actions such as drawing, setting graphics states and using resources are recorded using CommandList
objects for later execution by the device.

Many command lists can be filled at the same time (eg one per thread). A default command list is
available as member of the GraphicsContext of your Game.

In methods, these objects are typically provided through contexts such as RenderContext and Render
DrawContext.

Performing any drawing requires multiple steps, including:

setting textures as render textures, clearing them, and setting viewports and scissors
setting up the graphics pipeline state, including input description, shaders, depth-stencil, blending,
rasterizer, etc
binding resources, such as constant buffers and textures
drawing vertices using built-in primitives or custom vertex buffers

In this section
Draw vertices
Pipeline state
Resources
SpriteBatch
SpriteFont
Textures and render textures

654 / 1211

Textures and render textures
Advanced Programmer

Stride uses the Texture class to interact with texture objects in code.

For more information about rendering to a texture, see Render textures.

Load a texture
To load a texture from an asset in Stride, call this function:

This automatically generates a texture object with all its fields correctly filled.

Create a texture
You can also create textures without any assets (eg to be used as render target). To do this, call the
constructor of the Texture class. See the Texture class reference to get the full list of available options
and parameters. Some texture formats might not be available on all platforms.

Code: Create a texture

Render textures
Create a render target
The GraphicsPresenter class always provides a default render target and a depth buffer. They are
accessible through the BackBuffer and DepthStencilBuffer properties. The presenter is exposed by the
Presenter property of the GraphicsDevice. However, you might want to use your own buffer to perform
off-screen rendering or post-processes. As a result, Stride offers a simple way to create textures that can
act as render textures and a depth buffers.

Code: Create a custom render target and depth buffer

// loads the texture called duck.dds (or .png etc.)
var myTexture = Content.Load<Texture>("duck");

var myTexture = Texture.New2D(GraphicsDevice, 512, 512, false, PixelFormat.R8G8B8A8_UNorm,
TextureFlags.ShaderResource);

// render target
var myRenderTarget = Texture.New2D(GraphicsDevice, 512, 512, false,
PixelFormat.R8G8B8A8_UNorm, TextureFlags.ShaderResource | TextureFlags.RenderTarget);

655 / 1211

Use a render target
Once these buffers are created, you can easily set them as current render textures.

Code: Use a render target

You can set multiple render textures at the same time. See the overloads of SetRenderTargets(Texture,
Texture[]) and SetRenderTargetsAndViewport(Texture, Texture[]) method.

Clear a render target

// writable depth buffer
var myDepthBuffer = Texture.New2D(GraphicsDevice, 512, 512, false,
PixelFormat.D16_UNorm, TextureFlags.DepthStencil);

NOTE

Don't forget the flag RenderTarget to enable the render target behavior.

Make sure the PixelFormat is correct, especially for the depth buffer. Be careful of the available
formats on the target platform.



// settings the render textures
CommandList.SetRenderTargetAndViewport(myDepthBuffer, myRenderTarget);

// setting the default render target
CommandList.SetRenderTargetAndViewport(GraphicsDevice.Presenter.DepthStencilBuffer,
GraphicsDevice.Presenter.BackBuffer);

NOTE

Make sure both the render target and the depth buffer have the same size. Otherwise, the depth
buffer isn't used.



NOTE

Only the BackBuffer is displayed on screen, so you need to render it to display something.


656 / 1211

To clear render textures, call the Clear(Texture, Color4) and Clear(Texture, DepthStencilClearOptions, float,
byte) methods.

Code: Clear the targets

Viewport
SetRenderTargetAndViewport(Texture, Texture) adjusts the current Viewport to the full size of the render
target.

If you only want to render to a subset of the texture, set the render target and viewport separately using
SetRenderTarget(Texture, Texture) and SetViewport(Viewport).

You can bind multiple viewports using SetViewports(Viewport[]) and SetViewports(int, Viewport[])
overloads for use with a geometry shader.

Code: Set the viewports

Scissor
The SetScissorRectangle(Rectangle) and SetScissorRectangles(Rectangle[]) methods set the scissors.
Unlike the viewport, you need to provide the coordinates of the location of the vertices defining the
scissor instead of its size.

CommandList.Clear(GraphicsDevice.Presenter.BackBuffer, Color.Black);
CommandList.Clear(GraphicsDevice.Presenter.DepthStencilBuffer,
DepthStencilClearOptions.DepthBuffer); // only clear the depth buffer

NOTE

Don't forget to clear the BackBuffer and the DepthStencilBuffer each frame. If you don't, you might
get unexpected behavior depending on the device. If you want to keep the contents of a frame, use
an intermediate render target.



// example of a full HD buffer
CommandList.SetRenderTarget(GraphicsDevice.Presenter.DepthStencilBuffer,
GraphicsDevice.Presenter.BackBuffer); // no viewport set

// example of setting the viewport to have a 10-pixel border around the image in a full HD
buffer (1920x1080)
var viewport = new Viewport(10, 10, 1900, 1060);
CommandList.SetViewport(viewport);

657 / 1211

Code: Set the scissor

See also
Render textures

// example of setting the scissor to crop the image by 10 pixel around it in a full hd
buffer (1920x1080)
var rectangle = new Rectangle(10, 10, 1910, 1070);
CommandList.SetScissorRectangles(rectangle);

var rectangles = new[] { new Rectangle(10, 10, 1900, 1060), new Rectangle(0, 0, 256, 256) };
CommandList.SetScissorRectangles(rectangles);

658 / 1211

Pipeline states
Stride gives you total control over the graphics pipeline state. This includes:

rasterizer state
depth and stencil state
blend state
effects
input layout
output description

State is compiled into immutable PipelineState objects, which describe the whole pipeline. They are then
bound using a CommandList.

Code: Create state objects

The MutablePipelineState class let you set states independently, while caching the underlying pipeline
states.

Code: Mutable pipeline state

Rasterizer state
The rasterizer can be set using the RasterizerState property. A set of predefined descriptions is held by
the RasterizerStates class. They deal with the cull mode, and should be enough for most use cases:

// Creating pipeline state object
var pipelineStateDescription = new PipelineStateDescription();
var pipelineState = PipelineState.New(GraphicsDevice, ref pipelineStateDescription);

// Applying the state to the pipeline
CommandList.SetPipelineState(pipelineState);

// Creating the pipeline state object
var mutablePipelineState = new MutablePipelineState();

// Setting values and rebuilding
mutablePipelineState.State.BlendState = BlendStates.AlphaBlend;
mutablePipelineState.Update();

// Applying the state to the pipeline
CommandList.SetPipelineState(mutablePipelineState.CurrentState);

659 / 1211

CullNone: no culling
CullFront: front-face culling
CullBack: back-face culling

Code: Set the cull mode

You can create your own custom state. For the list of options and default values, see the RasterizerState
Description API documentation.

Code: Custom rasterizer states

Depth and stencil states
The DepthStencilState property contains the depth and stencil states. A set of commonly used states is
defined by the DepthStencilStates class:

Default: depth read and write with a less-than comparison
DefaultInverse: read and write with a greater-or-equals comparison
DepthRead: read only with a less-than comparison
None: neither read nor write

Code: Setting the depth state

You can also set custom depth and stencil states. For the list of options and default values, see the Depth
StencilStateDescription API documentation.

Code: Custom depth and stencil state

pipelineStateDescription.RasterizerState = RasterizerStates.CullNone;
pipelineStateDescription.RasterizerState = RasterizerStates.CullFront;
pipelineStateDescription.RasterizerState = RasterizerStates.CullBack;

var rasterizerStateDescription = new RasterizerStateDescription(CullMode.Front);
rasterizerStateDescription.ScissorTestEnable = true; // enables the scissor test
pipelineStateDescription.RasterizerState = rasterizerStateDescription;

pipelineStateDescription.DepthStencilState = DepthStencilStates.Default;
pipelineStateDescription.DepthStencilState = DepthStencilStates.DefaultInverse;
pipelineStateDescription.DepthStencilState = DepthStencilStates.DepthRead;
pipelineStateDescription.DepthStencilState = DepthStencilStates.None;

660 / 1211

The stencil reference isn't part of the PipelineState. It's set using SetStencilReference(int).

Code: Set the stencil reference

Blend state
The BlendState and SampleMask properties control blending. The BlendStates class defines a set of
commonly used blend states:

Additive: sums the colors
AlphaBlend: sums the colors using the alpha of the source on the destination color
NonPremultiplied: sums using the alpha of the source on both colors
Opaque: replaces the color

Code: Set the blend state

You can set custom depth and blend states. For a list of options and default values, see the BlendState
Description API documentation.

Code: Custom blend state

// depth test is enabled but it doesn't write
var depthStencilStateDescription = new DepthStencilStateDescription(true, false);
pipelineStateDescription.DepthStencilState = depthStencilStateDescription;

CommandList.SetStencilReference(2);

// Set common blend states
pipelineStateDescription.BlendState = BlendStates.Additive;
pipelineStateDescription.BlendState = BlendStates.AlphaBlend;
pipelineStateDescription.BlendState = BlendStates.NonPremultiplied;
pipelineStateDescription.BlendState = BlendStates.Opaque;

// Set the sample mask
pipelineStateDescription.SampleMask = 0xFFFFFFFF;

// create the object describing the blend state per target
var blendStateRenderTargetDescription = new BlendStateRenderTargetDescription();
blendStateRenderTargetDescription.BlendEnable = true;
blendStateRenderTargetDescription.ColorSourceBlend = Blend.SourceColor;
// etc.

661 / 1211

The blend factor isn't part of the PipelineState. It's set using SetBlendFactor(Color4).

Code: Set the blend factor

Effects
The pipeline state also includes the shaders you want to use for drawing. To bind an Effect to the
pipeline, set the EffectBytecode and RootSignature properties of the PipelineStateDescription to the
matching values of the effect.

An EffectBytecode contains the actual shader programs. For more information, see Effects and Shaders.

The RootSignature describes the number and kind of resources expected by the effect. The next chapter
covers how to bind resources to the pipeline.

Code: Bind an effect

Input layout
The pipeline state describes the layout in which vertices are sent to the device through the Input
Elements and PrimitiveType properties.

The Draw vertices page describes how to create custom vertex buffers and their VertexDeclaration in
more detail.

Code: Set an input layout

// create the blendStateDescription object
var blendStateDescription = new BlendStateDescription(Blend.SourceColor,
Blend.InverseSourceColor);
blendStateDescription.AlphaToCoverageEnable = true; // enable alpha to coverage
blendStateDescription.RenderTargets[0] = blendStateRenderTargetDescription;
pipelineStateDescription.BlendState = blendStateDescription;

CommandList.SetBlendFactor(Color4.White);

var effectInstance = new
EffectInstance(EffectSystem.LoadEffect("MyEffect").WaitForResult());
pipelineStateDescription.EffectBytecode = effectInstance.Effect.Bytecode;
pipelineStateDescription.RootSignature = effectInstance.RootSignature;

VertexDeclaration vertexDeclaration = new VertexDeclaration();
pipelineStateDescription.InputElements = vertexDeclaration.CreateInputElements();

662 / 1211

Output description
The Output property of the PipelineStateDescription defines the number and PixelFormat of all bound
render textures.

For information on how to bind render textures to the pipeline, see Textures and render textures.

Code: Create an output description

You can use the CaptureState(CommandList) to retrieve the output description last set on a Command
List. This is especially useful in combination with MutablePipelineState, when the render target might not
be known up front.

Code: Capture output description

pipelineStateDescription.PrimitiveType = PrimitiveType.TriangleStrip;

var renderOutputDescription = new
RenderOutputDescription(GraphicsDevice.Presenter.BackBuffer.Format,
GraphicsDevice.Presenter.DepthStencilBuffer.Format);
pipelineStateDescription.Output = renderOutputDescription;

mutablePipelineState.State.Output.CaptureState(CommandList);
mutablePipelineState.Update();

663 / 1211

Resource binding
Advanced Programmer

When drawing vertices using an effect, the shaders expect certain resources to be available, including:

textures and buffers
samplers
constant buffers

Automatic resource binding
The EffectInstance class handles the details of enumerating these resources from a loaded effect as well
as binding them.

It exposes the RootSignature, which has to be set as pipeline state, and allows to fill constant buffers and
bind resources based on a ParameterCollection.

Code: Using an EffectInstance

Manual resource binding
When more optimized code is required (eg in the rendering pipeline), constant buffer updates and
resource binding can be done manually.

// Create a EffectInstance and use it to set up the pipeline
var effectInstance = new
EffectInstance(EffectSystem.LoadEffect("MyEffect").WaitForResult());
pipelineStateDescription.EffectBytecode = effectInstance.Effect.Bytecode;
pipelineStateDescription.RootSignature = effectInstance.RootSignature;

// Update constant buffers and bind resources
effectInstance.Apply(context.GraphicsContext);

664 / 1211

Draw vertices
Advanced Programmer

When loading a scene, Stride automatically handles the draw calls to display the scene throughout the
entity system. This page introduces manual drawing.

Primitives
Stride provides the following set of built-in primitives:

Plane
Cube
Sphere
Geosphere
Cylinder
Torus
Teapot

They aren't automatically created along with the GraphicsDevice, so you have to instantiate them. You
can do this through the GeometricPrimitive class.

Code: Creating and using a primitive

They have no effect associated with them, so the user has to provide an EffectInstance when drawing.
For information on loading effects, please see Effects and shaders.

Custom drawing
Outside of built-in primitives, any geometry can be drawn by creating custom vertex buffers. To create a
vertex buffer, first a VertexDeclaration has to be defined. A vertex declaration describes the elements of
each vertex and their layout. For details, see the VertexElement reference page.

Next, a vertex buffer can be created from an array of vertices. The vertex data type has to match the
VertexDeclaration.

// creation
var myCube = GeometricPrimitive.Cube.New(GraphicsDevice);
var myTorus = GeometricPrimitive.Torus.New(GraphicsDevice);

// ...

// draw one on screen
myCube.Draw(CommandList, EffectInstance);

665 / 1211

Given vertex buffer and declaration, a VertexBufferBinding can be created.

Code: Creating a vertex buffer

To draw the newly created vertex buffer, it has to be bound to the pipeline. The vertex layout and the
PrimitiveType to draw have to be included in the pipeline state object. The buffer itself can be set
dynamically.

Afterwards, the vertices are ready to be rendered using Draw(int, int).

Code: Binding and drawing vertex buffers

It is also possible to draw indexed geometry. To use an index buffer, first create it similarly to the vertex
buffer and bind it to the pipeline. It can then be used for drawing using DrawIndexed(int, int, int).

Code: Drawing indexed vertices

// Create a vertex layout with position and texture coordinate
var layout = new VertexDeclaration(VertexElement.Position<Vector3>(),
VertexElement.TextureCoordinate<Vector2>());

// Create the vertex buffer from an array of vertices
var vertices = new VertexPositionTexture[vertexCount];
var vertexBuffer = Buffer.Vertex.New(GraphicsDevice, vertices);

// Create a vertex buffer binding
var vertexBufferBinding = new VertexBufferBinding(vertexBuffer, layout, vertexCount);

// Set the pipeline state
pipelineStateDescription.InputElements = vertexBufferBinding.Layout.CreateInputElements();
pipelineStateDescription.PrimitiveType = PrimitiveType.TriangleStrip;

// Create and set a PipelineState object
// ...

// Bind the vertex buffer to the pipeline
commandList.SetVertexBuffers(0, vertexBuffer, 0, vertexBufferBinding.Stride);

// Draw the vertices
commandList.Draw(vertexCount);

// Create the index buffer
var indices = new short[indexCount];
var is32Bits = false;

666 / 1211

var indexBuffer = Buffer.Index.New(GraphicsDevice, indices);

// set the VAO
commandList.SetIndexBuffer(indexBuffer, 0, is32Bits);

// Draw indexed vertices
commandList.DrawIndexed(indexBuffer.ElementCount);

667 / 1211

SpriteBatch
Advanced Programmer

A sprite batch is a collection of sprites (2D textured planes).

Create a sprite batch
Stride offers a easy way to deal with batches of sprites through the SpriteBatch class. You can use this
class to regroup, update, and display sprites efficiently.

Code: Creating a sprite batch

You can specify the size of your batch size. This isn't the maximum number of sprites the SpriteBatch is
able to display, but the maximum number of sprites it can store before drawing.

Code: Setting the batch size

You can also set states like the ones discussed on the Pipeline state page.

Draw a sprite batch
The SpriteBatch class has multiple draw methods to set various parameters. For a list of features, see the
SpriteBatch API documentation.

Code: Drawing a sprite batch

NOTE

Remember that you need to put all custom code in a custom scene renderer to include it in the
composition.



var spriteBatch = new SpriteBatch(GraphicsDevice);

var spriteBatch = new SpriteBatch(GraphicsDevice, 2000);

// begin the sprite batch operations
spriteBatch.Begin(Game.GraphicsContext, SpriteSortMode.Immediate);

// draw the sprite immediately
spriteBatch.Draw(myTexture, new Vector2(10, 20));

668 / 1211

There are five modes to draw a sprite batch. They are enumerated in the SpriteSortMode enum:

Deferred (default mode): the sprites are drawn at the same time at the end to reduce the drawcall
overhead
Immediate: the sprites are drawn after each Draw call
Texture: Deferred mode but sprites are sorted based on their texture to reduce effect parameters
update
BackToFront: Deferred mode with a sort based on the z-order of the sprites
FrontToBack: Deferred mode with a sort based on the z-order of the sprites

To set the mode, specify it in the Begin method.

Code: Deferred drawing of the sprite batch

You can set several parameters on the sprite. For example:

position
rotation
scale
depth
center offset
color tint

For a full list, see the SpriteBatch API documentation, especially the Draw methods.

Code: More complex sprite batch drawing

// end the sprite batch operations
spriteBatch.End();

// begin the sprite batch operations
spriteBatch.Begin(Game.GraphicsContext); // same as spriteBatch.Begin(GraphicsContext,
SpriteSortMode.Deferred);

// store the modification of the sprite
spriteBatch.Draw(myTexture, new Vector2(10, 20));

// end the sprite batch operations, draw all the sprites
spriteBatch.End();

// begin the sprite batch operations
spriteBatch.Begin(GraphicsContext);
const int gridCount = 10;

669 / 1211

See also
SpriteFont

var textureOffset = new Vector2((float)graphicsDevice.BackBuffer.Width/gridCount,
(float)graphicsDevice.BackBuffer.Height/gridCount);
var textureOrigin = new Vector2(myTexture.Width/2.0f, myTexture.Height/2.0f);

// draw 100 sprites on a 10x10 grid with a rotation of 1.2 rad and a scale of 0.5 for each
of them
for (int y = 0; y < gridCount; y++)
{
 for (int x = 0; x < gridCount; x++)
 {
 spriteBatch.Draw(UVTexture, new Vector2(x * textureOffset.X + textureOffset.X
/ 2.0f, y * textureOffset.Y + textureOffset.Y / 2.0f), Color.White, 1.2f,
textureOrigin, 0.5f);
 }
}

// end the sprite batch operations, draw all the sprites
spriteBatch.End();

670 / 1211

SpriteFont
Advanced Programmer

The SpriteFont class is a convenient way to draw text. It works with the SpriteBatch class.

Load a spriteFont
After a font asset is compiled it can be loaded as a SpriteFont instance using the ContentManager. It
contains all the options to display a text (bitmaps, kerning, line spacing etc).

Code: Load a SpriteFont

Write text on screen
Once the font is loaded, you can display any text with a SpriteBatch. The DrawString method performs
the draw. For more information about the SpriteBatch, see the SpriteBatch page.

Code: Write text

The various overloads let you specify the text's orientation, scale, depth, origin, etc. You can also apply
some SpriteEffects to the text:

None

NOTE

You need to put all custom code in a Custom scene renderer to include it in the composition.


var myFont = Content.Load<SpriteFont>("MyFont");

// create the SpriteBatch
var spriteBatch = new SpriteBatch(GraphicsDevice);

// don't forget the begin
spriteBatch.Begin(GraphicsContext);

// draw the text "Helloworld!" in red from the center of the screen
spriteBatch.DrawString(myFont, "Helloworld!", new Vector2(0.5, 0.5), Color.Red);

// don't forget the end
spriteBatch.End();

671 / 1211

FlipHorizontally
FlipVertically
FlipBoth

Code: Advanced text drawing

See also
SpriteBatch

// draw the text "Hello world!" upside-down in red from the center of the screen
spriteBatch.DrawString(myFont, "Hello world!", new Vector2(0.5, 0.5), Color.Red, 0, new
Vector2(0, 0), new Vector2(1,1), SpriteEffects.FlipVertically, 0);

672 / 1211

Rendering pipeline
Render features
Rendering logic is divided into RenderFeatures. Each render feature processes one type of RenderObject
(eg meshes, sprites, particles, etc).

Stride executes features in phases: collect, extract, prepare and draw. This means each step of the
pipeline can be isolated, parallelized and optimized separately.

For more information, see Render features.

Render views
You can render scenes from multiple points of view, represented as RenderViews – eg player views in a
splitscreen game, or separate shadow views for cascades in a shadow map cascade.

Views are a first-class concept available to all rendering phases, allowing batching across multiple views.

Render stages
RenderStages select the effect and pipeline state per object, and define the output of a render pass.

For more information, see Render stages.

Visibility
RenderObjects are registered with a VisibilityGroup. During the collect phase, the visibility group culls
and filters them based on the RenderView and RenderStage.

In this section
Render features
Render stages

673 / 1211

Render features
A RenderFeature is responsible for drawing a given type of RenderObject.

Render phases
Render features have several phases.

Collect
The collect phase determines what needs to be processed and rendered. It's usually driven by the
graphics compositor.

The collect phase:

creates render views, and updating them with the most recent data such as view and projection
matrices
creates and setting up render stages
performes visibility culling and sorting

Extract
The extract phase copies data from game states of previously collected objects to short-lived render-
specific structures. It's usually driven by the RenderSystem and RenderFeatures.

This should be as fast as possible and avoid heavy computations since game update and scripts are
blocked. Heavy computations should be deferred to Prepare.

Example tasks:

copying object matrices
copying material parameters

Prepare
The prepare phase prepares GPU resources and performs heavy computations. This is usually driven by
the RenderSystem and RenderFeatures.

Example tasks:

NOTE

Currently, Stride doesn't parallelize game updates and scripts, so they won't be resumed until the
prepare and draw phases are finished.



674 / 1211

computing lighting data and structures
filling constant buffers and resource tables

Draw
The draw phase fills the GPU command list.

Example tasks:

setting up render textures
drawing combinations of render stage with render view.

Example
A typical example of views and stages created during collect phase, used during the draw phase:

675 / 1211

Pipeline processors
Pipeline processors are classes called when creating the pipeline state. This lets you do things such as
enable alpha blending or wireframe rendering in a specific render stage.

Stride includes several predefined pipeline processors. You can also create your own.

See also
Rendering pipeline
Render stages
Effects and shaders
Graphics compositor

676 / 1211

Render stages
Render stages define how given objects are rendered (usually with their associated effect/shader). They
also let you control advanced properties such as sorting and filtering objects.

Objects can subscribe to multiple render stages. For example, a mesh typically subscribes to both the
Opaque and ShadowCaster stages, or the Transparent stage.

Effect slots
Effect slots determine which effect/shader a render stage uses. You choose the effect slot with EffectSlot
Name.

If multiple render stages exclusively render different objects, the stages can share the same effect slot.
For example, as the opaque stage only renders opaque objects and the transparent stage only renders
transparent objects, both stages can use the main effect slot.

If they render any of the same objects, they can't share effect slots. This is why, for example, we typically
render opaque meshes with the main effect slot, then render opaque meshes again with the shadow
caster effect slot to create shadows.

A typical setup of render stages:

Render stage Effect slot

Opaque Main

Transparent Main

UI Main

Shadow caster Shadow caster

Sort objects in a render stage
SortMode defines how Stride sorts objects in that render stage. Stride comes with several SortMode
implementations, such as:

NOTE

Render stages don't define the rendering order. The rendering order is controlled by the graphics
compositor.



677 / 1211

FrontToBackSortMode, which renders objects from front to back with limited precision, and tries to
avoid state changes in the same depth range of objects (useful for opaque objects and shadows)
BackToFrontSortMode, which renders objects strictly from back to front (useful for transparent
objects)
StateChangeSortMode, which tries to reduce state changes

Of course, you're free to implement your own, too.

Filter objects in a render stage
To create your own filter for objects in a render stage, inherit from RenderStageFilter.

Render stage selectors
Render stage selectors define which objects in your scene are sent to which render stage, and choose
which effect to use when rendering a given object.

For example, this is the typical setup for meshes:

MeshTransparentRenderStageSelector chooses either the Main or Transparent render stage,
depending on the material properties. The default effect is StrideForwardShadingEffect defined by
Stride (you can create your own if you want).
ShadowMapRenderStageSelector selects opaque meshes that cast shadows and adds them to the
ShadowMapCaster render stage. The default effect is StrideForwardShadingEffect.ShadowMapCaster,
defined by Stride.

Either can filter by render group.

You can customize everything, so you can add other predefined render stage selectors (eg to add UI to a
later full-screen pass), or create your own selector specific to your game.

See also
Rendering pipeline
Render features
Effects and shaders
Graphics compositor

678 / 1211

Sprite fonts
Intermediate

Sprite fonts take a TrueType font as an input (either a system font or a file you assign) and then create
all the images (sprites) of characters (glyphs) for your game.

It's often inefficient to render fonts directly. We usually want to create (rasterize) them just once, then
only render the image of a letter character (eg A, a, B, C etc) every time we need it. This involves creating
a sprite (billboarded rectangular image) of the character, which is displayed on the screen as a regular
image. A text block would be a collection of sprites rendered as quads so all the characters are aligned
and spaced properly.

Offline-rasterized sprite fonts
Offline-rasterized sprite fonts create (rasterize) a fixed number of characters (glyphs) of a certain size,
and bake them into an atlas texture when building the assets for your game.

In the game, they can only be drawn with this size. Only the characters you specify can be displayed.

When to use offline-rasterized fonts
Use offline-rasterized fonts when:

you use a font of known size with a known character set in your game

you need anti-aliasing on your fonts

your UI is only used in fullscreen mode

Do not use offline-rasterized fonts when:

your UI is rendered as part of the 3D world scene

you have a varied or unknown number of font sizes and character sets

Offline-rasterized sprite font properties

679 / 1211

Property Description

Font Source System (installed on this machine) or from file. The system fonts can also take Bold
and Italic options.

Font Type Offline Rasterized

Size (in pixels) The font is baked with this size. No other font size can be displayed.

Character set (Optional) A text file containing all characters which need to be baked.

Character
regions

Code for regions of characters which need to be baked. For example, (32 - 127) is a
region sufficient for ASCII character sets.

Anti alias None, Grayscale or ClearType 

Premultiply If the alpha should be premultiplied. Default is yes to match the rest of the engine
pipeline.

Default
character

Missing characters default to this when rendered. The default code is 32 which is
space.

http://alienryderflex.com/sub_pixel/
http://alienryderflex.com/sub_pixel/
http://alienryderflex.com/sub_pixel/

680 / 1211

Runtime-rasterized sprite fonts
Runtime-rasterized sprite fonts create (rasterize) a varied number of characters (glyphs) of any size and
bake them into an atlas texture on demand.

This function is invoked at runtime when you change the font size or request characters that haven't
been drawn before.

Under the hood, the runtime-rasterized fonts use similar atlas textures to the offline-rasterized fonts.
This means that if you have three different font sizes, they take about three times more memory than a
single font size. The font sizes are also taken into account.

When to use runtime-rasterized fonts
Use runtime-rasterized fonts when:

you need multiple sizes for your font or don't know which characters you need

the number of possible characters in the font greatly outnumbers the number of characters you
need to display at runtime (eg Japanese or Chinese, which use thousands of characters)

you need anti-aliasing on your fonts

your UI is only used in fullscreen mode

Do not use runtime-rasterized fonts when:

your UI is rendered as part of the 3D world scene

you only need one or two known sizes for a small character set

you have a scaling text (as runtime-rasterized fonts will recreate every single font size)

Runtime-rasterized sprite font properties

681 / 1211

Property Description

Font Source System (installed on this machine) or from file. The system fonts can also take
Bold and Italic options.

Font Type Runtime Rasterized

Default Size (in
pixels)

If size isn't specified the text is rendered with this one.

Anti alias None, Grayscale or ClearType 

Default character Missing characters will default to this one when rendered. The default code is 32,
which is space.

Signed distance field sprite fonts
Signed distance field (SDF) fonts use an entirely different technique to render fonts. Rather than
rasterize the color of the character on the sprite, they output the distance of the current pixel to the
closest edge of the glyph.

The distance is positive if the pixel is inside the glyph boundaries, and negative if the pixel is outside the
glyph (hence the name signed).

When rendering, check the distance and output a white pixel if it's positive or 0, and a black pixel if it's
negative. This allows very sharp and clean edges to be rendered even under magnification (which

http://alienryderflex.com/sub_pixel/
http://alienryderflex.com/sub_pixel/
http://alienryderflex.com/sub_pixel/

682 / 1211

otherwise makes traditional sprites look pixelated).

The image below compares SDF fonts and the offline-rasterized fonts under magnification:

When to use SDF fonts
Use SDF fonts when:

your UI is rendered as part of the 3D world scene or fullscreen (SDF works well for both cases)

you have a scaling text or expect the user to be able to zoom in

you require multiple sizes for your font

you have very large font sizes (SDF consumes less memory than runtime-rasterized fonts)

Do not use SDF fonts when:

you need anti-aliasing on your fonts (SDF fonts currently don't support it)

you only require one or two known sizes for a small character set (better use offline-rasterized font)

the number of possible characters in the font greatly outnumbers the number of characters you
need to display at runtime (eg Japanese or Chinese, which use thousands of characters). If a
runtime-rasterized font is not an option (eg because of scaling), make sure you bake every character
you might need, or they won't be displayed.

683 / 1211

SDF properties

Property Description

Font Source System (installed on this machine) or from file. The system fonts can also choose Bold
and Italic options.

Font Type Signed Distance Field

Size (in
pixels)

The font will be baked with this size. All font sizes can still be displayed. Bigger size
usually results in better quality, and generally you want to keep this at 20 or more to
avoid visual glitches.

Character
set

(Optional) A text file containing all characters which need to be baked.

Character
regions

Code for regions of characters which need to be baked. For example (32 - 127) is a
region sufficient for ASCII character sets.

Default
character

Missing characters will default to this one when rendered. The default code is 32 which
is space.

Texture atlases for different sprite fonts

684 / 1211

Offline rasterized

The offline-rasterized sprite font bakes all requested characters once in a grayscale texture. If you zoom
in, you'll see that they are pixelated. The font has a fixed size and doesn't work well for scaling text.

Runtime rasterized

685 / 1211

The runtime-rasterized sprite font only bakes (rasterizes) the characters that are drawn in the game. The
initial atlas texture is intentionally bigger so it can hold more characters of potentially different sizes
before it needs resizing.

Signed distance field

686 / 1211

Like the offline-rasterized sprite font, the signed distance field sprite font bakes all requested characters
once. The major difference is that it encodes distances from the character lines rather than actual color,
and it uses all three channels' RGB. You can still recognize each character, but a special shader is needed
to render them properly. The upside is that the edges remain sharp, even under magnification.

Further reading
Paper on how distance fields and multi-channel distance fields in particular work

Stack Exchange thread outlining the differences between single-channel SDF and multi-channel SDF
fonts

https://dspace.cvut.cz/bitstream/handle/10467/62770/F8-DP-2015-Chlumsky-Viktor-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/62770/F8-DP-2015-Chlumsky-Viktor-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/62770/F8-DP-2015-Chlumsky-Viktor-thesis.pdf
https://computergraphics.stackexchange.com/questions/306/sharp-corners-with-signed-distance-fields-fonts
https://computergraphics.stackexchange.com/questions/306/sharp-corners-with-signed-distance-fields-fonts
https://computergraphics.stackexchange.com/questions/306/sharp-corners-with-signed-distance-fields-fonts
https://computergraphics.stackexchange.com/questions/306/sharp-corners-with-signed-distance-fields-fonts

687 / 1211

Graphics API
To run your projects through a different API than the default one, add the following line to the
PropertyGroup of your executable's .csproj file:

<StrideGraphicsApi>Vulkan</StrideGraphicsApi>

Supported values are as follows:

You may also have to add <PackageReference Include="Stride.Shaders.Compiler" Version="x.x.x.x" />
to your main .csproj, and don't forget to replace Version appropriately.

Engine
If you are using a local build of the engine you should run the build again with the following command:

Null
Direct3D11
Direct3D12
OpenGL
OpenGLES
Vulkan

https://github.com/stride3d/stride/assets/5742236/fbe35875-fb07-4f2f-ae8a-e9ea34eed471
https://github.com/stride3d/stride/assets/5742236/fbe35875-fb07-4f2f-ae8a-e9ea34eed471

688 / 1211

msbuild /t:Build /p:StrideGraphicsApiDependentBuildAll=true Stride.sln

689 / 1211

Input
Beginner Programmer

Users interact with games and applications using input devices such as gamepads, mice, and keyboards.
Every interactive application must support at least one input device.

Stride handles input entirely via scripts. There are low-level and high-level APIs to handle different input
types:

Low-level APIs are close to hardware, so they have lower latency. These allow fast processing of the
input from pointers, keyboards, mouse, gamepads, and some sensors.

High-level APIs interpret input for you, so they have higher latency. These APIs are used for
gestures and some sensors.

There are also special APIs for some sensors and virtual buttons.

Handle input
Handle input with the InputManager class. You can access this class from a script with its properties and
methods.

To check whether a particular input device is available, use the corresponding InputManager property.
For example, to check if a mouse is connected, use Input.HasMouse.

After you check the device availability, there are four ways to handle input in Stride.

Query state
You can query the state of digital keys and buttons (ie Up or Down) and the numeric values of analog
buttons and sensors. For example, DownKeys gets a list of the keys that were in the state Down in the
last update.

690 / 1211

Sometimes a user performs more than one action between updates. If there's no state change between
the updates (the end result is the same), Stride registers no action:

Query a state change
You can query the change of state of buttons and keys since the previous update. In this case, you don't
get the list of all buttons and keys, but have to query each button and key separately.

For digital buttons and keys, query if the button or key was Pressed, Down or Released in the last
update.

691 / 1211

For mouse positions and mouse wheel scrolling, query Delta Values since the previous update:

Sometimes a user performs several actions between two updates. If there's no state change between two
updates (the end result is the same), Stride registers no action.

Query the list of events
For pointers, gestures, and keyboards, you can query all the events that happened in the last update.

692 / 1211

Use virtual buttons
You can use virtual buttons to associate input to actions rather than physical keys, then let the user
define their own keys. For more information, see virtual buttons.

In this section
Gamepads
Gestures
Keyboards
Mouse
Pointers
Sensors
Virtual buttons

NOTE

Even if a user performs several actions between two updates, Stride registers all these events.


693 / 1211

Gamepads
Beginner Programmer

Gamepads, such as the Xbox Elite Wireless Controller and the PS4 DualShock, are popular input devices
for consoles and desktop.

Digital and analog buttons
Digital buttons have two states: up and down. The D-pad, Start, Back, Thumbstick (press), A, B, X
and Y buttons are digital buttons.

Analog buttons return a value depending on how hard the user presses. The triggers are analog
buttons, and return a value between 0 and 1. The thumbsticks are also analog, and return values
between -1 and 1 on the X and Y axes.

The Xbox Elite controller buttons have the following names in Stride:

Handle gamepad input
Check that gamepads are connected
Before handling gamepad input:

NOTE

Stride is currently optimized for the Xbox Elite gamepad. Other controllers work, but might have
unexpected button mappings. Gamepad-specific features like the PS4 DualShock touchpad aren't
supported.



694 / 1211

To check if any gamepads are connected, use InputManager.HasGamePad.

To check how many gamepads are connected, use InputManager.GamePadCount.

To check if the current device has been disconnected, use the InputManager.DeviceRemoved event.

To check if a device has been connected, use the InputManager.DeviceAdded event.

Digital buttons
To query the states and state changes of digital gamepad buttons, on the GamePad object, call:

Method Functionality

IsButtonDown(IGamePadDevice, Game
PadButton)

Checks whether the button is in the down state.

IsButtonPressed(IGamePadDevice, Game
PadButton)

Checks whether the user has pressed the button since the
previous update.

IsButtonReleased(IGamePadDevice,
GamePadButton)

Checks whether the user has released the button since the
previous update.

Button (GamePadButton) is the gamepad button you want to check.

You can also get the state of digital buttons using GamePadState.Buttons.

To get the gamepad state, use IGamePadDevice.State.

Analog buttons
To query values of analog buttons, first get the current state of gamepad using GetGamePad
ByIndex(index), where index (Integer) is the index of the gamepad you want to check.

NOTE

The GamePadState.Buttons field is a bitmask that uses binary system. Depending on the bitmask
value, you can determine which buttons are up or down.



695 / 1211

To get trigger and thumbstick positions, use these GamePadState fields:

Field Description

GamePadState.LeftThumb Left thumbstick X-axis/Y-axis value in the range [-1.0f, 1.0f] for both axes.

GamePadState.Right
Thumb

Right thumbstick X-axis/Y-axis value in the range [-1.0f, 1.0f] for both
axes.

GamePadState.LeftTrigger Left trigger analog control value in the range [0, 1.0f] for a single axes.

GamePadState.Right
Trigger

Right trigger analog control value in the range [0, 1.0f] for a single axis.

Thumbsticks move along the X and Y axes. Their positions read as follows:

Triggers move along the X axis. Their positions read as follows:

WARNING

The value returned by IGamePadDevice.State is the state of the gamepad at the current update. You
can't reuse this value for the next updates. You have to query it again in every update.



696 / 1211

Vibration
To set the gamepad vibration level, use IGamePadDevice.SetVibration.

Example code

NOTE

Stride currently only supports vibration for Xbox gamepads.


using Stride.Core.Mathematics;
using Stride.Engine;

public class TestScript : SyncScript
{
 public override void Update()
 {
 //Check if a gamepad is connected
 if (Input.HasGamePad)
 {
 //Get the number of connected gamepads
 int gamepadCount = Input.GamePadCount;

 // Check each gamepad's status
 foreach(var gamepad in Input.GamePads)
 {

697 / 1211

See also
Keyboards
Virtual buttons
Input overview

 // Get the analog thumbstick positions
 Vector2 speed = gamepad.State.LeftThumb;
 Vector2 direction = gamepad.State.RightThumb;

 // Get the digital buttons' status
 if (gamepad.IsButtonDown(GamePadButton.X))
 {
 // The action repeats for as long as the user holds the button down.
 // This is useful for continuous actions such as firing a machine gun.
 }
 if (gamepad.IsButtonPressed(GamePadButton.A))
 {
 // The action is triggered only once, even if the user holds the
button down.
 // This is useful for one-time actions such as jumping.
 }
 }
 }
 }
}

698 / 1211

Gestures
Intermediate Programmer

Gestures are predefined pointer patterns. Stride can recognize gestures and trigger corresponding
events. For example, in a strategy game, the player can drag and drop a unit to the battlefield with a
drag gesture. Gestures can use one or several fingers.

Turn on gesture recognition
By default, the input system doesn't recognize gestures, as this requires CPU time.

To turn on gesture recognition:

1. Create an instance of the configuration class for the gesture you want to recognize. For example, for
the drag gesture, create an instance of GestureConfigDrag.

2. Configure the class parameters.
3. Add the gesture configuration to the Gestures collection.

Turn off gesture recognition
Delete the gesture from the InputManager.Gestures collection.

Gesture recognition
When the input system detects a gesture, it adds a GestureEvent to the list of InputManager.Gesture
Events. The event contains information about the gesture and its state, such as its location and the
number of fingers used.

NOTE

All lengths, speeds and error margins of configuration files must use normalized values.


WARNING

After you activate recognition for a gesture, you can't modify the gesture's parameters. If you need
to do this, delete the gesture from the Gestures collection and create a new entry with new
parameters.



699 / 1211

The GestureEvent.Type field indicates which gesture has been recognized. You can then cast the base
gesture event into the gesture-specific event type to have gesture-type-specific information about the
event.

Stride can detect several gestures simultaneously, so the event list can contain more than one item in an
update.

The list is cleared with every update, so you don't need to clear it manually.

Configure gestures
In the GestureConfig classes, you can configure parameters including:

the number of fingers the gesture uses

the number and duration of taps the gesture uses

the gesture direction

Types of gesture
Stride supports two main types of gesture:

Discrete gestures (tap, flick, long press) trigger a single event.

Tap

Flick

Long press

Continuous gestures (drag and composite) trigger a series of events when the user changes the
direction of the gesture.

Drag

NOTE

Each gesture has its own associated gesture event class (see below).


NOTE

Each gesture has its own configuration class with specific configuration parameters (see below).


700 / 1211

Composite

Discrete gestures
Tap

The user touches the screen and quickly removes their finger.

Configuration class: GestureConfigTap

Event class: GestureEventTap

The number of fingers on the screen can't vary during the gesture. To set the number of fingers required
for a tap, modify RequiredNumberOfFingers.

Flick

The user touches the screen, performs a quick straight translation, and withdraws their finger(s).

Configuration class: GestureConfigFlick

Event class: GestureEventFlick

The number of fingers on the screen can't during the gesture.

To set a minimum length for the flick gesture, use GestureConfigFlick.MinimumFlickLength.

TIP

To distinguish single taps from multi-taps, the system uses latency in tap events. To disable this, set
the GestureConfigTap.MaximumTimeBetweenTaps field to 0.



701 / 1211

To restrict the direction of the flick to vertical or horizontal, use GestureConfigFlick.FlickShape.

Long press

The user touches the screen and maintains pressure without removing their finger for a certain period of
time (the default time is one second).

Configuration class: GestureConfigLongPress

Event class: GestureEventLongPress

The number of fingers on the screen can't vary during the gesture.

To change the minimum press length for the long press gesture, modify GestureConfigLongPress.
RequiredPressTime.

Continuous gestures
Drag

The user touches the screen, performs a translation, and withdraws their finger(s).

Configuration class: GestureConfigDrag

Event class: GestureEventDrag

The number of fingers on the screen can't vary during the gesture.

To detect smaller drags, decrease GestureConfigDrag.MinimumDragDistance.

To restrict the direction of the drag to vertical or horizontal, use GestureConfigDrag.DragShape.

Composite

702 / 1211

The user touches the screen with two fingers and moves them independently.

Configuration class: GestureConfigComposite

Event class: GestureEventComposite

The composite gesture requires exactly two fingers on the screen. It's triggered when the system detects
one of the three basic actions:

Translation: the user translates two fingers together in the same direction.
Scale: the user moves two fingers closer together or further apart.
Rotation: the user rotates two fingers around a center point.

Gesture states
A gesture always has one of four states:

Began

Changed

Ended

Occurred

Discrete gestures (tap, flick, long press) always have the state occurred. Continuous gestures (drag and
composite) always begin with the state began, followed by any changed states, and end with the ended
state.

To query the current state of a gesture, use the GestureEvent.State field of the triggered gesture event.

Example code
Activate or deactivate gesture recognition
To create the configuration of a gesture you want to recognize:

// Create the configuration of a gesture you want to recognize.
var singleTapConfig = new GestureConfigTap();

703 / 1211

Configure the gesture
Each configuration class has a parameterless constructor that corresponds to the default gesture
configuration. You can use special constructors for frequently-modified parameters.

Access gesture events
You can access the list of events triggered by recognized gestures using the InputManager.Gesture
Events collection. The collection is automatically cleared at every update.

// Start tap gesture recognition.
Input.Gestures.Add(singleTapConfig);

// Create the configuration of the gesture you want to recognize.
var doubleTapConfig = new GestureConfigTap(2, 1);

// Start double tap gesture recognition.
Input.Gestures.Add(doubleTapConfig);

// Stop tap gesture recognition.
Input.Gestures.Remove(singleTapConfig);

// Stop all gesture recognitions.
Input.Gestures.Clear();

WARNING

We don't recommend you modify other fields as this might break the input system. But if you need
to, you can modify them using the corresponding properties.



// Default gesture config.
var singleTapConfig = new GestureConfigTap();

// Personalize gesture config using the dedicated constructor.
var doubleTapConfig = new GestureConfigTap(2, 2);

// Personalize gesture config by directly accessing the desired property.
// Make sure you know what you're doing! Modifying this might break the input system.
var noLatencyTap = new GestureConfigTap() { MaximumTimeBetweenTaps= TimeSpan.Zero };

var currentFrameGestureEvents = Input.GestureEvents;

704 / 1211

Identify the gesture type
Use the GestureEvent.Type field to identity the gesture type, then cast it to the appropriate event type to
get extra information about the event.

Identify the gesture state
Use the GestureEvent.State field to get gesture event state.

See also
Pointers
Virtual buttons
Input overview

foreach(var gestureEvent in Input.GestureEvents)
{
 // Determine if the event is from a tap gesture

if (gestureEvent.Type != GestureType.Tap)
continue;

// Cast a specific tap event class.
GestureEventTap tapEvent = (GestureEventTap) gestureEvent;

 // Access tap-event-specific field.
 log.Info("Tap position: {0}.", tapEvent.TapPosition);
}

switch(compositeGestureEvent.State)
{
case GestureState.Began:

image.ComputePreview();
break;

case GestureState.Changed:
image.TransformPreview(compositeGestureEvent.TotalScale,

compositionGestureEvent.TotalRotation);
break;

case GestureState.Ended:
image.TransformRealImage(compositeGestureEvent.TotalScale,

compositionGestureEvent.TotalRotation);
break;

default:
break;

}

705 / 1211

Keyboards
Beginner Programmer

The keyboard is the most common input device for desktop games. There are two ways to handle
keyboard input in Stride:

query key states
use KeyEvent lists

You can access both from the input base class. For more information about these options, see the input
index

Check keyboard availability
Before handling keyboard input, check whether a keyboard is connected using Input.HasKeyboard.

Get key states
You can query key states and state changes with the following methods:

Method Description

IsKeyDown(Keys) Checks if a specified key is in the down state.

IsKeyPressed(Keys) Checks if a specified key has been pressed since the last update.

IsKeyReleased(Keys) Checks if a specified key has been released since the last update.

Get key events
In some cases, you want to know all the keys that are currently Down, or all the keys that have been
Pressed since the last update. The key state API isn't good for this situation, as you have to query each
available key separately.

Instead, use the key events collections available in the Input base class.

NOTE

Stride doesn't support retrieving interpreted keys, such as special characters and capital letters.


706 / 1211

Public List Description l

InputManager.DownKeys Gets a list of the keys that were down in the last update.

InputManager.PressedKeys Gets a list of the keys pressed in the last update.

InputManager.Released
Keys

Gets a list of the keys released in the last update.

InputManager.KeyEvents Gets a list of the key events in the last update (keys pressed or
released).

Every KeyEvent has two properties: Key (the affected key) and IsDown (the new state of the key).

Example code

See also
Gamepads
Mouse
Virtual buttons
Input overview

public class KeyboardEventsScript : SyncScript
{

//Declared public member variables and properties show in Game Studio.

public override void Update()
{

//Perform an action in every update.
if (Game.IsRunning)
{

if (Input.IsKeyDown(Keys.Left))
{

this.Entity.Transform.Position.X -= 0.1f;
}
if (Input.IsKeyDown(Keys.Right))
{

this.Entity.Transform.Position.X += 0.1f;
}

}
}

}

707 / 1211

Mouse
Beginner Programmer

The mouse is a common input device for desktop games.

There are two ways to handle mouse input in Stride:

Query mouse button states.
For cross-platform games that target mobile devices, you can use PointerEvent lists. For more
information, see Pointers.

You can access mouse button states and pointer events list from the Input manager.

Class
Project
type When to use

Input
Manag
er

Desktop
only

For desktop games, you usually handle input with multiple mouse buttons.
This means you should use mouse button states.

Pointer
Event

Cross-
platform

For mobile games, you usually simulate pointers with just the left mouse
button. This means you can treat the mouse input like pointers. There's no
need to create separate mouse-specific controls. For more information, see
Pointers.

For more information about these options, see the Input index.

Check mouse availability
Before handling mouse input, use Input.HasMouse to check if a mouse is connected.

Get the mouse position
You can get the mouse position in normalized or absolute coordinates.

Normalized coordinates
MousePosition returns the mouse pointer position in normalized X, Y coordinates instead of actual
screen sizes in pixels. This means the pointer position adjusts to any resolution and you don't have to
write separate code for different resolutions.

(0,0): the pointer is in the top-left corner of the screen
(1,1): the pointer is in the bottom-right corner of the screen

708 / 1211

Absolute coordinates
InputManager.AbsoluteMousePosition returns the mouse pointer position in absolute X and Y
coordinates (the actual screen size in pixels). For example, if the pointer is in the top-left corner of the
screen, the values are (0,0). If the pointer is in the bottom-right corner, the values depends on the screen
resolution (eg 1280, 720).

Query mouse button state changes
You can use the mouse buttons to trigger actions in a project. For example, in first-person shooter
games, the left mouse button is commonly used to shoot.

The Input manager has several methods that check mouse button states (Pressed, Down, or Released):

Method Description

HasDownMouseButtons Checks if one or more mouse buttons are currently pressed
down.

HasPressedMouseButtons Checks if one or more mouse buttons were pressed in the last
update.

HasReleasedMouseButtons Checks if one or more mouse buttons were released in the last
update.

IsMouseButtonDown (Mouse
Button)

Checks if a specified mouse button is currently pressed down.

IsMouseButtonPressed (Mouse
Button)

Checks if a specified mouse button was pressed in the last
update.

IsMouseButtonReleased (Mouse
Button)

Checks if a specified mouse button was released in the last
update.

Mouse delta

TIP

To get the actual size of the screen, access IPointerDevice.SurfaceSize. For example:


var surfaceSize = Input.Mouse.SurfaceSize;

709 / 1211

Use InputManager.MouseDelta to get the change in mouse position in normalized coordinates since the
last update. You can use this to analyze mouse movement speed and direction.

Mouse wheel delta
You can use the mouse wheel to trigger actions in a project. For example, in a first-person shooter game,
moving the mouse wheel might switch weapons or zoom a camera.

The InputManager.MouseWheelDelta returns a positive value when the user scrolls forwards and a
negative value when the user scrolls backwards. A value of 0 indicates no movement.

Lock the mouse position
For some projects, the user needs to move the mouse cursor beyond the borders of the screen. For
example, first-person shooter games usually need 360-degree camera rotation. In these cases, you also
probably want the mouse cursor to be hidden.

You can lock the mouse position and hide the cursor with the following properties and methods:

Method or property Description

LockMouse
Position(Boolean)

Locks the mouse position until the next call to the UnlockMouse
Position() event.

UnlockMousePosition() Unlocks the mouse position locked by the LockMousePosition(Boolean)
event.

IsMousePositionLocked Checks if the mouse position is locked.

Example code

TIP

You can get or set mouse visibility with GameWindow.IsMouseVisible.


public class MouseInputScript : SyncScript
{

public override void Update()
{

//If the left mouse button is pressed in this update, do something.
if (Input.IsMouseButtonDown(MouseButton.Left))
{
}

710 / 1211

See also
Pointers
Virtual buttons
Keyboard
Gamepads
Input overview

//If the middle mouse button has been pressed since the last update, do
something.

if (Input.IsMouseButtonPressed(MouseButton.Middle))
{
}

//If the mouse moved more than 0.2 units of the screen size in X direction,
do something.

if (Input.MouseDelta.X > 0.2f)
{
}

}
}

711 / 1211

Pointers
Beginner Programmer

Pointers are points on the device screen corresponding to finger touches. Devices with multi-touch
functionality support multiple simultaneous pointers.

On desktop platforms, the left mouse button can be used to simulate pointers. For more information
about mouse input, see Mouse.

How Stride processes pointer input
1. The user touches the screen or clicks the left mouse button.

2. Stride creates a pointer.

3. Stride assigns pointer ID to that pointer corresponding to a given finger.

4. Every time the pointer is modified, Stride creates a new pointer event with that pointer.

5. For each new finger, Stride creates a new pointer with a new pointer ID.

You can enable gesture recognition to detect gestures such as long presses and taps. For more
information, see Gestures.

The PointerEvent class
PointerEvent reports pointer events. It contains the current pointer status and time information. It is
thrown every time the pointer is modified.

NOTE

Each pointer event contains information about only one pointer. If several pointers are modified
simultaneously in the same update, Stride creates a separate event for each pointer.



WARNING

Each OS handles pointer modifications differently. This means the same finger gesture can generate
slightly different pointer event sequences across different platforms. For example, Android doesn't
create a new pointer event when a finger touches the screen but doesn't move. For more
information, check your OS documentation.



712 / 1211

You can access the list of pointer events since the last update using InputManager.PointerEvents. Stride
lists pointer events in chronological order. The list is cleared at every update, so you don't need to clear
it manually.

Get pointer information
You can use the following properties to get information about the pointer that triggered the event:

Property Description

PointerEvent.PointerId Indicates the ID of the pointer which triggered the event.

To check if a pointer event was triggered by a mouse or touch, use:

Get the pointer position
You can get the pointer position in normalized or absolute coordinates.

Normalized coordinates
Position returns the pointer position in normalized X and Y coordinates instead of actual screen sizes in
pixels. This means the pointer position adjusts to any resolution and you don't have to write separate
code for different resolutions.

(0,0): the pointer is in the top-left corner of the screen
(1,1): the pointer is in the bottom-right corner of the screen

WARNING

The ID of a pointer is valid only during a single Pressed->Moved->Released sequence of pointer
events. A finger can have different IDs each time it touches the screen (even if this happens very
quickly).



WARNING

Each OS has its own way of assigning IDs to pointers. There's no relation between the pointer ID
values and corresponding fingers.



bool isTriggeredByMouse = event.Pointer is IMouseDevice

713 / 1211

Absolute coordinates
PointerEvent.AbsolutePosition returns the pointer position in absolute X and Y coordinates (the actual
screen size in pixels). For example, if the pointer is in the top-left corner of the screen, the values are
(0,0). If the pointer is in the bottom-right corner, the values depends on the screen resolution (eg 1280,
720).

Get pointer events
Use the PointerEvent.EventType to check the pointer events.

There are five types of pointer event:

Pressed: The finger touched the screen.
Moved: The finger moved along the screen.
Released: The finger left the screen.
Canceled: The pointer sequence was canceled. This can happen when the application is interrupted;
for example, a phone app might be interrupted by an incoming phone call.

Get delta values
PointerEvent.DeltaTime gets the time elapsed from the previous PointerEvent.

You can get the delta position in normalized or absolute coordinates.

Normalized delta values
PointerEvent.DeltaPosition gets the change in position since the previous PointerEvent in normalized X,Y
coordinates.

TIP

To get the actual size of the screen, access IPointerDevice.SurfaceSize. For example:


var surfaceSize = Input.Pointer.SurfaceSize;

NOTE

A sequence of pointer events for one pointer always starts with a Pressed event. This might be
followed by one or more Moved events, and always ends with a Released or Canceled event.



714 / 1211

Absolute delta values
PointerEvent.DeltaPosition gets the change in position since the previous PointerEvent in absolute (X,Y)
coordinates.

Example code
This script tracks the pointer movement and prints its positions:

NOTE

Delta values are always nulls at the beginning of the sequence of pointer events (ie when the
pointer state is down).



using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Stride.Core.Mathematics;
using Stride.Engine;

namespace Stride.Input.Tests
{
 public class PointerTestScript : AsyncScript
 {
 public override async Task Execute()
 {
 var pointerPositions = new Dictionary<int, Vector2>();
 while (true)
 {
 await Script.NextFrame();
 foreach (var pointerEvent in Input.PointerEvents)
 {
 switch (pointerEvent.EventType)
 {
 case PointerEventType.Pressed:
 pointerPositions[pointerEvent.PointerId] = pointerEvent.Position;
 break;
 case PointerEventType.Moved:
 pointerPositions[pointerEvent.PointerId] = pointerEvent.Position;
 break;
 case PointerEventType.Released:
 case PointerEventType.Canceled:
 pointerPositions.Remove(pointerEvent.PointerId);

715 / 1211

See also
Gestures
Mouse
Virtual buttons
Input overview

 break;
 default:
 throw new ArgumentOutOfRangeException();
 }
 }
 var positionsStr = pointerPositions.Values.Aggregate("", (current, pointer)
=> current + (pointer.ToString() + ", "));
 Log.Info("There are currently {0} pointers on the screen located at {1}",
pointerPositions.Count, positionsStr);
 }
 }
 }
}

716 / 1211

Sensors
Intermediate Programmer

You can use various sensors, such as gyroscopes and accelerometers, as input devices in your project.
Sensors are often used in mobile games.

Use InputManager to access sensors and:

check if a sensor is supported by Stride
disable a sensor
retrieve sensor data

Stride can receive data from six types of sensor:

Orientation
Accelerometer
UserAcceleration
Gravity
Compass
Gyroscope

They inherit from ISensorDevice.

Stride creates a default instance for each sensor type. You can access each instance from the Input
Manager.

Sensors are state-based. Each sensor instance is automatically updated every frame, and contains the
value of the sensor just before the update.

For example, to access the accelerometer, use:

Check if a sensor is available
Before you get the value of a sensor, check that the sensor is available in the device (ie not null). For
example, to check if the compass is available:

var accelerometer = Input.Accelerometer;

var hasCompass = Input.Compass != null;

717 / 1211

Enable a sensor
By default, Stride disables all available sensors, as retrieving and updating sensor data takes significant
CPU time.

To enable a sensor, set IsEnabled to true. When you don't need the sensor, disable it by setting the
property to false.

Use the orientation sensor
The orientation sensor indicates the orientation of the device with respect to gravity and the Earth's
north pole. The orientation is null when the device's Y-axis is aligned with the magnetic north pole and
the Z-axis with the gravity. You can use orientation data to control various actions in a game.

NOTE

If a sensor isn't natively supported by the device, Stride tries to emulate it using the device's other
sensors.



718 / 1211

Use Input.Orientation to get the current orientation of the device.

Property Description Declaration

Roll The rotation around the X-axis public float Roll { get; }

Pitch The rotation around the Y-axis public float Pitch { get; }

Yaw The rotation around the Z-axis public float Yaw { get; }

Rotation Matrix The device rotation public Matrix RotationMatrix { get; }

Quaternion The device orientation and rotation public Quaternion Quaternion { get; }

For example:

Motion sensors
Motion sensors measure acceleration forces such as tilts, shakes, and swing. Stride supports three
types of motion sensor:

Accelerometer: measures the raw acceleration
Gravity: measures gravity only
UserAcceleration: measures only the acceleration applied by the user

The sensors use the physic relation Accelerometer = Gravity + UserAcceleration.

 var orientation = Input.Orientation.Quaternion;

NOTE

Stride provides the orientation under the pitch/yaw/roll, rotation matrix, or quaternion forms. We
recommend the quaternion form as it doesn't suffer from gimbal lock .



https://en.wikipedia.org/wiki/Gimbal_lock
https://en.wikipedia.org/wiki/Gimbal_lock
https://en.wikipedia.org/wiki/Gimbal_lock

719 / 1211

Motion sensors have a single field that specifies the current acceleration vector on the device. Stride
measures the acceleration in meters per second squared.

This image shows the coordinate basis Stride uses to measure acceleration on smartphones and tablets:

720 / 1211

Use the accelerometer
The accelerometer measures the raw acceleration applied to the device. This includes gravity and user
acceleration.

To get the raw acceleration, use Accelerometer.Acceleration. For example:

Use the user acceleration sensor
The user acceleration sensor is similar to the accelerometer, but measures the acceleration applied only
by a user (without gravitational acceleration).

To get the user acceleration, use UserAcceleration.Acceleration. For example:

Use the gravity sensor

NOTE

When the user isn't applying force, the device acceleration is equal to its gravity.


var acceleration = Input.Accelerometer.Acceleration;

var userAcceleration = Input.UserAcceleration.Acceleration;

721 / 1211

The gravity sensor gives a 3D vector indicating the direction and magnitude of gravity (meters per
second squared) acting on the device.

To get the gravity vector, use GravitySensor. For example:

Use the compass sensor
The compass indicates measures the angle between the top of the device and the North Pole. This is
useful, for example, to rotate and align digital maps.

To get this angle, use CompassSensor.Heading. For example:

Use the gyroscope
The gyroscope measures the rotation speed of the device (radians per second).

 var gravityVector = Input.Gravity.Vector;

var heading = Input.Compass.Heading;

722 / 1211

To get the rotation speed, use GyroscopeSensor.RotationRate. For example:

Example code

 var rotationRate = Input.Gyroscope.RotationRate;
 var rotationSpeedX = rotationRate.X;
 var rotationSpeedY = rotationRate.Y;
 var rotationSpeedZ = rotationRate.Z;

public class SensorScript : AsyncScript
{

public override async Task Execute()
{

// Check availability of the sensor
if(Input.Accelerometer != null)

return;

// Activate the sensor
Input.Accelerometer.IsEnabled = true;

723 / 1211

See also
Gestures
Pointers
Input overview

while (Game.IsRunning)
{

// read current acceleration
var accel = Input.Accelerometer.Acceleration;

// perform require works...
await Script.NextFrame();

}
// Disable the sensor after use
Input.Accelerometer.IsEnabled = false;

}
}

724 / 1211

Virtual buttons
Intermediate Programmer

Rather than bind controls to physical keys and buttons, you can bind them to virtual buttons. Players
can then assign physical buttons to the virtual buttons, allowing them to create their own control
schemes.

For example, imagine you develop a first-person shooter game and need to assign a key for the
UseMedkit function. Rather than bind the function to a particular key, you can create a virtual button
called UseMedkit, then bind the virtual button to, say, the F key. If they want to, the player can then bind
the virtual key to a different key at runtime.

Use virtual buttons
1. Bind a key, button, or pointer to a virtual button (eg MyButton).
2. Create a list of virtual buttons.
3. Add MyButton to the list of virtual buttons.
4. Assign a function to MyButton.
5. Create additional virtual buttons.
6. Add the additional buttons to the same list, or create additional lists.

Example code
public override void Start()
{
 base.Start();

 // Create a new VirtualButtonConfigSet if none exists.
 Input.VirtualButtonConfigSet = Input.VirtualButtonConfigSet ??
new VirtualButtonConfigSet();

725 / 1211

See also
Gamepads
Keyboard
Mouse
Pointers
Input overview

 //Bind "M" key, GamePad "Start" button and left mouse button to a virtual
button "MyButton".
 VirtualButtonBinding b1 = new VirtualButtonBinding("MyButton",
VirtualButton.Keyboard.M);
 VirtualButtonBinding b2 = new VirtualButtonBinding("MyButton",
VirtualButton.GamePad.Start);
 VirtualButtonBinding b3 = new VirtualButtonBinding("MyButton",
VirtualButton.Mouse.Left);

 VirtualButtonConfig c = [b1, b2, b3];

 Input.VirtualButtonConfigSet.Add(c);
}

public override void Update() {
 float button = Input.GetVirtualButton(0, "MyButton");
}

726 / 1211

Navigation
Beginner Level designer Programmer

You can use the navigation system to control how characters and other objects navigate scenes.

Set up navigation
1. Create a navigation group
2. Add a navigation mesh
3. Add a navigation bounding box
4. Add a navigation component

Sample project
For an example of how to implement navigation, including enabling and disabling dynamic navigation at
runtime, see the top-down RPG sample project included with Stride.

See also
Dynamic navigation

727 / 1211

Navigation groups
Beginner Level designer Programmer

Navigation groups define different navigation properties for the entities you add to them. You define
navigation groups in the project game settings.

You can create different navigation groups for different kinds of entity. For example, if your game
features vehicles controlled by scripts, you might create different navigation groups for different sizes of
vehicle, each with different properties: a car group, a bus group, a motorcycle group, and so on.

Create a navigation group
1. In the Solution Explorer (the bottom-left pane by default), select the Assets folder.

2. In the Asset View (the bottom pane by default), select the Game Settings asset.

3. In the Property Grid (the right-hand pane by default), expand Navigation Settings.

728 / 1211

4. Next to Groups, click (Add).

Game Studio adds a new item to the list of navigation groups.

5. Set the properties for the navigation group. Entities you add to this group use these properties.

Navigation group properties
In most cases, the navigation group properties should approximately match the properties in the
character component of the entities in the group, if they have one.

Property Description

Item The name of the group

Height The height of the entities in this group. Entities can't enter areas with ceilings lower
than this value

Maximum
climb height

The maximum height that entities in this group can climb

Maximum
slope

The maximum incline (in degrees) that entities in this group can climb. Entities can't
go up or down slopes higher than this value. In most cases, this should be
approximately the same value as the max slope property in the character component
of the entities in this group, if they have one.

Radius The larger this value, the larger the area of the navigation mesh entities use. Entities

729 / 1211

Property Description

can't pass through gaps of less than twice the radius.

See also
Navigation meshes
Navigation bounding boxes
Navigation components
Dynamic navigation
Physics — Characters

730 / 1211

Navigation meshes
Beginner Level designer Programmer

Navigation meshes form the area that entities with navigation components can navigate. Stride creates
a layer in the navigation mesh for each navigation group you create.

Game Studio displays navigation meshes as colored overlays in your scene. The overlay shows where
entities in the navigation group for that layer can move. The mesh updates in real time as you edit your
scene.

Create a navigation mesh
1. In the Asset View (bottom by default), click Add asset > Scenes > Navigation mesh.

Game Studio adds a navigation mesh asset to your project.

731 / 1211

2. With the navigation mesh selected in the Asset View, in the Property Grid, set the scene the
navigation meshes in this asset apply to.

For more information about scenes, see Scenes.

3. Under Selected groups, click (Add).

Game Studio adds a new item to the list of groups.

732 / 1211

4. Click (Replace) and choose a group from the drop-down menu.

Stride builds a layer in the navigation mesh for this group. For more information about groups,
including how to create them, see Navigation groups.

5. Repeat steps 3 and 4 for as many groups as you want to use the navigation mesh.

Navigation mesh properties
Property Description

Scene The scene this navigation mesh applies to

Included collision
groups

Set which collision groups the navigation mesh uses. By default, meshes use
all collision groups

Build settings Advanced settings for the navigation mesh

Groups The groups that use this navigation mesh

Show or hide a navigation mesh in the Scene Editor

NOTE

If you want to create a navigation mesh for a different scene, create another navigation mesh
asset and select the scene in the asset properties.



733 / 1211

Use the navigation visibility menu in the Scene Editor toolbar.

To show or hide layers belonging to different groups, use the checkboxes. The colored boxes indicate the
color of the groups displayed in the Scene Editor.

Navigation mesh hidden Navigation mesh shown

These options have no effect on runtime behavior.

See also
Navigation groups
Navigation bounding boxes
Navigation components
Dynamic navigation
Scenes

734 / 1211

Navigation bounding boxes
Beginner Level designer Programmer

Navigation bounding boxes define the area that navigation meshes cover. You can use them to create
smaller navigation areas in your scene, rather than having a mesh cover the entire scene.

The Scene Editor displays the bounding box as a blue outline.

Create a navigation bounding box
To create a navigation bounding box, add a navigation bounding box component to an entity.

1. In the scene, select the entity you want to contain the bounding box, or create a new entity.

2. With the entity selected, in the Property Grid, click Add component and select Navigation
bounding box.

735 / 1211

Game Studio adds a navigation bounding box to the entity.
3. Under the Navigation bounding box component properties, use the XYZ values to set the size of

the bounding box.

4. Use the entity's transform component to position the bounding box in your scene.

Show or hide the bounding box in the Scene Editor
In the Scene Editor toolbar, open the gizmo options menu and use the Navigation bounding box
checkbox.

736 / 1211

Bounding box hidden Bounding box shown (note blue box outline)

See also
Navigation groups
Navigation meshes
Navigation components
Dynamic navigation

737 / 1211

Navigation components
Beginner Level designer Programmer

Navigation components allow entities to use navigation meshes to find paths through the scene.
Alternatively, if you enable dynamic navigation in Game Settings, entities can generate their own
navigation meshes.

Add a navigation component
1. Select an entity you want to use navigation.

2. In the Property Grid, click Add component and select Navigation.

Game Studio adds a navigation component to the entity.

3. Under the Navigation component properties, next to Navigation mesh, click (Select an asset):

738 / 1211

The Select an asset window opens.
4. Select the navigation mesh you want the entity to use and click OK.

Alternatively, if you want this entity to navigate dynamically by generating its own navigation mesh,
leave the Navigation mesh field empty. For more information, see Dynamic navigation.

5. Under Group, select the navigation group the entity should belong to. The entity uses the
navigation properties you set in this group.

739 / 1211

Use navigation components in scripts
For example:

For more information, see the NavigationComponent API documentation.

See also
Navigation groups
Navigation meshes
Navigation bounding boxes
Dynamic navigation

void Move(Vector3 from, Vector3 to)
{

var navigationComponent = Entity.Get<NavigationComponent>();
List<Vector3> path = new List<Vector3>();
if(navigationComponent.TryFindPath(from, to, path))
{

// Follow the points in path
}
else
{

// A path couldn't be found using this navigation mesh
}

}

740 / 1211

Dynamic navigation
Beginner Level designer Programmer

If you enable dynamic navigation, entities with navigation components don't need a navigation mesh
asset. Instead, the entities generate navigation meshes dynamically.

Enable dynamic navigation
You can enable and disable dynamic navigation in the global game settings asset.

1. On the entities you want to navigate dynamically, under the navigation component properties, next
to Navigation mesh, make sure no navigation mesh is selected.

For more information about the navigation component, see Navigation components.

2. In the Solution Explorer (the bottom-left pane by default), select the Assets folder.

3. In the Asset View (the bottom pane by default), select the Game Settings asset.

NOTE

Make sure that the scenes you want the entities to navigate dynamically have navigation bounding
boxes.



741 / 1211

4. In the Property Grid (the right-hand pane by default), under Navigation Settings, expand
Dynamic navigation mesh.

5. Select the Enable dynamic navigation checkbox.

742 / 1211

Dynamic navigation mesh properties
Property Description

Enabled Enable dynamic navigation on navigation components that have no assigned
navigation mesh

Included collision
groups

The collision groups dynamically-generated navigation meshes use. By default,
meshes use all collision groups

Build settings Advanced settings for dynamically-generated navigation meshes

Enable and disable dynamic navigation from a script
Example code:

// Find and enable the dynamic navigation mesh system
dynamicNavigationMeshSystem = Game.GameSystems.OfType<DynamicNavigationMeshSystem>
().FirstOrDefault();
dynamicNavigationMeshSystem.Enabled = true;

// This stops the dynamic navigation mesh system from automatically rebuilding in the
folowing cases:
// - loading/Unloading scenes
// - adding/removing static collider components
// - adding/removing navigation mesh bounding boxes
dynamicNavigationMeshSystem.AutomaticRebuild = false;

// ...

if (/* any condition that should cause the navigation mesh to update (eg open/close door)
*/)
{

743 / 1211

See also
Navigation groups
Navigation meshes
Navigation bounding boxes
Navigation components

// Start an asynchronous rebuild of the navigation mesh
var rebuildTask = dynamicNavigationMeshSystem.Rebuild();
rebuildTask.ContinueWith((x) =>
{

if (x.Result.Success)
{

// The navigation mesh is successfully rebuilt
}

});
}

744 / 1211

Particles
Particles are shapes that, used in large numbers, create pseudo-3D effects. You can use particles to
create effects such as liquid, fire, explosions, smoke, lightning, motion trails, magic effects, and so on.

In this section
Create particles

Emitters
Shapes

Ribbons and trails
Materials
Spawners
Initializers
Updaters

Tutorials
Create a trail — Create a motion trail for a sword slash animation
Lasers and lightning — Create laser and lightning effects using particles and custom materials
Inheritance — Create particles that inherit attributes from other particles
Particle materials
Custom particles

Sample project

745 / 1211

To see some examples of particles implemented in a project, create a new Sample: Particles project and
check out the different scenes.

746 / 1211

Create particles
Beginner Artist Programmer

To create a particle system, right-click the scene or Entity Tree, select Particle System, and choose a
preset (Empty, Simple, Fountain, or Ribbon).

Game Studio creates an entity with a Transform component and a Particle System component with
your chosen preset. Particle entities are represented with a flame icon.

Alternatively, you can add a particle component to an existing entity. With the entity selected, in the
Property Grid, click Add component and select Particle System.

747 / 1211

Game Studio adds an empty particle system to the entity.

Transform component
All entities have a transform component. Some particle elements ignore some elements of the transform
component, such as rotation or scaling. For example, the gravity force shouldn't depend on the rotation
of the particle system, and always ignores rotation; however, fountain particle systems inherit the
location for the purposes of initial particle velocity.

Only uniform scaling is supported. If you have a non-uniform scale on the transform component, only
the X axis is used.

If you want two particle systems to share a transform component, create two particle system entities and
make one a child of the other.

Particle component properties

748 / 1211

With a particle system entity selected, you can edit its properties in the Property Grid, just like any other
entity.

Property Description

Editor
control

This changes how Game Studio displays particles while you work on the scene. You can
play, pause, and stop the particle system. You can also reset the particle effect at set
intervals, which is useful for previewing one-shot effects. The editor controls don't affect
how particles are displayed at runtime.

749 / 1211

Property Description

Warm-up
time

If you set the warm-up time to a value greater than 0, the particle appears as if it's
already active when it appears. This value is in seconds. For example, if you set the warm-
up time to 1, the particle effect appears as if it has already been active for 1 second when
it appears. This is useful, for example, if you set a fire effect warm-up time to 0, the fire
appears to ignite as soon as it's rendered. If you want the fire to appear as if it's already
ignited when it's rendered, increase the warm-up time.

Speed
scale

Controls the speed of the particle effect.

Culling
AABB

This creates an axis-aligned bounding box (AABB) around the particle effect. If the
bounding box isn't in the camera view, Stride doesn't render the particle effect. This is
useful for culling and optimization. Rotated AABB sets box shape in XYZ co-ordinates.
Uniform AABB creates a cube of the scale you specify (in world units). To view the AABB
in the Scene Editor, select Debug Draw.

Emitters The emitters the particle system contains. The emitters are updated and drawn in the
order they appear in the list, and can be re-ordered. For more information, see Emitters.

See also
Emitters
Shapes
Materials
Spawners
Initializers
Updaters

750 / 1211

Emitters
Beginner Artist Programmer

Particle emitters manage how many particles are in an effect, how they appear, move, and disappear,
and how they are drawn. For example, a fire effect might be composed of three separate particle effects:
flames, embers, and smoke. Each of these effects is managed by a separate particle emitter.

Emitters contain further controls such as spawners, initializers, and updaters.

Property Description

Emitter
name

A unique identifier for the particle emitter

Max
particles

The maximum number of active particles the emitter can manage at a given time, based
on the particles' spawn rate and lifespan. If you leave this at 0, Stride uses its own
estimate.

Lifespan New particles have a lifespan between these two values

Space Particles in world space remain in the world space when the emitter moves away from
them. Particles in local space always exist in the emitter's local coordinate system; if the
emitter moves, rotates, or scales, the particles move with it.

Randomize Particles use pseudo-random values for everything which requires randomness. If you
set this to Time, different emitters generate different random numbers. If you set it to

751 / 1211

Property Description

Fixed, different instances of the same effect behave identically. Position acts as Fixed
but is different for different positions.

Draw
priority

This controls the order in which particles are drawn. Higher numbers have higher
priority. For example, if this particle effect has a draw priority of 2, it will be drawn after
a particle effect with a draw priority of 1.

Sorting Choose if the articles should be drawn by depth (away from the camera), age (particles
spawned first are drawn on top), order, or in no order none (good for additive particles,
which need no sorting).

Shape Specifies the shape used to draw the particles

Material Specifies the material used to render the particles

Spawners Spawners control how quickly new particles are emitted. To emit particles, emitters must
have at least one spawner.

Initializers Initializers set the initial values of new particles

Updaters Updaters update living particles every frame, changing their attributes. Updaters
execute in the order in which they appear on the list.

See also
Create particles

Shapes

Materials

Spawners

Initializers

Updaters

752 / 1211

Particle shapes
Beginner Artist Programmer

Because particles are essentially only points in space, they have no defined shape. Instead, Stride draws
shapes between the points.

The major difference between particle shapes is whether they always face the camera, or if they can
rotate freely in 3D space.

Currently, emitters can only emit one type of shape at a time.

Billboards
Billboards always face the camera. They appear fixed in 3D space, so they don't change with the
camera position.

Because they always face the camera, billboards support angular rotation only. This means they only
rotate clockwise or counter-clockwise.

Hexagon
Hexagons are identical to billboards, but are hexagonal in shape. Like billboards, they always face the
camera and support angular rotation only.

Quads
Quads are identical to billboards, but don't rotate to face the camera, and so support 3D orientation and
rotation.

Stride draws billboard particles to the Size value in the particle effect properties. If you don't specify a
size, Stride expands the quads to 1m x 1m.

753 / 1211

Direction-aligned sprite
This sprite is billboard-aligned and stretched in the direction of the particle. You can set an initial
direction for the particles with an initializer, or add an updater which writes particle speed as direction.

Ribbons and trails
See Ribbons and trails.

See also
Create particles
Emitters
Materials
Spawners
Initializers
Updaters

754 / 1211

Ribbons and trails
Intermediate Artist Programmer

To create ribbons and trails, Stride builds the mesh data as a strip connecting the particles, rather than
individual quads. Ribbons and trails are often used to create visual effects such as sword slashes.

In the diagram below, several particles (represented as red dots) are rendered as individual quads (blue
squares):

In the diagram below, a strip is created by connecting the particles and rendering quads between the
adjacent particles:

755 / 1211

Ribbons vs trails
Both ribbons and trails generate a flat surface which follows an axis connecting adjacent particles in a
line. This line defines one of the axes of the surface. The difference is that ribbons always face the
camera, and trails don't.

The gif below shows the different behavior of ribbons (red) and trails (yellow) when viewed from
different camera angles. Note how the ribbon doesn't change as the camera moves; it's fixed in space.

756 / 1211

Sort particles
To create ribbons and trails, you usually need to sort the particles into an order. If you don't sort the
particles, they connect erratically, as in this diagram:

Here's an example of how unsorted particles look at runtime:

757 / 1211

Rather than the particles connecting in order, the strip erratically jumps between particles. (This is the
same problem alpha-blended quads have when they're not properly sorted.)

To sort the particles, under Particle System > Source > Emitters, change the Sorting property.

If your particles have the same lifespan property, and are emitted no more than once per frame (usually
the case at 30 particles per second or fewer), you can sort them by age.

758 / 1211

However, if you spawn several particles per second or your particles vary in lifespan, sorting by age
doesn't provide a consistent order, as the sorting parameter changes between frames. In this case, you
should sort the particles by order. To do this, you need to add a spawn order initializer. To do this, in
the entity properties, under Particle System > Source > Emitters, next to Initializers, click (Add) and
select Spawn Order.

759 / 1211

This adds a spawn order initializer to the emitter. It doesn't have any properties, but it gives the particles
a SpawnID we can sort them by.

Texture coordinates
Unlike billboards, which are individual quads, ribbons and trails have a single surface across all particles.
To define how textures are mapped across the surface, under Particle System > Source > Emitters >
Shape, change the UV Coords property.

NOTE

Sorting by depth might work in niche cases, but this doesn't preserve the order between different
frames. We don't recommend it for most situations.



760 / 1211

AsIs: The texture is mapped per segment, copying the same quad stretched between every two
particles. This is sometimes useful with flipbook animations (in the Material settings).

Stretched: The texture is stretched between the first and last particle of the trail or ribbon. The UV
Factor defines how many times the texture appears across the entire trail or ribbon (1 = once).

761 / 1211

DistanceBased: The texture is repeated based on the actual world length of the ribbon or trail
rather than the number of particles. The UV Factor defines the distance in world units after which
the texture repeats

Smooth ribbons and trails
You can add extra segments between adjacent particles to smooth the lines between particles. To do this,
under Particle System > Source > Emitters > Shape, change the Smoothing property.

None — No smoothing creates only one segment joining two particles. This creates trails and
ribbons with sharp angles.

Fast — This uses Catmull-Rom interpolation (Wikipedia) to add extra segments between particles,
creating a smoother effect. You can set the number of segments with the Segments property.

https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline
https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline
https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline

762 / 1211

Best — This generally creates the smoothest effect, but requires more CPU. It calculates a
circumcircle around every three sequential particles along the control axis, then adds extra control
points on the circle, keeping the segments in an arc. For the first and the last segment, there is only
one arc to be followed, but for mid-sections, two different arcs from two different circles overlap;
Stride interpolates the control points from the first arc and the second as the point approaches the
second particle. You can set the number of segments between every two particles with the
Segments property.

763 / 1211

This video shows the difference between the three smoothing methods. Note that the rightmost trail
(using the Best method) is slightly more circular, closer to the actual path of the sword swing.

Sample project
For an example of a project that uses ribbons and trails, try the Ribbon Particles Sample included with
Stride.

See also
Shapes
Tutorial: Create a trail
Tutorial: Lasers and lightning

764 / 1211

Particle materials
Beginner Artist Programmer

Materials define how the expanded shape should be rendered. They defines color, textures, and other
parameters.

Particle materials are simplified versions of materials used for meshes. There is only one type of
material currently, the Dynamic Emissive material.

Dynamic emissive
This material uses a translucent emissive color RGBA for the pixel shading. In HDR rendering mode, the
values are used as intensity, and can be higher than 1.

Property Description

Alpha-
Add

Translucent rendering supports alpha-blending, additive blending or anything in-
between. With this parameter you can control how much alpha-blended (0) or additive (1)
the particles should be.

Culling There are options for no culling, front face culling and back face culling. Camera-facing
particles always have their front face towards the camera.

Emissive The emissive RGBA color for the particle. See Material maps for a full description.

UV
coords

For particles which use texture sampling uv coordinates animation can be specified. The
two currently existing types are specified below.

UV Coords — Flipbook
The flipbook animation considers a texture a sequence of frames and displays it one frame at a time, like
a flipbook.

This image is an example of a 4x4 flipbook animation texture of an explosion:

765 / 1211

The flipbook animation has the following properties:

Property Description

X divisions The number of columns to split the texture into

Y divisions The number of rows to split the texture into

Starting
frame

The frame to start the animation at. The top-left frame is 0 and increases by 1 from left
to right before moving down.

Animation
speed

The total number of frames to show over the particle lifetime. If Speed = X x Y, then
the animation shows all frames over the particle lifetime. The speed is relative; particles
with longer lifespans have slower animation.

UV Coords — Scrolling
The scrolling animation defines a starting rectangle for the billboard or quad, which moves across the
texture to its end position. This creates a scrolling or a scaling effect of the texture across the quad's
surface.

The texture coordinates can go below 0 or above 1. How the texture is sampled depends on the
addressing mode defined in the material maps. For more information, see the MSDN documentation .

The scrolling animation has the following properties:

http://tinyurl.com/TextureAddressingModes
http://tinyurl.com/TextureAddressingModes
http://tinyurl.com/TextureAddressingModes

766 / 1211

Property Description

Start frame The initial rectangle for texture sampling when the particle first spawns

End frame The last rectangle for texture sampling when the particle disappears

See also
Create particles
Emitters
Shapes
Spawners
Initializers
Updaters

767 / 1211

Particle spawners
Beginner Artist Programmer

Particle spawners control when, how many, and how quickly particles are emitted. Emitters need at least
one spawner, but can contain multiple spawners with different settings.

Per second
Emits a fixed number of particles per second. It balances and interpolates them and is stable even if the
framerate changes or drops. For example, at a rate of 20 particles per second, the spawner spawns one
particle every three frames for 60fps games and two particles for every three frames (skipping every third
frame) for 30fps games.

Property Description

Loop To have the spawner loop when it reaches the end of its duration, select Looping (default).
To have the spawner loop with no wait between each loop, select Looping, no delay. To
have the spawner spawn once and then stop, select One shot.

Delay How long (in seconds) the spawner waits before spawning. This is a random value
between the X (minimum) and Y (maximum) values.

Duration How long (in seconds) the spawner spawns particles for. At the end of the duration, the
spawner either starts again or stops, depending on the Loop property.

Particles The number of particles the spawned per second. This can be a floating value (eg 36.875).

Per frame
Emits a fixed number of particles per frame, regardless of framerate. This can be useful if you require a
fixed number of particles - for example, exactly one every frame, which is useful for trails and ribbons.

768 / 1211

Property Description

Loop To have the spawner loop when it reaches the end of its duration, select Looping
(default). To have the spawner loop with no wait between each loop, select Looping, no
delay. To have the spawner spawn once and then stop, select One shot.

Delay How long (in seconds) the spawner waits before spawning. This is a random value
between the X (minimum) and Y (maximum) values.

Duration How long (in seconds) the spawner spawns particles for.

Particles The number of particles spawned per frame. The value can be a floating value, including
values less than 1, in which case a new particle is spawned every few frames.

Framerate This is for estimation purposes only when the engine calculates the maximum number of
particles.

Burst
Emits all particles in one burst.

Property Description

Loop To have the spawner loop when it reaches the end of its duration, select Looping
(default). To have the spawner loop with no wait between each loop, select Looping,

769 / 1211

Property Description

no delay. To have the spawner spawn once and then stop, select One shot.

Delay How long (in seconds) the spawner waits before spawning. This is a random value
between the X (minimum) and Y (maximum) values.

Duration How long (in seconds) the spawner spawns particles for.

Particles/burst The number of particles spawned in each burst.

Distance
Emits particles based on the distance traveled by the emitter. If the emitter doesn't move, it spawns no
particles.

Property Description

Loop To have the spawner loop when it reaches the end of its duration, select Looping
(default). To have the spawner loop with no wait between each loop, select Looping,
no delay. To have the spawner spawn once and then stop, select One shot.

Delay How long (in seconds) the spawner waits before spawning. This is a random value
between the X (minimum) and Y (maximum) values.

Duration How long (in seconds) the spawner spawns particles for.

Particles/unit The number of particles spawned for every distance unit the spawner moves. You can
use fractions if you need fewer than one particle per distance unit. The rate adjusts
with scaling.

From parent
Emits particles based on other particles (parents). When certain conditions in a parent particle are met,
the spawner spawns particles.

770 / 1211

Property Description

Loop To have the spawner loop when it reaches the end of its duration, select Looping
(default). To have the spawner loop with no wait between each loop, select
Looping, no delay. To have the spawner spawn once and then stop, select One
shot.

Delay How long (in seconds) the spawner waits before spawning. This is a random value
between the X (minimum) and Y (maximum) values.

Duration How long (in seconds) the spawner spawns particles for.

Parent emitter The parent emitter, which should match the emitter's name set on that emitter.

Spawn Control
Group

This field will be added to the parent particles for more precise control over which
parent particle spawns how many children. There are 4 groups you can choose
from and they should match the initializers' groups, if initializers require control.

Particles/trigger How many particles (min and max) are spawned from a parent each time the
triggering condition is met.

Particle Spawn
Trigger

What condition triggers child particles spawning (detailed below)

Particle Spawn Trigger
On Birth - Child particles are spawned once when a parent particle is born (once per parent)

771 / 1211

On Death - Child particles are spawned once when a parent particle dies (once per parent)
Distance - Child particles are spawned per distance traveled as the parent particle moves
On Hit - Parent particles need to implement Collision Updater. Child particles are spawned when a
parent particle hits the surface.
Lifetime - Child particles are spawned when the parent particle's lifetime is between two limits, A
and B, expressed as normalized values (0 to 1) over the particle's lifetime. If A < B, the period is 0..
(A..B)..1, if B > A the period is reversed to (0..B)..(A..1). This method is less precise than the On
Birth/On Death conditions.

See also
Create particles
Emitters
Shapes
Materials
Initializers
Updaters

772 / 1211

Particle initializers
Intermediate Artist Programmer

Initializers control the states of particles such as position, velocity, size, and so on when the particles are
first spawned. They have no effect on particles spawned on previous frames.

Similarly, initializers which operate on the same field are exclusive and only the bottom one will have any
effect, since they are executed in order. For example if you assign two color initializer, only the second
one will have any effect.]

Common properties
Several properties are common across many initializers.

Property Description

Debug draw Draws a debug wireframe in the scene to show the boundaries of the initializer.
This is only visible in the Scene Editor, not at runtime.

Position
inheritance

Inherit the particle system component position, as defined in the particle entity's
Transform component

Position offset Additional translation of the module. If it inherits the parent position, this is applied

NOTE

Some updaters act change the particle's value at the end of the frame. They effectively overwrite any
initial values set by a similar initializer. Such is the case with all animations. They operate on the
particle's lifetime and a color animation updater will overwrite any initial values from a color
initializer.



773 / 1211

Property Description

on top of the inherited position.

Rotation
inheritance

Inherit the particle system component's rotation, as defined in the Transform
component

Rotation offset Additional rotation of the module. If it inherits the parent's rotation, this is applied
on top of the inherited rotation.

Scale
inheritance

Inherit the particle system component's uniform scale, as defined in the Transform
component

Scale offset Additional scaling of the module. If it inherits the parent's scale, this is applied on
top of the inherited scale.

For example, a velocity initializer can change its direction depending on the parent's rotation or decide
to ignore it and always shoot particles in a fixed direction.

On the other hand, size initializers don't change based on the parent's rotation, so the rotation fields
won't appear at all.

Position
Particles are spawned in an axis-aligned bounding box, defined by its left lower back corner and its right
upper front corner.

Property Description

Seed
offset

Used for random numbers. Set it to the same value to force the position to be coupled
with other particle fields which have three properties (X, Y, Z), eg velocity. Make them
different to force the position to be unique and independent from other fields

Position
min

Left lower back corner for the box

Position
max

Right upper front corner for the box

774 / 1211

This image shows the bounding box where particles initially appear for this emitter. In addition to the
corners (-1, 0.8, -1) ~ (1, 1, 1), the box is further rotated by 45 degrees as seen from the offset rotation.

Velocity
Particles spawn with initial velocity which ranges between the defined values. The velocity is independent
in all three directions between X, Y and Z.

Property Description

Seed
offset

This is used for random numbers. Set it to the same value to force the velocity to be
coupled with other particle fields which have 3 properties (X, Y, Z), like position for
example. Make them different to force the velocity to be unique and independent from
other fields.

Velocity
min

Left lower back corner for the box

Velocity
max

Right upper front corner for the box

Size

775 / 1211

Initial size sets the particle's uniform size when it's spawned for the first time. A size of 1 will result in a 1
meter by 1 meter billboard or quad when rendered.

Property Description

Seed
offset

This is used for random numbers. Set it to the same value to force the size to be coupled
with other particle fields which have 1 property, like color for example. Make them
different to force the size to be unique and independent from other fields

Random
size

Shows the minimum and maximum size a particle can have at spawn time

Rotation
Initial rotation sets the particle's angular rotation when facing the camera. Positive values are clockwise
rotations. The field only has meaning for camera-facing particles, such as billboards. It has no effect on
oriented quads and models.

Property Description

Seed offset This is used for random numbers. Set it to the same value to force the angle to be
coupled with other particle fields which have 1 property, like color for example. Make
them different to force the angle to be unique and independent from other fields

Angle
(degrees)

The minimum and maximum value, in degrees, for the initial rotation

Color
Initial color sets the particle's initial color at spawn time. It goes into the vertex buffer when building the
particles and can be used by the material, but might not if the option is not set in the material itself. If
setting the color has no effect please refer to the Material page for further discussion.

776 / 1211

Property Description

Seed
offset

This is used for random numbers. Set it to the same value to force the color to be coupled
with other particle fields which have 1 property, like size for example. Make them different
to force the color to be unique and independent from other fields

Color A The first value, in hexadecimal code. The color will be a random tint between this and the
second color.

Color B The second value, in hexadecimal code. The color will be a random tint between this and
the first color.

3D Orientation
Initial 3D orientation sets the orientation for 3D-aware particles when they first spawn. The editable fields
use euclidean rotation which is packed into a quaternion orientation by the engine. The interpolated
value is on the shortest path between the two orientations, rather than interpolating each value
separately.

Property Description

Seed offset This is used for random numbers. Set it to the same value to force the orientation to be
coupled with other particle fields which have 1 property, like size for example. Make
them different to force the orientation to be unique and independent from other fields.

Orientation
A

The first oriented position

Orientation
B

The second oriented position

777 / 1211

Direction
This initializer creates the Direction field in the particle properties and sets its initial value. Some shape
builders, like the Trail shape or the Direction Aligned Sprite shape use the particle's direction to properly
display it.

Property Description

Seed
offset

This is used for random numbers. Set it to the same value to force the direction to be
coupled with other particle fields which have 3 properties (X, Y, Z), like position for
example. Make them different to force the velocity to be unique and independent from
other fields.

Direction
min

Left lower back corner for the box

Direction
max

Right upper front corner for the box

Spawn Order
This initializer has no properties. It simply sets an increasing number to each particle spawned from this
emitter, starting from 0. The spawn order can be used for sorting or some custom calculations.

Position (Arc)
The arc position initializer positions the particles in an arc (or a straight line if the arc's height is 0)
between two point, the emitter's position and a target transform component. With random position
offset you can cause the particles to deviate a little from their original location on the arc.

778 / 1211

Property Description

Seed
offset

This is used for random numbers. Set it to the same value to force the position to be
coupled with other particle fields which have 3 properties (X, Y, Z), like velocity for
example. Make them different to force the position to be unique and independent from
other fields.

Position
min

Left lower back corner for the box

Position
max

Right upper front corner for the box

Target Allows you to pick up an Entity for the end of the arc. If no Entity is set, Fallback Target
will be used, which is an offset from the emitter's location.

Fallback
Target

Offset from the emitter's location used as the end point in case Target is not set

Arc
Height

The height of the arc at its highest point (middle of the distance between the two points).
By default it's the Y-up vector, but can be rotated with rotation offset and rotation
inheritance

Ordered If checked, new particles will appear in order from the emitter towards the target. If
unchecked, new particles will appear randomly on the arc anywhere between the emitter
and the target. If you plan to visualize the particles as a ribbon or a trail you should set
this box to checked.

Fixed
count

By default particles will appear on the arc at distances enough for the maximum number
of particles to fit exactly on the line. If you want to control spawn rate and distance, you
can set how many fixed "positions" are there on the arc. For example, with a fixed count
of 10 and Ordered spawning, the first 10 particles will appear in order, then the 11th
particle will appear from the beginning, at the same position as the first, and so on.

Seed
offset

This is used for random numbers. Set it to the same value to force the position to be
coupled with other particle fields which have 3 properties (X, Y, Z), like velocity for
example. Make them different to force the position to be unique and independent from
other fields.

Position
min

Left lower back corner for the box. This is an offset in addition to the arc position.

779 / 1211

Property Description

Position
max

Right upper front corner for the box. This is an offset in addition to the arc position.

Position (parent)
Property Description

Seed offset This is used for random numbers. Set it to the same value to force the position to be
coupled with other particle fields which have 3 properties (X, Y, Z), like velocity for
example. Make them different to force the position to be unique and independent
from other fields.

Position min Left lower back corner for the box

Position
max

Right upper front corner for the box

Parent
emitter

You have to type the name of the parent emitter. Child particles' positions will match
the parent emitter's particles' positions.

Parent
Offset

Random seed used to couple or decouple the way a parent particle is chosen. For
example, if you want to pick position and color from seemingly random particles, you
can use the same offset. If you want to avoid such connection, you can use different
offsets for position and color initializers.

Spawn
Control
Group

When None, parents will be picked randomly. When set to one of the four groups, only
particles from a specific parent will be initialized. It should match a control group from
the Spawn from Parent spawner to work properly.

Velocity (parent)
Property Description

Seed offset This is used for random numbers. Set it to the same value to force the velocity to be
coupled with other particle fields which have 3 properties (X, Y, Z), like position for
example. Make them different to force the velocity to be unique and independent from
other fields.

Velocity min Left lower back corner for the box

780 / 1211

Property Description

Velocity max Right upper front corner for the box

Parent
emitter

You have to type the name of the parent emitter. Child particles' positions will match
the parent emitter's particles' positions.

Parent
Offset

Random seed used to couple or decouple the way a parent particle is chosen. For
example, if you want to pick position and color from seemingly random particles, you
can use the same offset. If you want to avoid such connection, you can use different
offsets for position and color initializers.

Spawn
Control
Group

When None, parents will be picked randomly. When set to one of the four groups, only
particles from a specific parent will be initialized. It should match a control group from
the Spawn from Parent spawner to work properly.

Size (parent)
Property Description

Seed offset This is used for random numbers. Set it to the same value to force the size to be
coupled with other particle fields which have 1 property, like color for example. Make
them different to force the size to be unique and independent from other fields.

Random
size

Shows the minimum and maximum size a particle can have at spawn time

Parent
emitter

You have to type the name of the parent emitter. Child particles' positions will match
the parent emitter's particles' positions.

Parent
Offset

Random seed used to couple or decouple the way a parent particle is chosen. For
example, if you want to pick position and color from seemingly random particles, you
can use the same offset. If you want to avoid such connection, you can use different
offsets for position and color initializers.

Spawn
Control
Group

When None, parents will be picked randomly. When set to one of the four groups, only
particles from a specific parent will be initialized. It should match a control group from
the Spawn from Parent spawner to work properly.

Color (parent)

781 / 1211

Property Description

Seed offset This is used for random numbers. Set it to the same value to force the color to be
coupled with other particle fields which have 1 property, like size for example. Make
them different to force the color to be unique and independent from other fields.

Color A The first value, in hexadecimal code. The color will be a random tint between this and
the second color.

Color B The second value, in hexadecimal code. The color will be a random tint between this
and the first color.

Parent
emitter

You have to type the name of the parent emitter. Child particles' positions will match
the parent emitter's particles' positions.

Parent
Offset

Random seed used to couple or decouple the way a parent particle is chosen. For
example, if you want to pick position and color from seemingly random particles, you
can use the same offset. If you want to avoid such connection, you can use different
offsets for position and color initializers.

Spawn
Control
Group

When None, parents will be picked randomly. When set to one of the four groups, only
particles from a specific parent will be initialized. It should match a control group from
the Spawn from Parent spawner to work properly.

Spawn Order (parent)
This initializer requires the parent emitter to also have a Spawn Order initializer. It combines the parent's
spawn number with its own, effectively creating groups of particles among the children. This initializer is
required to properly sort and render child ribbon particles.

Property Description

Parent
emitter

You have to type the name of the parent emitter. Child particles' positions will match
the parent emitter's particles' positions.

Parent
Offset

Random seed used to couple or decouple the way a parent particle is chosen. For
example, if you want to pick position and color from seemingly random particles, you
can use the same offset. If you want to avoid such connection, you can use different
offsets for position and color initializers.

Spawn
Control

When None, parents will be picked randomly. When set to one of the four groups, only
particles from a specific parent will be initialized. It should match a control group from

782 / 1211

Property Description

Group the Spawn from Parent spawner to work properly.

See also
Create particles

Emitters

Shapes

Materials

Spawners

Updaters

783 / 1211

Particle updaters
Intermediate Artist Programmer

After a particle spawns, it can change over time before it disappears. Updaters act on all living particles
over time, changing attributes such as position, velocity, color, and so on. For example, a gravity force
updates the particle's velocity at a constant rate, accelerating it toward the ground.

Stride features several built-in updaters. The custom particles sample demonstrates how you can add
updaters to the engine.

Common properties
Several properties are common across many updaters.

Property Description

Debug draw Draws a debug wireframe shape to show the boundaries for the updater. This
feature only works for the editor and is ignored when you run your game.

Position
inheritance

Inherit the particle system component position, as defined in the Transform field

Position offset Additional translation of the module. If it inherits the parent's position, this is
applied on top of the inherited one.

Rotation
inheritance

Inherits the particle system component rotation, as defined in the Transform field

Rotation offset Additional rotation of the module. If it inherits the parent's rotation, this is applied
on top of the inherited one.

784 / 1211

Property Description

Scale
inheritance

Inherits the particle system component's uniform scale, as defined in the Transform
field.

Scale offset Additional module scaling. If it inherits the parent scale, this is applied on top of the
inherited one.

Collider

A collider is an updater that changes the particle position and velocity when it collides with a predefined
shape.

785 / 1211

Property Description

Shape The shape the particles collide with (sphere, cylinder, box, or torus)

Is hollow If disabled, the shape is solid and the particles bounce off it. If enabled, the shape is
hollow like a container, and the particles stay inside the volume.

Kill
particles

If enabled, the particles are killed immediately when they collide with the shape.

Restitution The coefficient of restitution is the speed the particle retains in comparison to its speed
before the collision. In this updater we use restitution as a vertical only speed. It doesn't
affect the speed along the surface.

Friction The amount of horizontal speed the particle loses on collision with the shape. It only
affects the speed along the surface, and doesn't change the height at which the particle
bounces.

Force field

The force field is defined by a bounding shape and several force vectors that operate on the particles
based on their relative position to the bounding shape.

786 / 1211

Property Description

Shape The bounding shape (sphere, cylinder, box or torus)

Falloff The falloff is a simple linear function which dictates the intensity of the force applied
on particles. It is based on the particle's distance from its center. Strength inside is
how much of the magnitude applies when the particle is within falloff start distance
from the center. Strength outside is how much of the magnitude applies when the
particle is more than falloff end away from the center. Both values are relative to the
bounding shape size; values inbetween are interpolated between the two magnitudes.
Values in the center can still be 0, making the force only work outside the bounding
shape.

Energy
conservation

Which part of the force energy conserved by the particles. Conserved energy is stored
as particle velocity and results in gradually increasing speed. Energy not conserved
directly applies to the particle's position and is lost when the force vanishes.

Directed
force

The vector force that moves the particle along the field's central axis (normally
upwards)

Vortex force The force that moves the particle around the field's central axis using the right-hand
rule for rotation

787 / 1211

Property Description

Repulsive
force

The force that moves the particle away from the field's center or towards it, if negative

Fixed force The force that moves the particle along a fixed non-rotating and non-scaling axis

Falloff
The falloff is the change in the forces' strength based on the distance of the particle from the shape's
center. The falloff is a function of the relative distance, where distance of 0 is the center, 1 is the shape's
boundaries, and more than 1 means the particle is outside the shape.

Particles closer than the falloff start are always affected with the coefficient Strength Inside. Particles
farther than falloff end are always affected with the coefficient Strength Outside.

Coefficient for particles in between changes linearly:

For example, if the bounding shape is a sphere with a radius of 10m, particles within 1m from its center
(0.1 x 10m) will be moved with full strength. After the 1m distance the strength linearly decreases until it
reaches zero at 9m distance (0.9 x 10m). After that point, the forces don't affect the particle.

Bounding shapes
Sphere

788 / 1211

When the bounding shape is a sphere, the falloff distance is based on the radial distance of the particle
from the sphere's center. If the sphere is scaled to an ellipsoid, this distance is also scaled. The distance is
relative to the radius, with 1.0 being the sphere's surface.

The directed force vector is parallel to the sphere's local Y axis. The repulsive force vector points from the
center to the particle. The vortex force vector goes around the sphere's Y axis at the particle's position
(using the right-hand rule for rotation).

Box

When the bounding shape is a box, the falloff distance is the longest of the three distances on the X, Y
and Z axes. The distance is relative to the box's sizes, with 1.0 being the box's surface.

Image license: CC-BY-SA 4.0 , sphere image from the "Sphere wireframe" work by Geek3 under CC-BY-SA 3.0

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://commons.wikimedia.org/wiki/File:Sphere_wireframe_10deg_6r.svg
https://commons.wikimedia.org/wiki/File:Sphere_wireframe_10deg_6r.svg
https://commons.wikimedia.org/wiki/User:Geek3
https://commons.wikimedia.org/wiki/User:Geek3
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

789 / 1211

The directed force vector is parallel to the box's local Y axis. The repulsive force vector points from the
center to the particle. The vortex force vector goes around the box's Y axis at the particle's position
(using the right-hand rule for rotation).

Cylinder

When the bounding shape is a cylinder, the falloff distance is based on the radial distance of the particle
from the cylinder's local Y axis. The particle height (position on the Y axis) is ignored unless the particle is
outside the cylinder, in which case the distance is always 1.

The directed force vector is parallel to the cylinder's local Y axis. The repulsive force vector points from
the cylinder's local Y axis to the particle, so the repulsive force is always horizontal. The vortex force
vector goes around the cylinder's Y axis at the particle position (using the right-hand rule for rotation).

Torus

790 / 1211

When the bounding shape is a torus, the field's nature changes completely. The falloff distance is based
on the radial distance of the particle from the torus's inner circle (axis of revolution, shown in red),
choosing a point on the circle closest to the particle.

The directed force vector is tangent to the axis of revolution at the point closest to the particle. The
repulsive force vector points from the axis to the particle. The vortex force vector goes around the
directed force vector using the particle's position relative to the axis (using the right-hand rule for
rotation).

While the math is a little complicated, using the torus force field isn't. Try it out!

Gravity
The gravity updater is a simplified force which affects all particles regardless of their position, with a
constant force vector which doesn't scale or rotate. It's editable, so you can use it in projects with
different scales and behavior.

The gravity force ignores most properties such as offset and inheritance, and only uses the following
attributes:

Property Description

Gravitational
acceleration

The gravity force vector that defines the acceleration for all affected particles.
The default value matches the average gravity on Earth.

Direction from speed
Direction from speed is a post-updater, meaning it resolves after updaters which are not post-updaters,
even if they appear later in the list.

It has no properties and simply updates the particle's direction to match its speed. It uses the difference
between the positions of the particle from the last frame and isn't directly dependent on velocity. This
means even if the particle's own velocity is 0 and it's only moved by external forces, direction from speed
resolves correctly.

Direction isn't a normalized vector and changes its magnitude to match the delta distance. It overwrites
any previous direction parameters, such as from an initializer.

Image license: GFDL , CC-BY-SA 4.0 , torus image from the "A simple Torus" work by Yassine Mrabet under GFDL, CC-BY-SA 3.0

https://gnu.org/licenses/fdl.html
https://gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://commons.wikimedia.org/wiki/File:Simple_Torus.svg
https://commons.wikimedia.org/wiki/File:Simple_Torus.svg
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

791 / 1211

Color animation
Color animation is a post-updater, meaning it resolves after updaters which aren't post-updaters, even
if they appear later in the list.

Color animation updates the particle Color field by sampling a curve over the particle's normalized
lifetime (0 to 1). You can set a secondary curve in which case the particles will have slightly varied colors.
Color animation overwrites any previous Color parameters, such as Initial Color.

The curve values are given as Vector4, corresponding to RGBA with standard values between 0 and 1.
Values above 1 are valid for RGB only (not Alpha) and can be used for HDR rendering.

Rotation animation
Rotation animation is a post-updater, meaning it resolves after updaters which are not post-updaters,
even if they appear later in the list. It's strictly a single axis rotation, used for billboarded particles.

Rotation animation updates the particle's Rotation field by sampling a curve over the particle's
normalized lifetime (0 to 1). You can set a secondary curve in which case the particles will have slightly
varied rotations.

Rotation animation overwrites any previous Rotation parameters, such as Initial Rotation. If you need
additive kind of animation check if the Shape Builder supports it (found in the Shape Builder's
properties). Additive animations are not preserved in particle fields and do not persist, but can be
applied in addition to any fields the particles already have.

Size animation
Size animation is a post-updater, meaning it resolves after updaters which aren't post-updaters, even if
they appear later in the list.

This is strictly a uniform size. Size animation updates the particle's Size field by sampling a curve over the
particle's normalized lifetime (0 to 1). You can set a secondary curve, in which case the particles have
slightly varied sizes.

Size animation overwrites any previous Size parameters, such as Initial Size. If you need additive kind of
animation, check if the Shape Builder supports it (in the Shape Builder properties). Additive animations
aren't preserved in particle fields and don't persist, but can be applied in addition to any fields the
particles already have.

Create particles
Emitters
Shapes
Materials

792 / 1211

Spawners
Initializers

793 / 1211

Tutorials
Inheritance
Lasers and lightning
Create a trail
Custom particles
Particle materials

794 / 1211

Tutorial: Particle materials
Intermediate Artist Programmer

This tutorial demonstrates how to create custom shaders and materials for a particle system, providing
functionality not available in the core engine. It focuses on shaders and rendering. For simulation, see
the custom particles tutorial.

If you're not familiar with editing particles, see Create particles.

Start by creating a new Sample: Particles project.

This project contains four scenes, each demonstrating a different way to use particles:
AnimatedParticles, ChildParticles, CustomMaterials, and CustomParticles.

Open the CustomMaterials scene.

There are three particle entities in the scene: Rad Particle System, Radial Particle System, and Two
Textures Particle System.

795 / 1211

Select one of the particle entities and navigate to its source particle system, expanding the emitter in it
and its material.

Red particle system
The red particle system has a very simple customization. Since the material maps already provide an
option to use shaders as a leaf node input, we can create a custom shader and assign it to that node.

First, create a shader (ComputeColorRed.sdsl) with a derived class for ComputeColor:

The only thing this shader does is return the red color for pixel shading every time Compute is called. We'll
try something more difficult later, but for now let's keep it simple.

Save the file and reload the scripts in Game Studio. You should see the new shader in Asset View.

class ComputeColorRed : ComputeColor
{
 override float4 Compute()
 {
 return float4(1, 0, 0, 1);
 }
};

796 / 1211

If the shader isn't there, reload the project.

Once the shader is loaded, you can access it in the Property Grid under the dynamic emissive material
for the particles. Choose a type of shader and, from the drop-down menu, select the shader you just
added to the scene.

The particles are red. With Game Studio running, edit and save ComputeColorRed.sdsl to make them
yellow.

class ComputeColorRed : ComputeColor
{
 override float4 Compute()
 {
 return float4(1, 1, 0, 1);
 }
};

797 / 1211

Because Stride supports dynamic shader compilation, the particles immediately turn yellow.

Radial particle system
For the next shader we'll use texture coordinates expose arbitrary values to the editor.

Check ComputeColorRadial.sdsl.

This is similar to ComputeColorRed and can be compiled and loaded the same way.

There are several key differences. The shader now inherits from the Texturing shader base class as well.
This allows it to use texture coordinates in from the streams. On the material side in Game Studio, we
can force the texture coordinates to be streamed in case we don't use texture animation.

The input values float4 ColorCenter and float4 ColorEdge in our shader are permutations. When we
load the shader the Property Grid displays them under the Generics dictionary.

class ComputeColorRadial<float4 ColorCenter, float4 ColorEdge> : ComputeColor, Texturing
{
 override float4 Compute()
 {
 float radialDistance = length(streams.TexCoord - float2(0.5, 0.5)) * 2;

 float4 unclamped = lerp(ColorCenter, ColorEdge, radialDistance);

 // We want to allow the intensity to grow a lot, but cap the alpha to 1
 float4 clamped = clamp(unclamped, float4(0, 0, 0, 0), float4(1000, 1000, 1000, 1));

 // Remember that we use a premultiplied alpha pipeline so all color values should
be premultiplied
 clamped.rgb *= clamped.a;

 return clamped;
 }
};

798 / 1211

The values we set here will be used by the ComputeColorRadial shader for the particles. The rest of the
shader simply calculates a gradient color based on the distance of the shaded pixel from the center of
the billboard.

Two-texture particle system
This demonstrates how to create custom materials and effects for the particles. The DynamicColor
material supports one RGBA channel. For our sample, we'll separate the RGB and A channels, allowing
them to use different texture coordinate animations and different textures and binary trees to compute
the color.

Parameter keys
Parameter keys are used to map data and pass it to the shader. Some of them are generated, and we can
define our own too.

If we define more streams in our shader (ParticleCustomShader), they're exported to an automatically
generated class. Try adding the following to ParticleCustomShader.sdsl:

The generated .cs file should now contain:

 // -------------------------------------
 // streams
 // -------------------------------------
 stage float4 SomeRandomKey;

namespace Stride.Rendering
{
 public static partial class ParticleCustomShaderKeys

799 / 1211

We don't need this stream for now, so we can delete it.

We'll define some extra keys in ParticleCustomMaterialKeys.cs to use in our material and effects.

As we saw above, the generated class has the same name and the namespace is Stride.Rendering, so we
have to make our class partial and match the namespace. This has no effect on this specific sample, but
will result in compilation error if your shader code auto-generates some keys.

 {
 public static readonly ParameterKey<Vector4> SomeRandomKey =
ParameterKeys.New<Vector4>();
 }
}

namespace Stride.Rendering
{
 public partial class ParticleCustomShaderKeys
 {
 static ParticleCustomShaderKeys()
 {

 }

 public static readonly ParameterKey<ShaderSource> BaseColor =
ParameterKeys.New<ShaderSource>();

 public static readonly ParameterKey<Texture> EmissiveMap =
ParameterKeys.New<Texture>();
 public static readonly ParameterKey<Color4> EmissiveValue =
ParameterKeys.New<Color4>();

 public static readonly ParameterKey<ShaderSource> BaseIntensity =
ParameterKeys.New<ShaderSource>();

 public static readonly ParameterKey<Texture> IntensityMap =
ParameterKeys.New<Texture>();
 public static readonly ParameterKey<float> IntensityValue =
ParameterKeys.New<float>();
 }
}

800 / 1211

The rest of the code is self-explanatory. We'll need the map and value keys for shader generation later,
and we'll set our generated code to the BaseColor and BaseIntensity keys respectively so the shader can
use it.

Custom Shader
Let's look at ParticleCustomShader.sdsl:

It defines two composed shaders, baseColor and baseIntensity, where we'll plug our generated shaders
for RGB and A respectively. It inherits ParticleBase which already defines VSMain, PSMain and texturing,
and uses very simple Shading() method.

By overriding the Shading() method we can define our custom behavior. Because the composed shaders
we use are derived from ComputeColor, we can easily evaluate them using Compute(), which gives us the
root of the compute tree for color and intensity.

class ParticleCustomShader : ParticleBase
{
 // This shader can be set by the user, and it's a binary tree made up from smaller shaders
 compose ComputeColor baseColor;

 // This shader can be set by the user, and it's a binary tree made up from smaller shaders
 compose ComputeColor baseIntensity;

 // Shading of the sprite — we override the base class's Shading(), which only
returns ColorScale
 stage override float4 Shading()
 {
 // ---
 // Base particle color RGB
 // ---
 float4 finalColor = base.Shading() * baseColor.Compute();

 // ---
 // Base particle alpha
 // ---
 finalColor.a = baseIntensity.Compute();

 // Don't forget to premultiply the alpha
 finalColor.rgb *= finalColor.aaa;

 return finalColor;
 }
};

801 / 1211

Custom effect
Our effect describes how to mix and compose the shaders. It's in ParticleCustomEffect.sdfx:

ParticleBaseKeys and ParticleBaseEffect are required by the base shader which we inherit.

ParticleCustomShaderKeys provides the keys we defined earlier, where we'll plug our shaders.

Finally, for both shaders we only need to check if there is user-defined code for it and plug it. The
baseColor and baseIntensity parameters are from the shader we created earlier.

Last, we need a material which sets all the keys and uses the newly created effect.

namespace Stride.Rendering
{
 partial shader ParticleCustomEffect
 {
 // Use the ParticleBaseKeys for constant attributes, defined in the game engine
 using params ParticleBaseKeys;

 // Use the ParticleCustomShaderKeys for constant attributes, defined in this project
 using params ParticleCustomShaderKeys;

 // Inherit from the ParticleBaseEffect.sdfx, defined in the game engine
 mixin ParticleBaseEffect;

 // Use the ParticleCustomShader.sdsl, defined in this project
 mixin ParticleCustomShader;

 // If the user-defined shader for the baseColor is not null use it
 if (ParticleCustomShaderKeys.BaseColor != null)
 {
 mixin compose baseColor = ParticleCustomShaderKeys.BaseColor;
 }

 // If the user-defined shader for the baseIntensity (alpha) is not null use it
 if (ParticleCustomShaderKeys.BaseIntensity != null)
 {
 mixin compose baseIntensity = ParticleCustomShaderKeys.BaseIntensity;
 }

 };

}

802 / 1211

Custom particle material
We'll copy ParticleMaterialComputeColor into ParticleCustomMaterial.cs in our project and customize it
to use two shaders for color binary trees.

The base class automatically tries to load the effect specified with EffectName. We give it the name of the
effect we crated earlier.

In addition to the already existing IComputeColor, we'll use IComputeScalar for intensity, which returns a
float, rather than a float4. We will also add another UVBuilder for a second texture coordinates
animation.

We load the two shaders: one for the main color and one for the intensity. These are similar to the
shaders we wrote manually in the last two examples, except we generate them on the fly directly from
the ComputeColor and ComputeScalar properties, which you can edit in the Property Grid. The generated
code is similar to the shader code we wrote in the way that it calls Compute() and it returns the final
result of our color or scalar compute tree.

 [DataMemberIgnore]
 protected override string EffectName { get; set; } = "ParticleCustomEffect";

 [DataMember(300)]
 [Display("Alpha")]
 public IComputeScalar ComputeScalar { get; set; } = new ComputeTextureScalar();

 [DataMember(400)]
 [Display("TexCoord1")]
 public UVBuilder UVBuilder1;
 private AttributeDescription texCoord1 = new AttributeDescription("TEXCOORD1");

 var shaderBaseColor = ComputeColor.GenerateShaderSource(shaderGeneratorContext, new
MaterialComputeColorKeys(ParticleCustomShaderKeys.EmissiveMap,
ParticleCustomShaderKeys.EmissiveValue, Color.White));
 shaderGeneratorContext.Parameters.Set(ParticleCustomShaderKeys.BaseColor,
shaderBaseColor);

 var shaderBaseScalar = ComputeScalar.GenerateShaderSource(shaderGeneratorContext, new
MaterialComputeColorKeys(ParticleCustomShaderKeys.IntensityMap,
ParticleCustomShaderKeys.IntensityValue, Color.White));
 shaderGeneratorContext.Parameters.Set(ParticleCustomShaderKeys.BaseIntensity,
shaderBaseScalar);

803 / 1211

After we generate the shader code, we set it to the respective key we need. Check how
ParticleCustomShaderKeys.BaseColor is defined in ParticleCustomShaderKeys.cs. In the effect file we
check if this key is set, and if yes, we pass it to the stream defined in our shader code.

See also
Tutorial: Create a trail
Tutorial: Custom particles
Tutorial: Inheritance
Tutorial: Lasers and lightning
Particles
Create particles

804 / 1211

Tutorial: Inheritance
Intermediate Artist Programmer

This tutorial explains how to create particles which inherit one or more attributes, such as position or
color, from other particles.

Sample
To see some of the techniques described on this page implemented in a project, create a new Sample:
Particles project and open the ChildParticles scene.

Inheriting position
It helps if you think about inheritance in terms of parent and child particles.

For example, in the ChildParticles scene in the Sample: Particles project, check out the Fireworks
entity.

It contains two emitters. Particles reference parent emitters by name, so in the first emitter you can see
we've set the Emitter Name property. It's an optional name, but it's required if you want other emitters

805 / 1211

to be able to reference this emitter's particles.

In the second emitter we create a new initializer, Position from parent. This lets us reference the first
emitter's particles and use their position to initialize the child particles. In the Parent emitter attribute
we put the first emitter's name (Parent). This randomly assigns a parent particle for each child particle
spawned and copy its position to the child particle.

The Parent Offset seed matches fields when more than one attributes are inherited. For example, if you
want to inherit both Position and Color from the same parent particle (chosen at random) you should
make the Parent Offset seed the same. Alternatively, you can make the Parent Offset seed for both
initializers different, in which case particles spawning from one parent's position can inherit their color
from a different random particle. Usually, you want to keep them the same, but in some cases you might
want to mix them.

As you can see, this kind of inheritance doesn't control spawn count, maximum particles, or any other
parameters, and is very random. For most effects it's sufficient, but sometimes you want more direct
control over the particles.

Controlled inheritance
On occasion you will want to spawn a certain number of particles from a specific parent and have those
particles only inherit attributes from the parent particle that spawned them.

To do this, choose a spawner for the child emitter from type From parent. Fill in the parent emitter's
name in the Parent emitter field.

The Spawn Control Group determines how the particles save their control information. You need to
assign the same control group on all initializers later in order to retrieve the spawning information.

There can be up to 4 control groups. If you spawn particles based on different conditions, or spawn more
than two different child particles from the same parent, assign them different control groups so they
don't get mixed up.

The Particle Spawn Trigger is the triggering condition on the parent side, which determines if particles
should be spawned. If you leave it as None, no particles are spawned, so set it to On Hit or Lifetime.

On hit works for parent particles with a collider assigned, and triggers every time they hit the surface.

806 / 1211

Lifetime is based on the parent particle's relative lifetime, and triggers every frame the lifetime is within
the limits. There are two sliders to control from which point to which point particles should be spawned.
Alternatively, you can reverse them to reverse the spawning condition. For example, a particle with
lifetime condition (0.9 - 1.0) only spawns child particles in the last 10% of its lifetime.

Finally, the Particles/trigger determines how many particles are spawned each time the condition is
met.

For child emitters, it's good practice to control the maximum number of particles the emitter can have,
especially for non-deterministic cases, such as the collision hit.

Determinism
On the initializers, choose a Spawn Control Group corresponding to the spawner's control group. This
forces the initializers to only work for particles spawned with the triggering condition, skipping the rest
(if more than one spawner is assigned).

Ribbons and trails
Ribbon and trail renderers are a little more difficult to set up in the beginning, as they are dependent on
spawn order. In case of parents, they also become dependent on the parent's spawn order.

1. Add a Spawn Order initializer to the parent. It will be used in the children particles.

2. On the child emitter, remove all spawners and add only one, From parent. You want to control the
spawning of the children particles so all particles can be properly grouped in a ribbon behind the
parent particle. If you add another spawner that adds random behavior to the system, the ribbons
will connect in the wrong way. Set the triggering condition to Lifetime.

3. On the child emitter side again, add an Order from parent initializer. This assigns a spawning
order to the particles, but also groups them by parent. If you set the Sort to use this order and
assign a ribbon shape builder, you'll see how each trail is properly grouped behind the parent
particle that spawned it.

Circular behavior
Particle emitters can inherit attributes circularly from each other, or even inherit attributes from particles
in the same emitter. This can produce random or "swingy" effects, but can be interesting.

In the Colliding Particles particle entity (in the MainScene of the Sample: Particles project), you can
see that particles are spawned on hit, but the parent emitter is the same. This means that each time a
particle hits the surface, it produces more of the same kind. There are two important elements which
allow this to happen.

807 / 1211

First, we have two spawners. One spawns a small number of particles per second, which give us the initial
elements to populate the system. The other spawner spawns more particles on hit and uses a control
group.

Second, we have two Position initializers. The first assigns a position where we want the particles to
appear. It works over all particles (even those spawned from parents), so if you leave it like this, it will fire
more particles from the initial position every time they hit the surface.

The second initializer is Position from parent and initializes the particle positions using the same
control group as the On hit spawner. The Position from parent overwrites the positions for the particles
with control group, leaving the particles spawned from the Per second spawner untouched. This creates
a small number of particles constantly coming from a single entry point and multiplying like an
avalanche every time they hit the surface.

See also
Tutorial: Create a trail
Tutorial: Custom particles
Tutorial: Lasers and lightning
Particles
Create particles

808 / 1211

Tutorial: Lasers and lightning
Intermediate Artist Programmer

This tutorial explains how to create lasers and lightnings using particles and custom materials.

Imagine we want to create a lightning arc like this one:

This effect is a strip which:

connects two fixed points

changes positions very quickly

can be rendered as a single strip

Because the lightning is a single-line strip, we can render it using the ribbon shape builder, but with a
few major differences. The particles:

spawn at the same time, rather than in sequence

appear on a single line or arc, but with semi-randomized positions to give the illusion of lightning

should reappear very quickly

Simultaneous spawning
We can create a looping Spawner by frame which spawns a certain number of particles (lets say 50)
every frame.

Because we only need one set visible at a time we limit the Maxmimum Particles on the emitter to 50
and give them the same lifespan (for example 0.2 seconds).

809 / 1211

This means the Spawner will try to emit 50 particles every frame, but because we have limited them it will
only spawn 50 particles the first frame.

They all have the same lifespan, so when they die at the same time a new batch of 50 particles will be
spawned.

Connect two points
We are going to use the Position (Arc) initializer. It picks a second point from another Entity and sets
the particles' positions to lie on an arc between the Emitter and the target Entity.

By clicking the Ordered checkbox we can force the particles to be placed at equal distances starting from
the emitter and moving towards the target Entity. This is important when we render them using a Ribbon
shape builder because if they appear at random (unordered) positions along the arc it will be a mess. We
also have to add Spawn Order initializer and sort the particles by Order (this is true for all ribbons, not
just lightning.)

The arc position initialzier also allows for a random offset which we set to some small number.

Change positions fast
We can set the particles' lifespan to a small number (eg 0.2 seconds). With the Time scale parameter, we
can additionally control the speed of the entire particle system.

To illustrate better what's going on here is the same effect with Billboard shape builder instead of
Ribbon, and slowed down 30 times:

Moving lightning
There is a way to make the lightning arc move from point A to point B instead of being static.

810 / 1211

There are a few adjustments we need to make:

Change the spawn rate to a lower one. The example above uses 600/second and is played at 0.1
time scale, which means around 1 particle per frame.

Set a fixed count on the arc positioner (50). Because it interpolates the distances based on the
number of particles spawned each frame, if we spawn them sequentially they'll all stay in the
beginning of the arc. By setting the count to 50 we tell the arc positioner to expect 50 particles in
total.

Set a delay to the spawner to allow the old arc to completely disappear before starting again.
Otherwise the Ribbon will wrongly connect the old and the new particles, as it can't know how to
split them.

Lasers using particles
Creating lasers with particles is very similar to making lightning. We actually need less particles, because
the lasers are straight and do not deviate. By setting the arc positioner's arc height to 0 and random
offset to (0, 0, 0) we can spawn the particles in a straight line. If you want you can give them slightly
different sizes to make the laser beam appear shimmering.

One thing to be mindful about lasers is that usually when the target moves you want the laser to move
with it. Because the arc positioner is an initializer and not an updater, it has no effect on particles already
spawned, which and stay behind. There are three ways to counter this.

Spawn the particles very fast. If they only live for 1-2 frames the laser will be recreated too fast for
the user to notice any visual differences.

Spawn particles in Local space. This means they will move together with the emitter, but then you
will have to rotate and scale the emitter to always point to the target Entity.

Create a custom Updater. If you create a custom post-updater similar (or simpler) to the arc
positioner you can force it to update the particle positions every frame, correctly placing them

811 / 1211

between the two points even if they move.

Depending on the type of game you want to make each of these options can have benefits or
drawbacks. Spawning the particles every frame is the easiest and simplest way to do it and will be
sufficient for most needs.

Lasers using custom materials
Creating lasers using custom materials is similar to using particles in Local space. We need to manually
rotate the scale the emitter to always face a target entity.

We can designate one axis which points towards the target to be our length, leaving the other two axes
for width of the laser.

Rendering a cylinder with height of 1 which is placed under the rotated entity will cause it to stretch and
reach the target point.

The custom material is required to place a scrolling texture on the cylinder. Or you can use a regular
Emissive map with no scrolling in which case you won't need a custom material.

The particles sample already contains an example of how to create lasers this way. The
LaserOrientationScript rotates and scales the entity towards a target point and the
ComputeColorTextureScroll shader samples a scrolling texture.

Sample project
To see some of the techniques described on this page implemented in a project, create a new Sample:
Particles project and open the Lasers scene.

812 / 1211

See also
Tutorial: Create a trail
Tutorial: Custom particles
Tutorial: Inheritance
Particles
Create particles

813 / 1211

Tutorial: Create a trail
Intermediate Artist Programmer

This tutorial demonstrates how to use particles to create a trail effect for a sword swing.

1. Create a project
1. In the Stride Launcher, click Start and select New Game.

2. In the Create a new game dialog, under Asset Packs, select Animated Models. The Animated
Models pack contains assets we'll be using in this example. (Note that we'll make our particle effect
from scratch.)

0:00

814 / 1211

3. Give the project a name (eg MyTrailEffect) and click OK. Game Studio loads a simple scene with a
few entities.

4. We don't need the Sphere entity for this tutorial, so go ahead and delete it (select it and press
Delete).

2. Set up the models and animation
1. In the Asset View, open the Models folder and drag and drop the mannequinModel into the

scene. The mannequinModel contains a skeleton asset that we'll use for our sword slash animation.

2. With the mannequinModel selected, in the Property Grid, select Add component > Animations.
This adds an Animation component to the model.

815 / 1211

3. Under the Animations component, click (Add).

4. Type a name for the animation.

816 / 1211

5. Next to Clip, click (Select an asset).

6. Browse to the Animations folder, select the Sword_R animation, and click OK. This is our right-to-
left slash animation.

817 / 1211

7. To play the animation at runtime, we need to add an animation script. We can use the pre-built
AnimationStart script. In the Asset View (bottom pane by default), click Add asset and choose
Script > Animation start.

818 / 1211

8. Specify a name for the script and click Create script.

9a. If Game Studio asks if you want to save your script, click Save script.

9b. If Game Studio asks if you want to reload the assemblies, click Reload assemblies.

9. With the mannequinModel selected, in the Property Grid, click Add component and select the
AnimationStart script.

819 / 1211

10. Under the Animation component, under Item 0, click (Select an asset).

11. Browse to the Animations folder and select the Sword_R animation again.

NOTE

If the animation script isn't in the list of components, in the taskbar, save your project and click
Reload game assemblies and update scripts.



820 / 1211

12. Now let's give the mannequin a weapon. In the Asset View, browse to the Models folder and drag
the SwordModel to the mannequinModel in the Entity Tree. This makes the SwordModel a child
entity of the mannequinModel.

13. In the Entity Tree, expand mannequinModel to see its child entities, and select SwordModel.

821 / 1211

14. With the in the Property Grid, click Add component and select Model Node Link. This is called a
Bone Link in some versions of Stride.

We can use this to link the SwordModel to a point in the mannequinModel skeleton. There's no
need to specify a target, as the entity uses its parent entity (mannequinModel) by default.

For more information, see the Model node links page.

15. Under Model Node Link, in the Node Name (or Bone) field, select weapon_bone_R. This attaches
the model to the point in the skeleton that uses a weapon in the right hand.

16. Let's see how everything looks so far. Click Play to run the game and check it out. Remember you
can use the mouse and WASD keys to move the camera and see the animation from different
perspectives.

822 / 1211

We have a swinging sword animation. Next, let's add a trail effect.

3. Create a basic trail
First we'll build a basic trail, just to see how it looks.

1. In Game Studio, select the SwordModel. In the Property Grid, click Add component and select
Particle System.

0:00

823 / 1211

This adds a particle system component to the model, which we'll use to build a trail effect.
2. Click Source to expand its properties.

3. Next to Emitters, click (Add). This adds a new particle emitter.

824 / 1211

4. Under the emitter properties, set the Shape to Trail.

5. Unfortunately, we need to make a brief detour due to a bug in Stride. Under the Shape properties,
set the Axis to Center. (The shape should really be set to Edge, but the Edge and Center settings
are reversed in the UI. This will be fixed in Stride 1.9.3.)

6. Next to Spawners, click (Add) and select Per frame.

825 / 1211

This adds a per-frame spawner to the emitter, which spawns X number of particles per frame (as
opposed to, say, per second).

7. Next to Initializers, click (Add) and select Velocity.

826 / 1211

This adds a velocity initializer to the emitter.

At this point, you can grab the mannequin and move it around the scene to see how the particles
behave. They look like a cloud of blocky smoke.

8. Under the velocity initializer, set both the Velocity min and Velocity max values to 0, 5, 0.

827 / 1211

This restricts the particles to the Y axis, like an infinitely thin sheet of paper.
9. Next to Initializers, click (Add) and select Direction.

This adds a direction initializer to the emitter.

10. Expand the direction initializer to view the properties. Set both the Direction min and Direction
max to 0, 0, -1. This aligns the trail with the direction of the swing animation.

11. Run the game to see how the particles look with the sword-swinging animation.

828 / 1211

We have a trail, but it doesn't look too good yet. It's too long, it's a single block of color, its particles
interconnect strangely, and it never disappears.

4. Sort the particles
Because the particles are rendered as billboards, the segments of the trail interconnect strangely. To
create a proper trail effect, we need to sort the particles into an order by adding a spawn order
initializer.

1. In the SwordModel properties, under Particle System > Source > Emitters, next to Initializers,
click (Add) and select Spawn Order.

0:00

NOTE

Make sure you don't select Spawn Order (Parent) or Spawn Order (Group).


829 / 1211

This adds a spawn order initializer to the emitter. It doesn't have any properties, but it gives the
particles a SpawnID we can sort them by.

2. Under Emitters, under Sorting, choose ByOrder.

830 / 1211

3. Under Initalizers, under the Velocity initializer, change both the Velocity min and Velocity max
values to 0,0.5,0.

4. Run the game.

831 / 1211

Now the particles move cohesively.

5. Change the length
In the SwordModel properties, under Particle System > Source > Emitters, change the Lifespan to 0.2,
0.2.

Move the mannequin around the scene and notice how the trails extinguish more quickly.

6. Add a texture
To fix the color, we'll give the particles a "swoosh" texture:

0:00

832 / 1211

1. Save the texture image above (swoosh.png) to disk.

2. Import it into the project. To do this, in the Asset View, click Add asset > Textures > Color and
select swoosh.png.

3. In the SwordModel properties, expand Emitters > Material. Click (Select an asset). Browse to
the Textures folder and select swoosh.png.

833 / 1211

4. Set the Alpha-Add bar to 1, so it's 100% emissive.

5. Under the Particle emitter properties, expand Shape and set UV Coords to Stretched and UV
Factor to 1.

834 / 1211

6. Expand UV Rotate. Under Clockwise, select 90 degrees. This rotates the texture 90 degrees
clockwise, so the "swoosh" lines point in the right direction.

7. Run the game.

We're getting closer. But the trail doesn't disappear, so it looks like it's attached to the sword. We need
to make the effect appear when the mannequin swings, then disappear at the end of the swing.

0:00

835 / 1211

7. Make the particle effect a prefab
So far, we've created a particle effect by attaching it as a component to the sword. Now we're going to
separate the effect from the sword and make it an independent entity we can turn on and off when we
like. To do this, we'll create a prefab. For more information about prefabs, see the prefab documentation.

1. Right-click the SwordModel and select Create prefab from selection.

Game Studio creates a prefab from the SwordModel and adds it to the Asset View. By creating a
prefab from the selection, we can quickly copy over the options we've set up so far.

2. We don't want the SwordModel itself to be a prefab — we just used it as a template to create the
prefab from. It should be separate from our new particle effect prefab, so right-click it and select
Break link to prefab.

836 / 1211

3. Because naming things properly makes everything easier, rename the prefab SwordTrail. To do this,
in the Asset View, right-click the SwordModel prefab, select Rename, and type SwordTrail.

4. Double-click the SwordTrail prefab to open it in the Prefab Editor. This is where we'll customize the
prefab.

837 / 1211

5. The prefab contains just one entity, SwordModel. It's not going to be a model for much longer, so
let's rename this entity SwordTrail (the same as the prefab it belongs to).

6. Remove the Model and the Model Node Link (or Bone Link) components from the SwordTrail
entity. We don't need them any more — this prefab will just be a particle effect.

7. Likewise, under Particle System > Source > Emitters > Initializers, delete the Velocity initializer.
For now, we want the prefab effect to be static.

8. In the SwordTrail properties, under Particle System > Source > Emitters > Spawners, set Loop to
One shot and change Duration to 0.2, 0.2.

838 / 1211

9. Now we've created a separate prefab for the particle effect, we don't need to keep a particle effect
on the sword model. In the main scene, select SwordModel and delete the Particle System
component.

8. Control the effect prefab with a script
We've created a sword trail effect prefab. Next we'll use a script to spawn the effect every time the
mannequin swings and delete the effect a few frames later.

1. Open the project in Visual Studio. To do this, in Game Studio, click the Visual Studio icon (Open in
IDE).

2. In Visual Studio, right-click the game project and select Add > New item. In the Name field, give
your script the name SpawnTrail, and click Add.

3. Replace the script content with the code in this script: SpawnTrail.cs

This is a modified version of the Prefab Instance script included in Stride. Instead of listening to
events or key presses, it listens to animation changes — such as our sword swing animation.

4. In the script, make sure the namespace is correct. This usually matches your Stride project name (eg
MyTrailEffect).

https://github.com/stride3d/stride-docs/blob/master/en/manual/particles/tutorials/media/SpawnTrail.cs
https://github.com/stride3d/stride-docs/blob/master/en/manual/particles/tutorials/media/SpawnTrail.cs
https://github.com/stride3d/stride-docs/blob/master/en/manual/particles/tutorials/media/SpawnTrail.cs

839 / 1211

5. Save the script and the Visual Studio project (Ctrl + Shift + S).

6. In Game Studio, reload the assemblies.

7. In the MainScene, select the SwordModel.

8. In the SwordModel properties, click Add component and select the SpawnTrail script. This adds
the script as a component.

840 / 1211

9. Under the SpawnTrail component properties, next to Source, click (Select an asset).

10. In the Entity Picker, select the SwordTrail prefab.

841 / 1211

11. In the SpawnTrail component, in the Animation field, click the hand icon (Select an asset). The
Select an asset window opens.

In the left pane, select the mannequinModel and click OK.

842 / 1211

12. Run the game.

843 / 1211

Thanks to our script, the particle effect appears at the start of the sword swing animation and disappears
at the end.

9. Adjust the trail start time
1. With the Sword_R animation asset selected, check the swing animation in the Asset Preview in the

bottom-right. (If the Asset Preview isn't displayed, check View > Asset Preview.)

The Asset Preview shows the animation length in seconds. If you look closely, you can see the
mannequin doesn't begin to swing the sword down until about 0.1 seconds into the animation. Let's
set the trail effect to spawn just when the mannequin swings.

2. Select the SwordModel.

3. In the SpawnTrail properties, set the Start time to 0.06. This means the trail effect won't spawn
until 0.06 seconds into the swing animation, which looks a little more natural. Feel free to tweak this
to your liking.

4. Run the game to see how it looks.

0:00

844 / 1211

You might notice our trail effect looks a little jagged, creating a "spiderweb" effect. Let's make it more
curved.

10. Curve the trail
1. In the SwordTrail prefab, on the SwordTrail entity, under Particle System > Source > Emitters >

Shape, set Smoothing to Best and Segments to 5.

0:00

845 / 1211

This adds three vertices between the particles of our trail, which should be enough to create a
noticeably smoother effect.

2. Run the game.

846 / 1211

The inner curve, at the sword hilt, is smoother. But the curve at the sword's edge is still jagged.

We want to smooth the effect at the sword's edge, where it's more noticeable. To do that, we'll flip the
particle direction.

0:00

847 / 1211

1. Still in the SwordTrail prefab, in the Transform component properties, change the Position to 0, 0,
-1.

This moves the starting point of the particle effect to the tip of the sword.

2. Run the game.

Now we have a new problem. Because we moved the particle effect to the tip of the sword, the particles
are flying from the tip. We need to reverse their direction, so they move down along the sword blade to
the hilt.

0:00

848 / 1211

6. Under Particle System > Source > Emitters > Initializers, under the Direction initializer, change
both the Direction min and Direction max to 0, 0, 1. This inverts the trail direction.

7. Run the game.

Congratulations! You created a trail effect from scratch. How you tweak it now is up to you.

Sample project
Here's a more elaborate trail that combines multiple particle effects:

0:00

849 / 1211

If you'd like to see how it works, download the project file and take a look.

See also
Tutorial: Custom particles
Tutorial: Inheritance
Tutorial: Lasers and lightning
Particles
Create particles
Model node links

0:00

850 / 1211

Tutorial: Custom particles
Intermediate Artist Programmer

This walkthrough shows how you can create custom extensions for the particle system, providing
functionality not available in the core engine.

If you're not familiar with editing particles, see Create particles.

Start by creating a new Sample: Particles project.

This project contains different scenes that demonstrate different ways to use particles. Open the
CustomParticles scene.

There are three particle entities in the scene: ConeEmitter15, ConeEmitter30, and ConeEmitter45.

Select one of the particle entities. In the Property Grid, navigate to its source particle system and expand
the emitter.

851 / 1211

There are four custom elements in this emitter:

The custom spawner is similar to the spawn-per-second spawner, but also emits a burst of particles
every time it loops.

The custom initializer initially positions the particles in a cone shape and sets their velocity
accordingly.

The custom updater operates on a new particle field named RactangleXY, allowing the shape
builder to use non-uniform sizes when building the billboards.

The custom shape builder is similar to the billboard with two additions. It can create non-uniform
rectangles, rather than the standard squares, and it can align (fix) the rectangle's Y axis to the
world's Y axis rather than the camera space.

Spawner
We'll create a spawner which emits particles per second and in bursts every few seconds. We could do
this by adding two different spawners, but for this sample we'll combine them.

852 / 1211

 [DataContract("CustomParticleSpawner")] // Used for serialization, a good practice is to
have the data contract have the same name as the class
 [Display("CustomParticleSpawner")]
 public sealed class CustomParticleSpawner : ParticleSpawner
 {
 [DataMemberIgnore]
 private float carryOver; // Private members do not appear on the Property Grid

 [DataMember(100)] // When data is serialized, this attribute decides
its priority
 [Display("Number of particles")] // This is the name which will be displayed on the
Property Grid
 public float SpawnCount { get; set; }

 [DataMemberIgnore]
 private float burstTimer; // Private members do not appear on the Property Grid

 [DataMember(200)] // When data is serialized, this attribute decides
its priority
 [Display("Burst particles")] // This is the name which will be displayed on the
Property Grid
 public float BurstCount {get;set;}

...

 public override int GetMaxParticlesPerSecond()
 {
 return (int)Math.Ceiling(SpawnCount) + (int)Math.Ceiling(BurstCount);
 }

 public override void SpawnNew(float dt, ParticleEmitter emitter)
 {
 // State is handled by the base class. Generally you only want to spawn particle
when in active state
 var spawnerState = GetUpdatedState(dt, emitter);
 if (spawnerState != SpawnerState.Active)
 return;

 // Calculate particles per second
 var toSpawn = spawnCount * dt + carryOver;
 var integerPart = (int)Math.Floor(toSpawn);
 carryOver = toSpawn - integerPart;

 // Calculate burst particles
 burstTimer -= dt;
 if (burstTimer < 0)

853 / 1211

This class mimics the ParticleSpawner, with the addition of a BurstCount and a burstTimer to control how
often and how many particles are spawned in bursts.

The SpawnNew method is called every frame to allow the spawner to calculate how many new particles
should be emitted in the emitter based on the elapsed time.

As an exercise, try implementing the following changes:

Rather than one-second bursts, create a property and have the user control the timing.
Remove the spawn-per-second fields and make it a pure burst spawner.

Our spawner only emits particles, but doesn't set any fields. This is done by the initializer.

Initializer
We want to place the particles in a cone and shoot them outwards when they spawn.

 {
 burstTimer += 1f;
 integerPart += (int)Math.Floor(BurstCount);
 }

 // Lastly, tell the emitter how many new particles do we want to spawn this frame
 emitter.EmitParticles(integerPart);
 }
 }

 [DataContract("CustomParticleInitializer")]
 [Display("Cone Initializer")]
 public class CustomParticleInitializer : ParticleInitializer
 {
 [DataMember(100)]
 [DataMemberRange(0, 120, 0.01, 0.1)]
 [Display("Arc")]
 public float Angle = 20f;

 [DataMember(200)]
 [Display("Velocity")]
 public float Strength = 1f;

 public CustomParticleInitializer()
 {
 RequiredFields.Add(ParticleFields.Position);
 RequiredFields.Add(ParticleFields.Velocity);
 RequiredFields.Add(ParticleFields.RandomSeed);

854 / 1211

Our initializer simply defines an angle for the cone and strength for the velocity. Any scaling and rotation
of the cone come from the location inheritance and offset, which are common for all initializers and
updaters and are ready to use. For more information, see the ParticleInitializer.

The constructor for the initializer is important, as it sets the list of required fields we'll use. The initializer
sets the particle's position and velocity, so we add those, and needs to generate some randomness, so
we also add the random seed which we are going to use. All particles have Life and RandomSeed fields
when they spawn.

 }

 public unsafe override void Initialize(ParticlePool pool, int startIdx, int endIdx,
int maxCapacity)
 {

...
 }
 }

// This method is called for all new particles once the initializer is added to an emitter.
Rather than updating all of them, we are given a starting and end indices and must only use
particles in the defined range.
public unsafe override void Initialize(ParticlePool pool, int startIdx, int endIdx, int
maxCapacity)
{
 // Make sure the fields exist and avoid illegal memory access

if (!pool.FieldExists(ParticleFields.Position) ||
!pool.FieldExists(ParticleFields.Velocity) || !pool.FieldExists(ParticleFields.RandomSeed))

return;

var posField = pool.GetField(ParticleFields.Position);
var velField = pool.GetField(ParticleFields.Velocity);
var rndField = pool.GetField(ParticleFields.RandomSeed);

var range = (float) (Angle*Math.PI/180f);
var magnitude = WorldScale.X;

var i = startIdx;
while (i != endIdx)
{

var particle = pool.FromIndex(i);
var randSeed = particle.Get(rndField);

var x = (randSeed.GetFloat(RandomOffset.Offset2A + SeedOffset) -
0.5f)*range;

var z = (randSeed.GetFloat(RandomOffset.Offset2B + SeedOffset) - 0.5f) *

855 / 1211

Updater
We want our updater to change a particle's width and height every frame based on a simple sine
function over the particle's life.

Because there's no such field yet, start by creating a new particle field. Let's name it RactangleXY:

The field has type Vector2, since we only need two values for the width and the height. No fields are
added automatically to the particles, so even if you have many declarations, the particle size won't
change. Fields are only added when we plug a module which requires them, such as the custom updater
below.

range;

var u = (randSeed.GetFloat(RandomOffset.Offset2A + SeedOffset) - 0.5f) *
range;

var v = (randSeed.GetFloat(RandomOffset.Offset2B + SeedOffset) - 0.5f) *
Math.PI;

var xz = (float) Math.Sin(u);
var particleRandPos = new Vector3((float) Math.Cos(v) * xz,

(float)Math.Sqrt(1 - u*u), (float)Math.Sin(v) * xz);
particleRandPos.Normalize();

particleRandPos *= magnitude;
WorldRotation.Rotate(ref particleRandPos); // WorldRotation is the current

rotation of our initializer. We can use it as it is, since inheritance and offset are
already taken in account.

(*((Vector3*) particle[posField])) = particleRandPos + WorldPosition; //
WorldPosition is the current position of our initializer. We can use it as it is, since
inheritance and offset are already taken in account.

(*((Vector3*) particle[velField])) = particleRandPos * Strength;

i = (i + 1) % maxCapacity;
}

}

 public static class CustomParticleFields
 {
 public static readonly ParticleFieldDescription<Vector2> RectangleXY = new
ParticleFieldDescription<Vector2>("RectangleXY", new Vector2(1, 1));
 }

856 / 1211

For API reference, see ParticleUpdater.

 [DataContract("CustomParticleUpdater")] // Used for serialization so that our custom
object can be saved. A good practice is to have the data contract have the same name as the
class name.
 [Display("CustomUpdater")] // Unless a display name is
specified, the name of the data contract will be used. Sometimes we want to hide it and
display something simpler instead.
 public class CustomParticleUpdater : ParticleUpdater
 {
 [DataMemberIgnore] // Public fields and properties are serialized. We want to
avoid this in some cases and can use the DataMemberIgnore attribute.
 public override bool IsPostUpdater => true; // By making this updater a post-updater
we can ensure it will be called for both newly spawned and old particles (1 frame or older)

 [DataMember(10)] // This public field will be serialized. With the DataMember
attribute we can specify the serialization and display order.
 public AnimatedCurveEnum Curve; // Refer to the actual sample code for
AnimatedCurveEnum

// In the constructor we have to specify all the fields we need for this
updater.

// It calculates our newly created field by using the particle's lifetime so
we need "RectangleXY" and "Life"
 public CustomParticleUpdater()
 {
 // This is going to be our "input" field
 RequiredFields.Add(ParticleFields.Life);

 // This is the field we want to update
 // It is not part of the basic fields - we created it just for this updater
 RequiredFields.Add(CustomParticleFields.RectangleXY);
 }

// The update method is called once every frame and requires the updater to
iterate over all particles in the pool and update their fields.

// If the updater is a post-updater it will get called **after** spawning
new particles for this frame and might overwrite their initial values on the same frame

// If the updater is not a post-updater it will get called **before**
spawning new particles for this frame and can't overwrite their initial values for the first
frame
 public override void Update(float dt, ParticlePool pool)
 {

...

857 / 1211

Let's take a look at the Update method. The sample code is longer, but here we've trimmed it for the sake
of simplicity.

The updater will animate all particles' RectangleXY fields with a simple sine and cosine functions over
their life.

In the next step we'll demonstrate how to display the created values.

Shape builder
The shape builder is the class which takes all particle fields and creates the actual shape we are going to
render. It's a little long, so let's break it down.

The engine draws quads using 1 quad = 4 vertices = 6 indices, but we can only specify the number of
quads we need. For a rectangle we need only one.

 }
 }

public override void Update(float dt, ParticlePool pool)
{
 // Make sure the fields exist and avoid illegal memory access
 if (!pool.FieldExists(ParticleFields.Life) ||
!pool.FieldExists(CustomParticleFields.RectangleXY))
 return;

 var lifeField = pool.GetField(ParticleFields.Life);
 var rectangleField = pool.GetField(CustomParticleFields.RectangleXY);

 // X and Y sides depend on sin(time) and cos(time)
 foreach (var particle in pool)
 {
 // Get the particle's remaining life. It's already normalized between 0 and 1
 var lifePi = particle.Get(lifeField) * MathUtil.Pi;

 // Set the rectangle as a simple function over time
 particle.Set(rectangleField, new Vector2((float)Math.Sin(lifePi),
(float)Math.Cos(lifePi)));
 }
}

public override int QuadsPerParticle { get; protected set; } = 1;

858 / 1211

This method is called when it needs our shape builder to iterate over all particles and build the shape.
The ParticleVertexBuilder is the wrapper around our vertex stream. We'll use it to write out the vertex
data for the particles.

inverseViewX and inverseViewY are unit vectors in camera space passed down to the shape builder if we
need to generate camera-facing shapes.

NOTE

The number of quads is important because the vertex buffer is allocated and mapped prior to
writing out the vertex data. If we allocate smaller buffer it might result in illegal memory access and
corruption.



public unsafe override int BuildVertexBuffer(ParticleVertexBuilder vtxBuilder, Vector3
inverseViewX, Vector3 inverseViewY,
 ref Vector3 spaceTranslation, ref Quaternion spaceRotation, float spaceScale,
ParticleSorter sorter)

 foreach (var particle in sorter)
 {
 var centralPos = particle.Get(positionField);

 var particleSize = sizeField.IsValid() ? particle.Get(sizeField) : 1f;
 var rectangleSize = rectangleField.IsValid() ? particle.Get(rectangleField) : new
Vector2(1, 1);
 var unitX = invViewX * (particleSize * 0.5f) * rectangleSize.X;
 var unitY = invViewY * (particleSize * 0.5f) * rectangleSize.Y;

 // Particle rotation. Positive value means clockwise rotation.
 if (hasAngle) { ... }

 var particlePos = centralPos - unitX + unitY;
 var uvCoord = new Vector2(0, 0);

 // 0f 0f
 vtxBuilder.SetAttribute(posAttribute, (IntPtr)(&particlePos));
 vtxBuilder.SetAttribute(texAttribute, (IntPtr)(&uvCoord));
 vtxBuilder.NextVertex();

 // 1f 0f
 particlePos += unitX * 2;
 uvCoord.X = 1;

859 / 1211

Our particles' width and height depend both on the uniform size field Size and the field we created
earlier in this walkthrough, RectangleXY. From there, we need to set the positions and texture
coordinates for the four corner vertices of our quad. The number of vertices we have to set is per particle
four times the number of quads we requested.

You can add more complicated shapes or attributes here if your game requires them.

Conclusion
With these 4 custom modules you can add a lot of functionality to the particle engine and tailor behavior
to your needs. Because they're all serialized and loaded in Game Studio, once you create them, you can
use them directly from Game Studio, together with the core modules.

If you want to experiment with the modules, try adding a new .cs file to the CustomParticles.Game
project. You can duplicate one of the existing classes, but don't forget to change the class name and the
data contract to avoid collisions.

You can then reload the scripts in Game Studio. If they don't load, relaunch your project. If there are no
compilation errors in your code you should see the new modules in the spawners, initializers, updaters
and shape builders lists.

See also
Tutorial: Create a trail

 vtxBuilder.SetAttribute(posAttribute, (IntPtr)(&particlePos));
 vtxBuilder.SetAttribute(texAttribute, (IntPtr)(&uvCoord));
 vtxBuilder.NextVertex();

 // 1f 1f
 particlePos -= unitY * 2;
 uvCoord.Y = 1;
 vtxBuilder.SetAttribute(posAttribute, (IntPtr)(&particlePos));
 vtxBuilder.SetAttribute(texAttribute, (IntPtr)(&uvCoord));
 vtxBuilder.NextVertex();

 // 0f 1f
 particlePos -= unitX * 2;
 uvCoord.X = 0;
 vtxBuilder.SetAttribute(posAttribute, (IntPtr)(&particlePos));
 vtxBuilder.SetAttribute(texAttribute, (IntPtr)(&uvCoord));
 vtxBuilder.NextVertex();

 renderedParticles++;
 }

860 / 1211

Tutorial: Particle materials
Tutorial: Inheritance
Tutorial: Lasers and lightning
Particles
Create particles

861 / 1211

Bepu Physics

Stride simulates real-world physics such as gravity and collisions using "Bepu physics". This section
explains how physics components work, how to add them to your project, and how to use them with
scripts.

In this section
Configuration: Setting up Bepu
Simulation: Managing the simulations parameters
Collidables: Physics objects in your game world

Statics: Strong immovable objects such as terrain, walls, floors, or large rocks
Bodies: Movable objects that can be knocked around, like cans, balls, or boxes
Kinematic Bodies: Entities moved programmatically, such as moving platforms or doors
Characters: Creatures moved programmatically, such as the player character, animals, or NPCs
(non-player characters)

Collider Shapes: Define the geometric shape of yours collidable components
Triggers: Use triggers to detect passing objects
Constraints: Join physics objects together, constrain them around points
Physics Queries: Operations to find objects in the scene
Physics Update: Updating logic alongside physics

Tutorials

WARNING

These pages are being updated. Bullet Physics is being phased out. We no longer plan to support or
expand its features as our focus shifts to Bepu Physics. We recommend transitioning to Bepu
Physics for access to the latest updates and ongoing improvements.



862 / 1211

Physics tutorials
Create a bouncing ball: Use the static collider and rigidbody components to create a ball bouncing
on a floor
Script a trigger: Create a trigger that doubles the size of a ball when the ball passes through it

Additional physics resources
Stride integrates the open-source Bepu Physics engine .

Explore the official Bepu website
Watch demos on the Bepu YouTube

For solutions on mitigating physics jitter, refer to our guide on Fixing Physics Jitter

https://github.com/bepu/bepuphysics2
https://github.com/bepu/bepuphysics2
https://github.com/bepu/bepuphysics2
https://www.bepuentertainment.com/
https://www.bepuentertainment.com/
https://www.bepuentertainment.com/
https://www.youtube.com/@bepu
https://www.youtube.com/@bepu
https://www.youtube.com/@bepu

863 / 1211

Bepu Physics - Configuration
Beginner Designer

Adding Bepu physics to your game
Some projects may not come with Bepu Physics pre-installed, to add it to your project right-click on the
game project and select Add dependency...

A new window will open, select Stride.BepuPhysics and click Ok.

864 / 1211

The editor may or may not reload the assemblies automatically depending on your settings, if it does
not, press the Assembly Reload button.

865 / 1211

You can now add Bepu's own physics component, but before playing around with that, you may want to
add the physics configuration section to your game's settings.

Configuring Physics
To manage Bepu's simulation configuration, in the Asset View pane, select your GameSettings asset which
is at the root of your asset folder, look at the property grid, press on the + sign next to Add
configuration and select Bepu Configuration.

866 / 1211

You can set up and control the different simulations your game hosts from this section. Add your first
Simulation by pressing on the green + sign next to Bepu Simulations.

You should now have something like that:

867 / 1211

See also
Simulation
Index

868 / 1211

Physics simulation
Intermediate Programmer

Stride's physics are controlled by the Simulation class. You can change how Stride initializes the
Simulation by going to the Configuration section of your game's settings.

These settings control the rules and parameters your physics simulation run under, enabling
customization and fine-tuning of the physics environment to suit your game's requirements. You may
also create multiple simulations and distribute your physics object between them depending on your
needs.

Have a look at the API for more detail on what each property does.

Collision Layers and the Collision Matrix
You can assign your physics object to specific collision layers, those layers can then be set to ignore
objects assigned to other layers.

Those rules can be set by modifying the collision matrix at runtime, or through the Layer[...] fields in
the editor.

For example, pressing Change values... next to Layer0 and un-ticking Layer1 would cause all objects on
Layer0 to pass through objects on Layer1.

Retrieving the Simulation
There are multiple ways to retrieve a reference to this BepuSimulation from inside one of your
ScriptComponent:

The recommended way is through a reference to a physics component, something like
myBody.Simulation as it is the fastest.
Or through the Entity.GetSimulation() extension method.

Performance Considerations
The following are relevant excerpts from Bepu's documentation .

If physics causes your game to hang for a while when simulating for the first time, it may be related to
just-in-time compilation. If it becomes a problem, consider running a small simulation that hits all the
relevant codepaths (a bunch of objects colliding with constraints applied) behind a loading screen. Using
an ahead-of-time compilation toolchain would also work.

See also

https://github.com/bepu/bepuphysics2/blob/master/Documentation/PerformanceTips.md
https://github.com/bepu/bepuphysics2/blob/master/Documentation/PerformanceTips.md
https://github.com/bepu/bepuphysics2/blob/master/Documentation/PerformanceTips.md

869 / 1211

Collidables
Collider shapes

870 / 1211

Collidables
Beginner Designer

Collidables are the base entity components for physics objects. There are three main types:

Statics: Objects that don't move (terrain, walls, floors, large rocks)
Bodies: Moving objects, affected by gravity and collisions (cans, balls, boxes) or Kinematics (moving
platforms, doors)
Characters: Colliders for basic characters (player character, animals, NPCs)

You can also:

Define the shape of collidables components
Make triggers, and detect when other physics objects pass through them
Constrain collider movement with constraints

Collisions
Collidables interact according to the table below.

Characters Bodies Statics

Characters Collides Collides and bounces Collides

Bodies Collides and bounces Collides and bounces Collides and bounces

Statics Collides Collides and bounces Pass through

871 / 1211

Characters do not have any inertia, and so cannot bounce off of bodies or statics when colliding with
them.

Three other factor control whether two collidables would collide with each other, their Collision Layer,
Collision Group and their Contact Event Handler

Collision Layers
The collision layer controls whether that object would collide with object on other layers.

This relationship is controlled through the Simulation's Collision Matrix.

Collision Group
This property is used to filter collisions inside a group of object, when two or more objects must share
the same Collision Layer, but should not collide between each other.

It allows objects sharing the same CollisionGroup.Id to pass through each other when the absolute
difference between their IndexA, IndexB, and IndexC is less than two.

Its utility is best shown through concrete examples.

You have multiple characters A, B, C, D all set to the same CollisionLayer, they are split in two
teams A, B and C, D. Members of the same team must not collide between each other, you can set
A, B's Id to 1 and C, D's Id to 2.

You have a chain of three colliders attached to each other A, B, C, you don't want A and C to collide
with B, but A and C should collide together. Set A, B and C's Ids to 1 to start filtering, leave A's
IndexA at 0, B's to 1 and C to 2. A and C will collide since the difference between their IndexA is
equal to two, but neither of them will collide with B since they are both only one away from B's
IndexA value.

Contact Event Handler
The contact event handler is a class that receives collision data whenever the object it is associated with
collides with the world.

It is most often used to transform physics object into 'trigger boxes', areas that run events whenever
objects, like the player character, passes through them. See Triggers.

If the contact event handler you bind to an object is set to NoContactResponse, the object will never
prevent anything from passing through it, it will only collect collision events.

See also

872 / 1211

Configuration
Static
Body
Character
Colliders
Physics tutorials

873 / 1211

Static
Beginner Designer

Static colliders aren't moved by forces such as gravity and collisions, but other physics objects can
bump into them. Typical static colliders are strong immovable objects like walls, floors, large rocks, and
so on.

Add a Static Component to an Entity
1. In the Scene Editor, select the entity you want to add the component to.

2. In the Property Grid, click Add component, hover Physics - Bepu and select StaticComponent.

874 / 1211

Have a look at the API for more detail on the properties of this component.

Moving Static Components at Runtime
Moving a static collider while your game runs is generally not recommended as it will lead to unexpected
collision issues and performance degradation. Moving it every couple of seconds should be fine, but if
you have to move it more frequently, use a Body instead.

NOTE

You will need to set a collider for this newly created static component, you can do so through the
Collider property, see collider shapes.



875 / 1211

See also
Bodies
Characters
Collider shapes
Triggers

876 / 1211

Body
Beginner Designer

Body move based on physical forces applied to them, such as gravity and collisions. Typical (rigid)bodies
are boxes, balls, furniture, and so on — objects that can be pushed, pulled, and knocked around, and
also have effects on other bodies they collide with.

Add a Body Component to an entity
1. In the Scene Editor, select the entity you want to add the component to.

2. In the Property Grid, click Add component, hover Physics - Bepu and select BodyComponent.

877 / 1211

Have a look at the API for more detail on the properties of this component.

See also

NOTE

You will need to set a collider for this newly created body, you can do so through the Collider
property, see collider shapes.



WARNING

Never use mesh colliders for bodies, use them only for statics, they are far too slow to be used as
bodies. If you absolutely need a more complex shape than the primitive ones, use a convex hull
instead, see collider shapes.



878 / 1211

Kinematic rigidbodies
Statics
Characters
Collider shapes
Triggers

879 / 1211

Kinematic Bodies
Sometimes you want to move bodies in a specific way rather than have physics apply outside forces, like
drag, inertia, etc. For example, you might control an elevator directly through its LinearVelocity
property, rather than have other objects push and pull it. This is a kinematic body.

Although kinematic bodies aren't bound by physics, other objects can still collide with them. For
example, in the case of the elevator, objects placed inside won't fall through the elevator floor.

Make a Kinematic Body
1. Select the entity you want to be a kinematic body.

2. In the Property Grid, under the Body component properties, select Kinematic.

880 / 1211

Scripting Kinematic Bodies
You can script the Kinematic property to turn on and off on certain events. For example, imagine our
kinematic elevator's suspension cables are cut. You can script the Kinematic property to change to false
when this happens. The elevator becomes subject to the usual forces of physics, and falls.

See also
bodies

881 / 1211

Statics
Characters
Collider shapes
Triggers

882 / 1211

Character
Beginner Designer

Characters are used for player and NPC movement. Entities with character components can be moved
with Move, TryJump, and teleported by setting its Position property.

Add a Character Component to an Entity
1. In the Scene Editor, select the entity you want to add the component to.

2. In the Property Grid, click Add component, hover Physics - Bepu and select CharacterComponent.

883 / 1211

Have a look at the API for more detail on the properties of this component.

Custom Character Controllers
When creating a controller, it is recommended to create a new class inheriting from this component
instead of using it as is, you can access its internal state and override it with your own logic to better fit
your game.

NOTE

You will need to set a collider for this newly created character, you can do so through the Collider
property. The capsule shape is appropriate for most character colliders. For more information, see
collider shapes.



WARNING

Never use mesh colliders for characters, use them only for statics, they are far too slow to be used
as characters. If you absolutely need a more complex shape than the primitive ones, use a convex
hull instead, see collider shapes.



using Stride.BepuPhysics;
using Stride.Core.Mathematics;

public class MyCharacterController : CharacterComponent
{
 public override void Move(Vector3 direction)
 {
 base.Move(direction);
 }

 public override void TryJump()
 {
 base.TryJump();
 }

 public override void SimulationUpdate(BepuSimulation sim, float simTimeStep)
 {
 base.SimulationUpdate(sim, simTimeStep);
 }

 public override void AfterSimulationUpdate(BepuSimulation sim, float simTimeStep)

884 / 1211

See also
Statics
Bodies
Collider shapes

 {
 base.AfterSimulationUpdate(sim, simTimeStep);
 }
}

885 / 1211

Collider Shapes
Beginner Designer

Each collidables should have a collider defining its shape. You can set them through the Property Grid.

Empty
Empty do not collide with other objects, they are mostly used to anchor bodies with constraints.

Compound
A compound collider is a shape made up of a bunch of more primitive shapes, most of these are self-
explanatory, while Convex Hull has a section describing it in more detail below.

Those individual primitives can intersect between each other, and don't necessarily have to match the
model they are attached to. Each shape has additional properties including size, orientation, offset, and
so on.

Meshes
Mesh colliders use 3D models as the collision shape itself. They are significantly slower than compounds,
use them only when building a compound collider would be counter-productive.

886 / 1211

Convex Hulls
A convex hull is a convex shape that envelopes another. For example, the convex hull of the Eiffel Tower
would be a pyramid large enough to contain the entire tower without any bits poking through.

Convex shapes are easier to test for collision, simulate and find intersections with, reducing the compute
load physics engine have to deal with compared to their mesh counterpart.

Creating a Convex Hull
1. In the Asset View pane, press the Add asset button, hover on the Physics-Bepu option and select

Convex hull

WARNING

Never use mesh colliders for body collidables, use them only for statics, they are far too slow to be
used as bodies. If you absolutely need a more complex shape than the primitive ones, use a convex
hull instead.



887 / 1211

A new window will open prompting you to select a model asset, select the asset you want to create
this hull from and press Ok.

You can now add this new hull to one of your collidable.
2. Select the entity you want to add this Convex Hull to, add in a collidable component as is described

in the static or body section.

3. Next to Colliders, click (Add) and select ConvexHullCollider

888 / 1211

4. Set the Hull property to your newly created hull by pressing on the hand icon

Performance Consideration
The following are relevant excerpts from Bepu's documentation

Use simple shapes whenever possible. Spheres and capsules are fastest followed by boxes, cylinders, and
finally convex hulls. While cylinders and convex hulls are not slow in an absolute sense, they can be an
order of magnitude slower than spheres and capsules.

While you shouldn't be too afraid of cylinders and convex hulls (they're still pretty fast), it's hard to beat
the simpler shapes.

If you need to use a convex hull, use the minimum number of vertices needed to approximate the shape.
The cost of hull collision detection is proportional to their complexity.

If you really, definitely need a mobile mesh, especially one that needs to collide with other meshes,
spend a while confirming that you really, definitely, seriously need it and there is no other option, and

https://github.com/bepu/bepuphysics2/blob/master/Documentation/PerformanceTips.md
https://github.com/bepu/bepuphysics2/blob/master/Documentation/PerformanceTips.md
https://github.com/bepu/bepuphysics2/blob/master/Documentation/PerformanceTips.md

889 / 1211

then use a compound of simple shapes instead.

Okay, so maybe you actually truly really seriously need an actual mobile mesh. Keep the number of
triangles to the minimum necessary to approximate the desired shape, and try to keep the triangles fairly
uniform in size. Long sliver-like triangles can end up with large and inefficient bounding boxes. Static
meshes follow the same optimization guidelines. Don't be surprised when you run into behavioral issues
associated with infinitely thin one-sided triangles not colliding with each other and relatively crappy
performance.

See also
Colliders
Tutorial: Create a bouncing ball
Tutorial: Script a trigger

890 / 1211

Triggers
Beginner Designer

A trigger is a collision shape which detects when colliders enter it, it can be used to run an event when a
player character enters a room for example.

Triggers in Stride's Bepu implementation fall into what is known as a special kind of Contact Event
Handler.

The contact event handler is a class that receives collision data whenever the object it is associated with
collides with the world.

If the contact event handler you bind to an object is set to NoContactResponse, it is a Trigger, the object
will never prevent anything from passing through it, it will only receive collision events.

Here's a basic example of a component which acts as a trigger to display a message in the console:

using Stride.BepuPhysics;
using Stride.BepuPhysics.Definitions.Contacts;
using Stride.Engine;

public class Test : StartupScript, IContactEventHandler
{
 public bool NoContactResponse => true;

 void IContactEventHandler.OnStartedTouching<TManifold>(CollidableComponent eventSource,
CollidableComponent other,
 ref TManifold contactManifold,
 bool flippedManifold,
 int workerIndex,
 BepuSimulation bepuSimulation)
 {
 Log.Warning("Entered!");
 }

 void IContactEventHandler.OnStoppedTouching<TManifold>(CollidableComponent eventSource,
CollidableComponent other,
 ref TManifold contactManifold,
 bool flippedManifold,
 int workerIndex,
 BepuSimulation bepuSimulation)
 {
 Log.Warning("Exited!");

891 / 1211

For an example of how to use triggers, see the Script a trigger tutorial.

See also
Tutorial: Script a trigger
Collidables
Collider shapes

 }
}

892 / 1211

Constraints

Advanced Programmer

Constraints restrict bodies to certain movement patterns. For example, a realistic knee joint can only
move along one axis and can't bend forwards.

Constraints can either link two collidables together. They allow for interaction and dependency between
bodies.

Performance And Stability
The following are relevant excerpts from Bepu's documentation

Try using the minimum number of solver iterations sufficient to retain stability. The cost of the solver
stage is linear with the number of iterations, and some simulations can get by with very few.

For some simulations with very complex constraint configurations, there may be no practical number of
solver iterations that can stabilize the simulation. In these cases, you may need to instead use
substepping or a shorter time step duration for the entire simulation. More frequent solver execution can
massively improve simulation quality, allowing you to drop velocity iteration counts massively (even to
just 1 per substep). See the Substepping documentation for more details.

WARNING

This page is WIP


WARNING

This documentation is under construction.


WARNING

Probably need to adapt and extend some parts of the above to our implementation, not sure how
relevant everything is. Take stuff from
https://github.com/bepu/bepuphysics2/blob/master/Documentation/StabilityTips.md and
https://github.com/bepu/bepuphysics2/blob/master/Documentation/Substepping.md

Eideren



https://github.com/bepu/bepuphysics2/blob/master/Documentation/PerformanceTips.md
https://github.com/bepu/bepuphysics2/blob/master/Documentation/PerformanceTips.md
https://github.com/bepu/bepuphysics2/blob/master/Documentation/PerformanceTips.md
https://github.com/bepu/bepuphysics2/blob/master/Documentation/StabilityTips.md
https://github.com/bepu/bepuphysics2/blob/master/Documentation/StabilityTips.md
https://github.com/bepu/bepuphysics2/blob/master/Documentation/StabilityTips.md
https://github.com/bepu/bepuphysics2/blob/master/Documentation/Substepping.md
https://github.com/bepu/bepuphysics2/blob/master/Documentation/Substepping.md
https://github.com/bepu/bepuphysics2/blob/master/Documentation/Substepping.md

893 / 1211

See also
Colliders

894 / 1211

Physics Queries
Intermediate Programmer

Physics Queries are a set of operation to test and retrieve physics object in a given simulation, the most
well known form of those queries is the RayCast which traces an invisible line through the scene to find
intersecting Collidables. This is useful, for example, to check which objects are in a gun's line of fire, or
are under the mouse cursor when the user clicks.

To raycast in the current Simulation, see the Simulation API.

For an example of raycasting, see the Physics Sample project included with Stride.

Examples
On left click, if there is a 'HostileUnit' in front of 'MyGun', deal damage to it

Using the non-alloc version of a penetrating query to find multiple objects intersecting with the ray

NOTE

Physics queries uses collider shapes to find objects. It ignores entities that have no Collidable
Component attached or no collider shape set, see Collidables.



public override void Update()
{
 var simulation = Entity.GetSimulation();
 MyGun.Transform.GetWorldTransformation(out var rayStart, out var worldRot, out _);
 var rayDir = worldRot * Vector3.UnitZ;
 float range = 10;
 // All layers except 0 & 1
 var layers = CollisionMask.Everything & ~(CollisionMask.Layer0 | CollisionMask.Layer1);

 if (Input.IsMouseButtonPressed(MouseButton.Left) && simulation.RayCast(rayStart, rayDir,
range, out HitInfo hitResult, layers))
 {
 var hostile = hitResult.Collidable.Entity.Get<HostileUnit>();
 if (hostile is not null)
 hostile.DealDamage(10);
 }
}

895 / 1211

Moves a box through the scene and return what it collided with

Find up to 16 physics object a box placed at that position would overlap with

var simulation = Entity.GetSimulation();
Entity.Transform.GetWorldTransformation(out var rayStart, out var worldRot, out _);
var rayDir = worldRot * Vector3.UnitZ;

// Allocates a working buffer on the stack for the penetrating test,
// The 16 specified here would be the maximum item this test would keep track of,
// if the test finds more than 16 objects, it will yield the 16 closest ones
System.Span<HitInfoStack> buffer = stackalloc HitInfoStack[16];

// The order in which elements are yielded throughout this foreach is not guaranteed
// Some hitInfo with a smaller distance may be returned after one with a larger one,
// and the opposite is also true.
foreach (var hitInfo in simulation.RayCastPenetrating(rayStart, rayDir, 100f, buffer))
{
 Log.Warning($"T: {hitInfo.Distance}\nNormal: {hitInfo.Normal}\nEntity
: {hitInfo.Collidable.Entity}");
}

var simulation = Entity.GetSimulation();
Entity.Transform.GetWorldTransformation(out var center, out var worldRot, out _);
var rayDir = worldRot * Vector3.UnitZ;
var initialPose = new RigidPose(center, worldRot);
var displacement = new BodyVelocity(rayDir, default);
var shape = new Box(0.25f, 0.25f, 0.25f);

if (simulation.SweepCast(shape, initialPose, displacement, 10, out HitInfo hitInfo))
{
 Log.Warning($"T: {hitInfo.Distance}\nNormal: {hitInfo.Normal}\nEntity
: {hitInfo.Collidable.Entity}");
}

var simulation = Entity.GetSimulation();
Entity.Transform.GetWorldTransformation(out var center, out var worldRot, out _);
var initialPose = new RigidPose(center, worldRot);
var shape = new Box(0.25f, 0.25f, 0.25f);

System.Span<CollidableStack> buffer = stackalloc CollidableStack[16];
foreach (var hit in simulation.Overlap(shape, initialPose, buffer))
{

896 / 1211

Send a raycast from the mouse's screen position:

 Log.Warning($"Entity : {hit.Entity}");
}

public static bool ScreenPositionToWorldPositionRaycast(Vector2 screenPos,
CameraComponent camera)
{
 Matrix invViewProj = Matrix.Invert(camera.ViewProjectionMatrix);

 // Reconstruct the projection-space position in the (-1, +1) range.
 // Don't forget that Y is down in screen coordinates, but up in projection space
 Vector3 sPos;
 sPos.X = screenPos.X * 2f - 1f;
 sPos.Y = 1f - screenPos.Y * 2f;

 // Compute the near (start) point for the raycast
 // It's assumed to have the same projection space (x,y) coordinates and z = 0 (lying on
the near plane)
 // We need to unproject it to world space
 sPos.Z = 0f;
 var vectorNear = Vector3.Transform(sPos, invViewProj);
 vectorNear /= vectorNear.W;

 // Compute the far (end) point for the raycast
 // It's assumed to have the same projection space (x,y) coordinates and z = 1 (lying on
the far plane)
 // We need to unproject it to world space
 sPos.Z = 1f;
 var vectorFar = Vector3.Transform(sPos, invViewProj);
 vectorFar /= vectorFar.W;

 var delta = (vectorFar - vectorNear).XYZ();
 var maxDistance = delta.Length();
 var dir = delta / maxDistance; // normalize delta

 // Raycast from the point on the near plane to the point on the far plane and get the
collision result
 return camera.Entity.GetSimulation().RayCast(vectorNear.XYZ(), dir, maxDistance, out
HitInfo hit);
}

897 / 1211

See also
Colliders

NOTE

There are multiple ways to retrieve a reference to this Simulation from inside one of your
ScriptComponent:

The recommended way is through a reference to a physics component, something like
myBody.Simulation as it is the fastest.
Or through the Entity.GetSimulation() extension method.



898 / 1211

Physics Update
Beginner Programmer

When you need your logic to interact, query or otherwise modify the state of a simulation, you may need
to do so right before or after physics updates. You can implement the ISimulationUpdate interface in
your EntityComponent or Scripts to be notified of when simulation updates.

See also
Character
Physics Jitter
Body
Index

using System;
using Stride.BepuPhysics;
using Stride.BepuPhysics.Components;
using Stride.Engine;

public class MyPhysicsComponent : SyncScript, ISimulationUpdate
{
 public override void Update()
 {
 // Here you would call stuff you need to do every frame
 }

 public void SimulationUpdate(BepuSimulation simulation, float simTimeStep)
 {
 // Here is for stuff you need to do right before physics runs,
 // sample player input, setting body velocities, etc.
 }

 public void AfterSimulationUpdate(BepuSimulation simulation, float simTimeStep)
 {
 // Here is for stuff you need to check right after physics ran,
 // check if an object collided with anything, if it's on the ground,
 // if it failed to increase in height when jumping, etc.
 }
}

899 / 1211

Tutorials
Create a bouncing ball: Use the static and body components to create a ball bouncing on a floor.
Script a trigger: Create a trigger that doubles the size of a ball when the ball passes through it.

See also
Index

900 / 1211

Create a bouncing ball
Beginner Designer

In this tutorial, we'll use the static and body components to create a ball bouncing on a floor.

1. Create a new project
Start a New Game project.

The default scene comes pre-loaded with five entities: Camera, Directional light, Skybox, Ground, and
Sphere. We're going to add physics components to the Ground and Sphere entities.

2. Add a Static Component
Let's begin by adding a static collider component to the Ground entity. A static component is a physics
object that doesn't move. Typical static component are walls, floors, large rocks, and so on. In this case,
the static component will give the ball something to bounce on.

1. Select the Ground entity.

2. In the Property Grid, click Add component and select Static Collider.

901 / 1211

3. Set the collider shape to match the shape of the entity. To do this, in the Property Grid, expand the
Static Component to view its properties.

4. Next to Colliders, click (Add) and select Box Collider.

This adds a static collider to the ground, so the ball has something to bounce off.

902 / 1211

5. Set the Size property to X: 10, Y: 0.1, Z: 10 to create a flat plane from this box

3. Add a Body Component
Next, we'll add a body component to the sphere. A body is a physics object that moves — perfect for our
bouncing ball.

1. In the Scene Editor, select the Sphere entity.

2. In the Property Grid, click Add component and select Rigidbody.

3. Just like we did for the Ground entity, set the collider shape to match the entity. To do this, in the
Property Grid, expand the Body Component to view its properties.

4. Next to Colliders, click (Add) and select Sphere.

903 / 1211

4. Position the ball
Let's position the sphere so it starts in midair and falls to the ground.

1. Select the Sphere entity.

2. In the Property Grid, under Transform, set the Position to: X: 0, Y: 6, Z: 0

This places the ball in midair above the ground.

5. Position the camera
Now we'll move the camera to give us a good view of the scene.

1. Select the Camera entity.

2. In the Property Grid, under Transform, set the Position to: X: 11, Y: 3, Z: -4

You can see preview the camera view in the Camera preview in the bottom-right of the Scene
Editor.

904 / 1211

6. Set the restitution
Let's see what the scene looks like so far. To run the project, press F5.

The Sphere (body) responds to gravity and falls. The Ground (static collider) breaks its fall. But there's no
bounce effect yet.

905 / 1211

To create a bounce effect, we need to change the Spring Frequency and Spring Daming Ratio of the
Sphere.

[!Note] Bepu internally uses speculative contacts which does not play well with traditional coefficient
of restitution. Instead, bounces can be implemented through contact constraint springiness, this
specificity mean that bounces actually take place over multiple simulation steps instead of on
contact. This may be counter-intuitive for users accustomed to other engine's restitution-based
bounciness.

Bounciness is dominated by Spring Damping Ratio; setting it to zero minimizes energy loss on
impact.
Increasing Spring Frequency can make impacts less bouncy when. This happens because the
integration rate becomes too slow to represent the motion, and it gets damped away. Increasing the
substepping rate or using more timesteps preserves bounciness with higher frequencies.

Let's set the Spring Frequency and Spring Damping Ratio of the Sphere.

1. Select the Sphere entity.

2. In the Property Grid, under Body, set the Spring Frequency to 3 and Spring Damping Ratio to 0.

To see how this changes the physics, run the project again (F5). This time, the ball bounces on the
ground before coming to a stop:

906 / 1211

Now that we've created a bouncing ball, we can use it to learn to Script a trigger.

See also
Colliders
Collider shape
Tutorial: Script a trigger

907 / 1211

Tutorial: Script a trigger
Beginner Designer

In this tutorial, we'll create a trigger that doubles the size of a ball when the ball passes through it.

1. Create a bouncing ball
Follow the instructions in the Create a bouncing ball tutorial. This creates a simple scene in which a ball
falls from midair, hits the ground, and bounces.

3. Add a trigger
Now we'll add a trigger between the ball and the ground, so the ball passes through it.

1. In the Scene Editor, click the white plus button (Create new entity) and select Empty entity.

Game Studio adds an entity to the scene with the default name Entity.

2. This entity will be our trigger, so rename it Trigger to make it easy to identify.

3. Since we don't need the trigger to move, we'll make it a Static Component. In the Property Grid,
click Add component and select Static component.

NOTE

The screenshots and videos in this tutorial were made using an earlier version of Stride, so some
parts of the UI, and the default skybox and sphere, might look different from your version.



908 / 1211

4. In the Property Grid, expand the Static Component to view its properties.

5. We need to give the trigger a shape. Next to Colliders, click (Add) and select Box.

This gives the trigger a box shape.

909 / 1211

4. Give the trigger a model
Right now, the trigger is invisible at runtime. To better show how the trigger works, we'll make it a
transparent box. This has no effect on how the trigger works; it just means we can easily see where it is
at runtime.

1. Create a new procedural model asset. To do this, in the Asset View, click Add asset, and select
Models > Cube.

2. Create a new empty material asset. To do this, in the Asset View, click Add asset, and select
Materials > Material.

910 / 1211

3. Let's rename the material to make it easy to identify. To do this, right-click, select Rename, and type
a new name (eg Transparent).

4. Select the Trigger entity. In the Property Grid, click Add component and select Model.

Game Studio adds a model component to the entity.

5. Under Model, click (Select an asset).

911 / 1211

6. Select the Cube model we created in step 1 and click OK.

912 / 1211

7. In the Property Grid, under Model > Materials, click (Select an asset).

8. Select the Transparent material we created in step 2 and click OK.

913 / 1211

9. In the Asset View, select the Transparent material asset.

914 / 1211

10. In the Property Grid, under Misc > Transparency, select Blend.

11. By default, the Alpha is set to 1. This makes the material completely opaque. To set it to 50%
opacity, set the Alpha to 0.5.

Now the trigger area will be visible at runtime.

5. Position the trigger
We need to position the trigger between the ground and the sphere, so the ball falls through it.

In the Property Grid, under Transform, set the Position to: X:0, Y:3, Z:0

Now the trigger entity is between the ground and the sphere.

6. Change the sphere size with script
If we run the project now (F5), the ball bounces off the trigger, but nothing happens.

915 / 1211

Let's write a script to change the size of the ball when it enters the trigger.

1. In the Asset View, click Add asset and select Scripts > Sync Script.

2. In the Create a script dialog, name your script Trigger and click Create script.

2a. If Game Studio asks if you want to save your script, click Save.

2b. If Game Studio asks if you want to reload the assemblies, click Reload.

3. Open the script, replace its content with the following code, and save the file:

NOTE

For more information about scripts, see Scripts.


using Stride.BepuPhysics;
using Stride.BepuPhysics.Definitions.Contacts;
using Stride.Core.Mathematics;
using Stride.Engine;

namespace TransformTrigger
{
 // Adding IContactEventHandler to listen to contact events

916 / 1211

This code doubles the size (scale) of any entity that enters the trigger. When the entity exits the
trigger, it is set to a unit size.

4. Reload the assemblies.

7. Add the script

 public class Trigger : SyncScript, IContactEventHandler
 {
 public override void Start()
 {
 // Initialization of the script.
 }

 public override void Update()
 {
 // Do stuff every new frame
 }

 // Let objects pass through this trigger, false would make objects bounce off it
 public bool NoContactResponse => true;

 void IContactEventHandler.OnStartedTouching<TManifold>(CollidableComponent
eventSource, CollidableComponent other,
 ref TManifold contactManifold,
 bool flippedManifold,
 int workerIndex,
 BepuSimulation bepuSimulation)
 {
 // When something enters inside this object
 other.Entity.Transform.Scale = new Vector3(2.0f);
 }

 void IContactEventHandler.OnStoppedTouching<TManifold>(CollidableComponent
eventSource, CollidableComponent other,
 ref TManifold contactManifold,
 bool flippedManifold,
 int workerIndex,
 BepuSimulation bepuSimulation)
 {
 // When something exits this object
 other.Entity.Transform.Scale = new Vector3(1.0f);
 }
 }
}

917 / 1211

Finally, let's add this script to the trigger entity as a component.

1. In Game Studio, select the Trigger entity.

2. In the Property Grid, click Add component and select the Trigger script.

3. Inside your Static Component click on the hand icon next to the Contact Event Handler property

918 / 1211

4. Select your newly created Trigger component and press Ok

919 / 1211

8. Run the project
Run the project (F5) to see the trigger in action.

The ball falls through the trigger, doubles in size, exits the trigger, and returns to its normal size.

See also
Tutorial: Create a bouncing ball
Colliders
Collider shapes
Scripts

920 / 1211

Physics Jitter
Beginner Programmer

Physics engine operate on a fixed time step; instead of updating physics every frame, physics engine
update at a fixed frequency, 60 times per second for example.

The discrepancy between when your game updates and when physics updates means that you may see
physics objects, or things that are attached to physics objects, move in a jittery manner. They jitter
because they stay static after every physics update while the whole rest of the world moves every single
frame.

It becomes less noticeable when your frame rate approaches the physics update rate, but it will always
occasionally jitter as there is no feasible way to reach exact parity between frame rate and physics.

There are ways to combat this issue though.

Body Component Interpolation Mode
Bodies have an Interpolation Mode property, this property smooth out the jitter by interpolating the
bodies' position and rotation between every physics update.

Interpolated takes the two last position and rotation the physics engine set for this body and
smoothly moves the object from the oldest to the youngest position. This means that the object is
always 'in the past' compared to its physics representation since it is always between the two last
position instead of exactly at the last one.
Extrapolated also takes the two last position and rotation, but instead of being between the two, it
starts from the last position and continues moving in the same direction. If the velocity of the object
is constant, this works perfectly, but if it suddenly collides along that path, it will 'correct' itself
leading to some jerky motion.

Jitter when a physics object follows another
There is a fair amount of jitter issues that may come up when setting up objects to move relative to each
other. Here's everything that may prevent those objects from moving smoothly:

The objects are not set to interpolate
Your logic does not run in Physics Update, it overrides interpolation

NOTE

This is controlled through the FixedTimeStep property in your Simulation Settings


921 / 1211

You are setting the entity's position/rotation instead of the physics object's
LinearVelocity/AngularVelocity
Your objects are not Awake

Lastly, maybe consider using a Constraint instead.

See also
Simulation
Index

922 / 1211

Bullet Physics

Stride simulates real-world physics such as gravity and collisions. This section explains how physics
components work, how to add them to your project, and how to use them with scripts.

In this section
Colliders: Create physics by adding collider components to entities

Static colliders: Colliders that don't move
Rigidbodies: Moving objects, affected by gravity and collisions
Kinematic rigidbodies: Physics objects controlled by scripts
Characters: Colliders for characters (such as player characters and NPCs)
Collider shapes: Define the shape of collider components
Triggers: Use triggers to detect passing objects
Constraints: Create appealing and realistic physics

Raycasting: Trace intersecting objects
Simulation: How Stride controls physics

Tutorials
Create a bouncing ball: Use the static collider and rigidbody components to create a ball bouncing
on a floor
Script a trigger: Create a trigger that doubles the size of a ball when the ball passes through it

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



923 / 1211

Additional physics resources
Stride integrates the open-source Bullet Physics engine. For comprehensive details, consult the
Bullet User Manual
For solutions on mitigating physics jitter, refer to our guide on Fixing Physics Jitter

http://bulletphysics.org/wordpress/
http://bulletphysics.org/wordpress/
http://bulletphysics.org/wordpress/
https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf
https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf
https://github.com/bulletphysics/bullet3/blob/master/docs/Bullet_User_Manual.pdf

924 / 1211

Colliders
Beginner Designer

To use physics in your project, add a collider component to an entity.

Colliders define the shapes and rules of physics objects. There are three types:

static colliders don't move (eg walls, floors, heavy objects, etc)
rigidbodies are moved around by forces such as collision and gravity (eg balls, barrels, etc)
characters are controlled by user input (ie player characters)

You can also:

set the shape of collider components
make triggers, and detect when objects pass through them
constrict collider movement with constraints

How colliders interact
Colliders interact according to the table below.

Kinematic
objects

Kinematic
triggers

Rigidbody
colliders

Rigidbody
triggers

Static
colliders

Static
triggers

Kinematic
objects

Collisions Collisions Collisions
and dynamic

Collisions Collisions Collisions

Kinematic
triggers

Collisions Collisions Collisions Collisions Collisions Collisions

Rigidbody
colliders

Collisions
and dynamic

Collisions Collisions
and dynamic

Collisions Collisions
and
dynamic

Collisions

Rigidbody Collisions Collisions Collisions Collisions Collisions Collisions

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



925 / 1211

Kinematic
objects

Kinematic
triggers

Rigidbody
colliders

Rigidbody
triggers

Static
colliders

Static
triggers

triggers

Static
colliders

Collisions Collisions Collisions
and dynamic

Collisions Nothing Nothing

Static
triggers

Collisions Collisions Collisions Collisions Nothing Nothing

"Collisions" refers to collision information and events only. This means the collision is detected in
the code, but the objects don't bump into each other (no dynamic response).

"Dynamic" means both collision information and events, plus dynamic response (ie the colliders
bump into each other instead of passing through).

For example, rigidbody colliders dynamically collide with static colliders (ie bump into them). However,
no objects dynamically collide with triggers; collisions are detected in the code, but objects simply pass
through.

Show colliders in the Scene Editor
By default, colliders are invisible in the Scene Editor. To show them:

1. In the Game Studio toolbar, in the top right, click the Display gizmo options icon.

2. Select Physics.

926 / 1211

The Scene Editor displays collider shapes.

927 / 1211

Show colliders at runtime
You can make colliders visible at runtime, which is useful for debugging problems with physics. To do
this, use:

this.GetSimulation().ColliderShapesRendering = true;

Keyboard shortcut
To show or hide collider shapes at runtime with a keyboard shortcut, use the Debug physics shapes
script.

1. In the Asset View, click Add asset.

2. Select Scripts > Debug physics shapes.

3. In the Game Studio toolbar, click Reload assemblies and update scripts.

NOTE

Collider shapes for infinite planes are always invisible.


928 / 1211

4. Add the Debug physics shapes script as a component to an entity in the scene. It doesn't matter
which entity.

The script binds the collider shape visibility to Left Shift + Left Ctrl + P, so you can turn it on and off at
runtime. You can edit the script to bind a different key combination.

See also
Collider shapes
Static colliders
Rigidbodies
Kinematic rigidbodies
Simulation
Physics tutorials

929 / 1211

Static colliders
Beginner Designer

Static colliders aren't moved by forces such as gravity and collisions, but other physics objects can
bump into them. Typical static colliders are strong immovable objects like walls, floors, large rocks, and
so on.

Add a static collider
1. Select the entity you want to make a static collider.

2. In the Property Grid, click Add component and select Static Collider.

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



930 / 1211

3. Set the collider shape to match the shape of the entity. To do this, in the Property Grid, expand the
Static Collider component to view its properties.

4. Next to Collider Shapes, click (Add) and select the shape you want.

Static collider properties
You can adjust the static collider properties in the Property Grid.

931 / 1211

Property Description

Collision
Group

Sets which collision group the object belongs to.

Can Collide
With

Sets which groups the object collides with.

Collision
Events

If this is enabled, the object reports collision events, which you can use in scripts. It
has no effect on physics. If you have no scripts using collision events for the object,
disable this option to save CPU.

Can Sleep If this is enabled, the physics engine doesn't process physics objects when they're not
moving. This saves CPU.

Restitution Sets the amount of kinetic energy lost or gained after a collision. A typical value is
between 0 and 1. If the restitution property of colliding entities is 0, the entities lose
all energy and stop moving immediately on impact. If the restitution is 1, they lose no
energy and rebound with the same velocity they collided at. Use this to change the
"bounciness" of rigidbodies.

Friction Sets the surface friction.

932 / 1211

Property Description

Rolling
Friction

Sets the rolling friction.

CCD Motion
Threshold

Sets the velocity at which continuous collision detection (CCD) takes over. CCD
prevents fast-moving entities (such as bullets) erroneously passing through other
entities.

CCD Swept
Sphere
Radius

Sets the radius of the bounding sphere containing the position between two physics
frames during continuous collision detection.

Is Trigger Toggles whether the static collider is a trigger.

Move a static collider at runtime
If you need to move a static collider at runtime, you can do it with a script:

See also
Rigidbodies
Characters
Collider shapes
Triggers

PhysicsComponent.Entity.Transform.Position += PhysicsComponent.Entity.Transform.Position
+ Vector3.UnitX;
PhysicsComponent.Entity.Transform.UpdateWorldMatrix();
PhysicsComponent.UpdatePhysicsTransformation();

933 / 1211

Rigidbodies
Beginner Designer

Rigidbodies move based on physical forces applied to them, such as gravity and collisions. Typical
rigidbodies are boxes, balls, furniture, and so on — objects that are pushed, pulled, and knocked around,
and also have effects on other rigidbodies they collide with.

Add a rigidbody collider
1. Select the entity you want to be a rigidbody collider.

2. In the Property Grid, click Add component and select Rigidbody.

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



934 / 1211

3. Set the collider shape to match the entity. To do this, in the Property Grid, expand the Rigidbody
component to view its properties.

4. Next to Collider Shapes, click (Add) and select the shape you want.

Component properties
You can adjust the rigidbody properties in the Property Grid.

935 / 1211

Property Description

Collision
Group

Sets which collision group the object belongs to.

Can Collide
With

Sets which groups the object collides with.

Collision
Events

If this is enabled, the object reports collision events, which you can use in scripts. It
has no effect on physics. If you have no scripts using collision events for the object,
disable this option to save CPU.

Can Sleep If this is enabled, the physics engine doesn't process physics objects when they're not
moving. This saves CPU.

936 / 1211

Property Description

Restitution Sets the amount of kinetic energy lost or gained after a collision. A typical value is
between 0 and 1. If the restitution property of colliding entities is 0, the entities lose
all energy and stop moving immediately on impact. If the restitution is 1, they lose no
energy and rebound with the same velocity they collided at. Use this to change the
"bounciness" of rigidbodies.

Friction Sets the surface friction.

Rolling
Friction

Sets the rolling friction.

CCD Motion
Threshold

Sets the velocity at which continuous collision detection (CCD) takes over. CCD
prevents fast-moving entities (such as bullets) erroneously passing through other
entities.

CCD Swept
Sphere
Radius

Sets the radius of the bounding sphere containing the position between two physics
frames during continuous collision detection.

Is Trigger Toggles whether the rigidbody is a trigger.

Is Kinematic Toggles whether the rigidbody is kinematic and therefore moved only by its
Transform property.

Mass Sets the collider mass. For large differences, use a point value; for example, write 0.1
or 10, not 1 or 100000.

Linear
damping

The amount of damping for directional forces.

Angular
damping

The amount of damping for rotational forces.

Override
Gravity

Overrides gravity with the vector specified in Gravity.

Gravity Sets a custom gravity vector applied if Override Gravity is selected.

Node Name If the collider entity contains a bone structure, the node name can refer to a bones
node name to be linked to that specific bone.

937 / 1211

Property Description

Collider
Shapes

Adds a collider shape.

See also
Kinematic rigidbodies
Static colliders
Characters
Collider shapes
Triggers

938 / 1211

Kinematic rigidbodies

Sometimes you want to move rigidbodies in a specific way rather than have other objects move them.
For example, you might control an elevator with a script, via its Transform property, rather than have
other objects push and pull it. This is a kinematic rigidbody.

Although kinematic rigidbodies aren't moved by physics, other objects can still collide with them. For
example, in the case of the elevator, objects placed inside won't fall through the elevator floor.

Make a kinematic rigidbody
1. Select the entity you want to be a kinematic rigidbody.

2. In the Property Grid, under the Rigidbody component properties, select Is kinematic.

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



939 / 1211

Scripting kinematic rigidbodies
You can script the Is kinematic property to turn on and off on certain events. For example, imagine our
kinematic elevator's suspension cables are cut. You can script the Is kinematic property to change to
false when this happens. The elevator becomes subject to the usual forces of physics, and falls.

See also
Rigidbodies
Static colliders
Characters
Collider shapes
Triggers

940 / 1211

Characters
Beginner Designer

Character colliders are used for player and script-controlled characters such as NPCs. Entities with
character components can only be moved with SetVelocity, Jump, and Teleport.

Add a character component to an entity
1. In the Scene Editor, select the entity you want to add the component to.

2. In the Property Grid, click Add component and select Character.

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



941 / 1211

Component properties
You can adjust the character component properties in the Property Grid.

Property Description

Collision
Group

Sets which collision group the object belongs to.

Can Collide
With

Sets which groups the object collides with.

Collision
Events

If this is enabled, the object reports collision events, which you can use in scripts. It
has no effect on physics. If you have no scripts using collision events for the object,
disable this option to save CPU.

Can Sleep If this is enabled, the physics engine doesn't process physics objects when they're not
moving. This saves CPU.

Restitution Sets the amount of kinetic energy lost or gained after a collision. A typical value is
between 0 and 1. If the restitution property of colliding entities is 0, the entities lose
all energy and stop moving immediately on impact. If the restitution is 1, they lose no
energy and rebound with the same velocity they collided at. Use this to change the
"bounciness" of rigidbodies.

Friction Sets the surface friction.

Rolling
Friction

Sets the rolling friction.

CCD Motion
Threshold

Sets the velocity at which continuous collision detection (CCD) takes over. CCD
prevents fast-moving entities (such as bullets) erroneously passing through other
entities.

CCD Swept
Sphere

Sets the radius of the bounding sphere containing the position between two physics
frames during continuous collision detection.

NOTE

For the character collider to interact with other physics objects, you also need to set a collider shape
in the collider component properties. The capsule shape is appropriate for most character colliders.
For more information, see collider shapes.



942 / 1211

Property Description

Radius

Gravity For rigidbodies, sets a custom gravity vector applied if Override Gravity is selected.
For characters, specifies how much gravity affects the character.

Step Height The maximum height the character can step onto.

Fall Speed The maximum fall speed.

Max Slope The maximum slope the character can climb, in degrees.

Jump Speed The amount of jump force.

See also
Static colliders
Rigidbodies
Collider shapes

943 / 1211

Collider shapes
Beginner Designer

For colliders to interact, you need to set their shape in the Property Grid. You can specify a geometric
shape, or use a collider shape asset.

Components can have multiple intersecting shapes, and don't have to match the entity model, if it has
one. Each shape has additional properties including size, orientation, offset, and so on.

Types of collider shape
Box

Property Description

Is 2D Makes the box infinitely flat in one dimension.

Size The box size in XYZ values.

Local offset The box position relative its entity.

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



944 / 1211

Property Description

Local rotation The box rotation in XYZ values.

Capsule

The capsule shape is especially useful for character components, as its curved base lets the entity move
to higher planes (eg when climbing staircases).

Property Description

Is 2D Makes the capsule infinitely flat in one dimension.

Length The length of the capsule.

Radius The radius of the capsule.

Orientation The axis along which the shape is stretched (X, Y, or Z).

Local offset The capsule position relative to its entity.

Local rotation The capsule rotation in XYZ values.

Cone

Property Description

Height The height of the cone.

Radius The radius of the cone at the bottom end.

Orientation The axis along which the shape is stretched (X, Y, or Z).

Local offset The cone position relative to its entity.

Local rotation The cone rotation in XYZ values.

945 / 1211

Cylinder

Property Description

Height The length of the cylinder.

Radius The radius of the cylinder.

Orientation Sets the axis along which the shape is stretched (X, Y, or Z).

Local offset The cylinder position relative to its entity.

Local rotation The cylinder rotation in XYZ values.

Sphere

Property Description

Is 2D Makes the sphere infinitely flat in one dimension.

Radius The radius of the sphere.

Local offset The sphere position relative to its entity.

Infinite plane

The infinite plane covers an infinite distance across one dimension. Think of it like a wall or floor
stretching into the distance for ever. You can use several infinite planes together to box users in and stop
them "tunneling" outside the level.

Property Description

Normal Which vector (X, Y, or Z) is perpendicular to the plane. For example, to make an infinite
floor, set the normal property to: X:0, Y:1, Z:0.

946 / 1211

Property Description

Offset The plane position relative to its entity.

Asset
Assigns a collider shape from a collider shape asset (see Collider shape assets below).

Property Description

Shape The collider shape asset used to generate the collider shape.

Collider shape assets
You can also create collider shape assets and use them as your collider shape. This means you can edit
the collider shape asset and automatically update it in every entity that uses it.

Create a collider shape asset
1. In the Asset View (bottom by default), click Add asset.

2. Select Physics, then select the shape you want to create.

Game Studio creates the new collider shape asset in the CollisionMeshes folder.

947 / 1211

Create a collider shape asset from a model
This is useful to quickly create a collider shape that matches a model.

1. In the Asset View (bottom by default), click Add asset.

2. Select Physics > Convex hull.

The Select an asset window opens.

948 / 1211

3. Browse to the model asset you want to create a collider shape asset from and click OK.

Game Studio creates a collider shape asset from the model.

Use a collider shape asset
1. Under the static collider or rigidbody properties, under Collider Shapes, select Asset.

949 / 1211

2. Next to Shape, specify the collider shape asset you want to use.

To do this, drag the asset from the Asset View to the Shape field in the Property Grid. Alternatively,
click (Select an asset) and browse to the asset.

See also
Colliders
Tutorial: Create a bouncing ball
Tutorial: Script a trigger

950 / 1211

Triggers
Beginner Designer

If you set a collider to be a trigger, other colliders no longer bump into it. Instead, they pass through.

The trigger detects when colliders enter it, which you can use to script events. For example, you can
detect when a player character enters a room, and use this in your script to trigger an event. For more
information, see Events.

Create a trigger
1. Create a collider.

2. In the Property Grid, under the collider component properties, select Is Trigger.

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



NOTE

Character colliders can't be used as triggers.


951 / 1211

Detect trigger collisions
You can see when something enters the trigger using the following code:

Alternatively, directly access the TrackingHashSet:

Or use the TrackingHashSet events:

For an example of how to use triggers, see the Script a trigger tutorial.

See also
Tutorial: Script a trigger

// Wait for an entity to collide with the trigger
var firstCollision = await trigger.NewCollision();

var otherCollider = trigger == firstCollision.ColliderA
 ? firstCollision.ColliderB
 : firstCollision.ColliderA;

var trigger = Entity.Get<PhysicsComponent>();
foreach (var collision in trigger.Collisions)
{
 //do something with the collision
}

var trigger = Entity.Get<PhysicsComponent>();
trigger.Collisions.CollectionChanged += (sender, args) =>
{
 if (args.Action == NotifyCollectionChangedAction.Add)
 {
 //new collision
 var collision = (Collision) args.Item;
 //do something
 }
 else if (args.Action == NotifyCollectionChangedAction.Remove)
 {
 //old collision
 var collision = (Collision)args.Item;
 //do something
 }
};

952 / 1211

Colliders
Collider shapes
Events

953 / 1211

Constraints

Advanced Programmer

Constraints restrict rigidbodies to certain movement patterns. For example, a realistic knee joint can
only move along one axis and can't bend forwards.

Constraints can either link two rigidbodies together, or link a single rigidbody to a point in the world.
They allow for interaction and dependency among rigidbodies.

There are six types of constraints:

hinges
gears
sliders
cones (twist and turn)
point to point (fixed distance between two colliders)
six degrees of freedom

For a demonstration of the different constraints, load the PhysicsSample sample project.

Create a constraint

To create a constraint, use the Simulation static method CreateConstraint:

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



WARNING

This documentation is under construction.


NOTE

Currently, you can only use constraints from scripts.


954 / 1211

This links RigidBodyA to the world at its current location. The boolean useReferenceFrameA specifies
which coordinate system the limit is applied to (either RigidBodyA or the world).

This method links RigidBodyA to RigidBodyB.

The boolean useReferenceFrameA determines which coordinate system (RigidBodyA or RigidBodyB) the
limits are applied to.

Add constraints to the simulation
After you create a constraint, add it to the simulation from a script by calling:

CreateConstraint(ConstraintTypes type, RigidbodyComponent rigidBodyA, Matrix frameA,
bool useReferenceFrameA);

NOTE

In the case of ConstraintTypes.Point2Point, the frame represents a pivot in A. Only the
translation vector is considered. useReferenceFrameA is ignored.
In the case of ConstraintTypes.Hinge, the frame represents a pivot in A and Axis in A. This is
because the hinge allows only a limited angle of rotation between the rigidbody and the world.
In the case of ConstraintTypes.ConeTwist, useReferenceFrameA is ignored.
ConstraintTypes.Gear needs two rigidbodies to be created. This function will throw an
exception.



CreateConstraint(ConstraintTypes type, RigidbodyComponent rigidBodyA, RigidbodyComponent
rigidBodyB, Matrix frameA, Matrix frameB, bool useReferenceFrameA)

NOTE

In the case of ConstraintTypes.Point2Point, the frame represents a pivot in A or B. Only the
translation vector is considered. useReferenceFrameA is ignored.
In the case of ConstraintTypes.Hinge the frame represents pivot in A/B and Axis in A/B. This is
because the hinge allows only a limited angle of rotation between the rigidbody and the world
in this case.
In the case of ConstraintTypes.ConeTwist, useReferenceFrameA is ignored.
In the case of ConstraintTypes.Gear, useReferenceFrameA is ignored. The frame just represents
the axis either in A or B; only the translation vector (which should contain the axis) is used.



955 / 1211

or:

The parameter disableCollisionsBetweenLinkedBodies stops linked bodies colliding with each other.

Likewise, to remove a constraint from the simulation, use:

See also
Colliders

this.GetSimulation().AddConstraint(constraint);

var disableCollisionsBetweenLinkedBodies = true;
this.GetSimulation().AddConstraint(constraint, disableCollisionsBetweenLinkedBodies);

this.GetSimulation().RemoveConstraint(constraint);

956 / 1211

Raycasting
Intermediate Programmer

Raycasting traces an invisible line through the scene to find intersecting colliders. This is useful, for
example, to check which objects are in a gun's line of fire, or are under the mouse cursor when the user
clicks.

To use a raycast, in the current Simulation, use Simulation.Raycast.

For an example of raycasting, see the Physics Sample project included with Stride.

Example code
This code sends a raycast from the mouse's screen position:

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



NOTE

Raycasting uses colliders to calculate intersections. It ignores entities that have no collider
component. For more information, see Colliders.



public static bool ScreenPositionToWorldPositionRaycast(Vector2 screenPos, CameraComponent
camera, Simulation simulation)
{
 Matrix invViewProj = Matrix.Invert(camera.ViewProjectionMatrix);

 // Reconstruct the projection-space position in the (-1, +1) range.
 // Don't forget that Y is down in screen coordinates, but up in projection space
 Vector3 sPos;
 sPos.X = screenPos.X * 2f - 1f;
 sPos.Y = 1f - screenPos.Y * 2f;

 // Compute the near (start) point for the raycast
 // It's assumed to have the same projection space (x,y) coordinates and z = 0 (lying on
the near plane)

957 / 1211

See also
Colliders

 // We need to unproject it to world space
 sPos.Z = 0f;
 var vectorNear = Vector3.Transform(sPos, invViewProj);
 vectorNear /= vectorNear.W;

 // Compute the far (end) point for the raycast
 // It's assumed to have the same projection space (x,y) coordinates and z = 1 (lying on
the far plane)
 // We need to unproject it to world space
 sPos.Z = 1f;
 var vectorFar = Vector3.Transform(sPos, invViewProj);
 vectorFar /= vectorFar.W;

 // Raycast from the point on the near plane to the point on the far plane and get the
collision result
 var result = simulation.Raycast(vectorNear.XYZ(), vectorFar.XYZ());
 return result.Succeeded;
}

NOTE

There are multiple ways to retrieve a reference to this Simulation from inside one of your
ScriptComponent:

The recommended way is through a reference to a physics component, something like
myRigidBody.Simulation or myCollision.Simulation as it is the fastest.
Then through SceneSystem by calling
SceneSystem.SceneInstance.GetProcessor<PhysicsProcessor>()?.Simulation.
Or through this.GetSimulation(), note that the this is required as it is an extension method.



958 / 1211

Physics simulation
Intermediate Programmer

Stride's physics are controlled by the Simulation class. You can change how Stride initializes the
simulation by modifying flags in PhysicsSettings, accessed in the GameSettings asset properties.

CollisionsOnly initializes the Simulation with collision detection turned on, but no other physics.
Objects won't react to physical forces.

ContinuousCollisionDetection initializes the Simulation with continuous collision detection (CCD).
CCD prevents fast-moving entities (such as bullets) erroneously passing through other entities.

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



NOTE

Your scene must have at least one Collider in order for Stride to initialize the Simulation instance.


959 / 1211

At runtime, you can change some Simulation parameters:

Gravity — the global gravity, in world units per second squared
FixedTimeStep — the length of a simulation timestep, in seconds
MaxSubSteps — the maximum number of fixed timesteps the engine takes per update

See also
Colliders
Collider shapes

NOTE

The SoftBodySupport, MultiThreaded, and UseHardwareWhenPossible flags are currently disabled.


960 / 1211

Tutorials

Create a bouncing ball: Use the static collider and rigidbody components to create a ball bouncing
on a floor.
Script a trigger: Create a trigger that doubles the size of a ball when the ball passes through it.

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



961 / 1211

Create a bouncing ball
Beginner Designer

In this tutorial, we'll use the static collider and rigidbody components to create a ball bouncing on a
floor.

1. Create a new project
Start a New Game project.

The default scene comes pre-loaded with five entities: Camera, Directional light, Skybox, Ground, and
Sphere. We're going to add physics components to the Ground and Sphere entities.

2. Add a static collider
Let's begin by adding a static collider component to the Ground entity. A static collider is a physics
object that doesn't move. Typical static colliders are walls, floors, large rocks, and so on. In this case, the
static collider will give the ball something to bounce on.

1. Select the Ground entity.

2. In the Property Grid, click Add component and select Static Collider.

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



NOTE

The screenshots and videos in this tutorial were made using an earlier version of Stride, so some
parts of the UI, and the default skybox and sphere, might look different from your version.



962 / 1211

3. Set the collider shape to match the shape of the entity. To do this, in the Property Grid, expand the
Static Collider component to view its properties.

4. Next to Collider Shapes, click (Add) and select Infinite Plane.

This adds a static collider to the ground, so the ball has something to bounce off.

3. Add a rigidbody collider
Next, we'll add a rigidbody component to the sphere. A rigidbody is a physics object that moves —
perfect for our bouncing ball.

1. In the Scene Editor, select the Sphere entity.

2. In the Property Grid, click Add component and select Rigidbody.

963 / 1211

3. Just like we did for the Ground entity, set the collider shape to match the entity. To do this, in the
Property Grid, expand the Rigidbody component to view its properties.

4. Next to Collider Shapes, click (Add) and select Sphere.

4. Position the ball
Let's position the sphere so it starts in mid-air and falls to the ground.

1. Select the Sphere entity.

2. In the Property Grid, under Transform, set the Position to: X: 0, Y: 6, Z: 0

964 / 1211

This places the ball in mid-air above the ground.

5. Position the camera
Now we'll move the camera to give us a good view of the scene.

1. Select the Camera entity.

2. In the Property Grid, under Transform, set the Position to: X: -12, Y: 7, Z: 9

3. Set the Rotation to: X: -20, Y: -50, Z: 0

You can see preview the camera view in the Camera preview in the bottom-right of the Scene
Editor.

965 / 1211

6. Set the restitution
Let's see what the scene looks like so far. To run the project, press F5.

966 / 1211

The Sphere (rigidbody) responds to gravity and falls. The Ground (static collider) breaks its fall. But
there's no bounce effect yet.

To create a bounce effect, we need to change the restitution of the Sphere and the Ground. This
simulates the coefficient of restitution (Wikipedia) of real-world collisions.

If the restitution property of colliding entities is 0, the entities lose all energy and stop moving
immediately on impact.
If the restitution is 1, they lose no energy and rebound with the same velocity at which they collided.
If the restitution is higher than 1, they gain energy and rebound with more velocity.

As a rule, to create realistic collisions, set the restitution between 0 and 1.

Let's set the restitution of our Sphere and Ground entities.

1. Select the Sphere entity.

2. In the Property Grid, under Rigidbody, set the Restitution to 0.8.

https://en.wikipedia.org/wiki/Coefficient_of_restitution
https://en.wikipedia.org/wiki/Coefficient_of_restitution
https://en.wikipedia.org/wiki/Coefficient_of_restitution

967 / 1211

3. Select the Ground entity.

4. In the Property Grid, under Static Collider, set the Restitution to 0.5.

To see how this changes the physics, run the project again (F5). This time, the ball bounces on the
ground before coming to a stop:

968 / 1211

Try changing the restitution of both entities to 1. This creates a ball that bounces indefinitely, losing no
energy:

Set the restitution to 1.1 and the ball bounces a little higher each time:

969 / 1211

Now we've created a bouncing ball, we can use it to learn about triggers. For more information, see the
Script a trigger tutorial.

See also
Colliders
Collider shape
Tutorial: Script a trigger

970 / 1211

Tutorial: Script a trigger
Beginner Designer

In this tutorial, we'll create a trigger that doubles the size of a ball when the ball passes through it.

1. Create a bouncing ball
Follow the instructions in the Create a bouncing ball tutorial. This creates a simple scene in which a ball
falls from mid-air, hits the ground, and bounces.

2. Set the restitution
For this tutorial, we'll set the restitution of both the ground and the sphere to 0.9, which makes the ball
very bouncy. This makes it easier to see the effect of the trigger later, as the ball will bounce in and out
of the trigger area repeatedly.

1. Select the Sphere entity.

2. In the Property Grid, under Rigidbody, set the Restitution to 0.9.

3. Select the Ground entity.

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



NOTE

The screenshots and videos in this tutorial were made using an earlier version of Stride, so some
parts of the UI, and the default skybox and sphere, might look different from your version.



971 / 1211

4. In the Property Grid, under Static Collider, set the Restitution to 0.9.

3. Add a trigger
Now we'll add a trigger between the ball and the ground, so the ball passes through it.

1. In the Scene Editor, click the white plus button (Create new entity) and select Empty entity.

Game Studio adds an entity to the scene with the default name Entity.

2. This entity will be our trigger, so rename it Trigger to make it easy to identify.

3. Since we don't need the trigger to move, we'll make it a static collider. In the Property Grid, click
Add component and select Static Collider.

972 / 1211

4. In the Property Grid, expand the Static Collider component to view its properties.

5. Select the Is Trigger checkbox.

This makes the collider a trigger. This means objects can pass through it, but are still detected in the
code.

6. We need to give the trigger a shape. Next to Collider Shapes, click (Add) and select Box.

973 / 1211

This gives the trigger a box shape.

7. Let's make the trigger a larger area. In the Property Grid, under the Transform component
properties, set the scale to: X:2, Y:2, Z:2

This doubles the size of the trigger.

974 / 1211

4. Give the trigger a model
Right now, the trigger is invisible at runtime. To better show how the trigger works, we'll make it a
transparent box. This has no effect on how the trigger works; it just means we can easily see where it is
at runtime.

1. Create a new procedural model asset. To do this, in the Asset View, click Add asset, and select
Models > Cube.

975 / 1211

2. Create a new empty material asset. To do this, in the Asset View, click Add asset, and select
Materials > Material.

3. Let's rename the material to make it easy to identify. To do this, right-click, select Rename, and type
a new name (eg Transparent).

4. Select the Trigger entity. In the Property Grid, click Add component and select Model.

976 / 1211

Game Studio adds a model component to the entity.
5. Under Model, click (Select an asset).

977 / 1211

6. Select the Cube model we created in step 1 and click OK.

978 / 1211

7. In the Property Grid, under Model > Materials, click (Select an asset).

8. Select the Transparent material we created in step 2 and click OK.

979 / 1211

9. In the Asset View, select the Transparent material asset.

980 / 1211

10. In the Property Grid, under Misc > Transparency, select Blend.

11. By default, the Alpha is set to 1. This makes the material completely opaque. To set it to 50%
opacity, set the Alpha to 0.5.

Now the trigger area will be visible at runtime.

5. Position the trigger
We need to position the trigger between the ground and the sphere, so the ball falls through it.

In the Property Grid, under Transform, set the Position to: X:0, Y:3, Z:0

Now the trigger entity is between the ground and the sphere:

981 / 1211

6. Change the sphere size with script
If we run the project now (F5), the ball falls through the trigger, but nothing happens.

Let's write a script to change the size of the ball when it enters the trigger.

1. In the Asset View, click Add asset and select Scripts > Async Script.

NOTE

For more information about scripts, see Scripts.


982 / 1211

2. In the Create a script dialog, name your script Trigger and click Create script.

2a. If Game Studio asks if you want to save your script, click Save.

2b. If Game Studio asks if you want to reload the assemblies, click Reload.

3. Open the script, replace its content with the following code, and save the file:

using Stride.Engine;
using Stride.Physics;
using System.Threading.Tasks;
using Stride.Core.Mathematics;

namespace TransformTrigger
// You can use any namespace you like for this script.
{
 public class Trigger : AsyncScript
 {
 public override async Task Execute()
 {
 var trigger = Entity.Get<PhysicsComponent>();
 trigger.ProcessCollisions = true;

 // Start state machine
 while (Game.IsRunning)
 {
 // 1. Wait for an entity to collide with the trigger
 var firstCollision = await trigger.NewCollision();

 var otherCollider = trigger == firstCollision.ColliderA
 ? firstCollision.ColliderB
 : firstCollision.ColliderA;
 otherCollider.Entity.Transform.Scale = new Vector3(2.0f, 2.0f, 2.0f);

983 / 1211

This code doubles the size (scale) of any entity that enters the trigger. When the entity exits the
trigger, it returns to its original size.

4. Reload the assemblies.

7. Add the script
Finally, let's add this script to the trigger entity as a component.

1. In Game Studio, select the Trigger entity.

2. In the Property Grid, click Add component and select the Trigger script.

8. Run the project
Run the project (F5) to see the trigger in action.

The ball falls through the trigger, doubles in size, exits the trigger, and returns to its normal size.

 // 2. Wait for the entity to exit the trigger
 await firstCollision.Ended();

 otherCollider.Entity.Transform.Scale= new Vector3(1.0f, 1.0f, 1.0f);
 }
 }
 }
}

984 / 1211

More ideas
You can alter the script to make other changes when the sphere enters the trigger.

For example, you can switch the material on the sphere entity. This script switches the material on the
Sphere entity from the Sphere Material to the Ground Material and back again:

using Stride.Engine;
using Stride.Physics;
using System.Threading.Tasks;
using Stride.Core.Mathematics;
using Stride.Rendering;

namespace TransformTrigger
// You can use any namespace you like for this script.
{
 public class Trigger : AsyncScript
 {
 private Material material1;
 private Material material2;

 public override async Task Execute()
 {
 var trigger = Entity.Get<PhysicsComponent>();
 trigger.ProcessCollisions = true;

 // Make sure the materials are loaded
 material1 = Content.Load<Material>("Sphere Material");
 material2 = Content.Load<Material>("Ground Material");

 // Start state machine
 while (Game.IsRunning)
 {
 // 1. Wait for an entity to collide with the trigger
 var firstCollision = await trigger.NewCollision();

 var otherCollider = trigger == firstCollision.ColliderA

985 / 1211

See also
Tutorial: Create a bouncing ball
Colliders
Collider shapes
Scripts

 ? firstCollision.ColliderB
 : firstCollision.ColliderA;

 // 2. Change the material on the entity
 otherCollider.Entity.Get<ModelComponent>().Materials[0] = material2;

 // 3. Wait for the entity to exit the trigger
 await firstCollision.Ended();

 // 4. Change the material back to the original one
 otherCollider.Entity.Get<ModelComponent>().Materials[0] = material1;
 }
 }

 public override void Cancel()
 {
 Content.Unload(material1);
 Content.Unload(material2);
 }
 }
}

986 / 1211

Fix physics jitter
Beginner Programmer

In Stride, there is no default smoothing applied to entities that are attached to physics entities. This can
cause noticeable jitter, especially if the camera is attached to a character component.

In this tutorial, we will explore how to add smoothing to an entity using a SyncScript.

Code to handle smoothing between two entities
The following code is all that's needed to smoothly attach two entities. Ensure that you unparent the
entity you are trying to smooth, otherwise the transform processor will override this script.

WARNING

Bullet Physics is being phased out. We no longer plan to support or expand its features as our focus
shifts to Bepu Physics. We recommend transitioning to Bepu Physics for access to the latest updates
and ongoing improvements.



NOTE

You can also decrease the FixedTimeStep in the physics settings configuration to achieve more
accurate physics simulations. For example, changing it from 0.016667 to 0.008 will increase accuracy
but at the cost of higher CPU usage.



[ComponentCategory("Utils")]
[DataContract("SmoothFollowAndRotate")]
public class SmoothFollowAndRotate : SyncScript
{
 public Entity EntityToFollow { get; set; }
 public float Speed { get; set; } = 1;

 public override void Update()
 {
 var deltaTime = (float)Game.UpdateTime.Elapsed.TotalSeconds;
 var currentPosition = Entity.Transform.Position;
 var currentRotation = Entity.Transform.Rotation;

 var lerpSpeed = 1f - MathF.Exp(-Speed * deltaTime);

987 / 1211

Example Usage
This example demonstrates modifications to the First Person Shooter template to integrate smooth
camera movement.

1. Detach the camera from the physics entity.
2. Remove the FPS camera script from the camera.
3. Create a new entity as a child of the character body.
4. Add the FPS script to the new entity.
5. Adjust any code that directly references the CameraComponent to reflect these changes.

PlayerInput.cs
Change

to

Utils.cs
Change

to

 EntityToFollow.Transform.GetWorldTransformation(out var otherPosition, out var
otherRotation, out var _);

 var newPosition = Vector3.Lerp(currentPosition, otherPosition, lerpSpeed);
 Entity.Transform.Position = newPosition;

 Quaternion.Slerp(ref currentRotation, ref otherRotation, lerpSpeed, out
var newRotation);
 Entity.Transform.Rotation = newRotation;
 }
}

public CameraComponent Camera { get; set; }

public Entity Camera { get; set; }

CameraComponent camera

988 / 1211

and change

to

FpsCamera.cs
Remove

and change

to

Entity camera,

camera.Update();
var inverseView = Matrix.Invert(camera.ViewMatrix);

var inverseView = camera.Transform.WorldMatrix;

/// <summary>
/// Gets the camera component used to visualized the scene.
/// </summary>
private Entity Component;

private void UpdateViewMatrix()
{
 var camera = Component;
 if (camera == null) return;
 var rotation = Quaternion.RotationYawPitchRoll(Yaw, Pitch0);

 Entity.Transform.Rotation = rotation;
}

private void UpdateViewMatrix()
{
 var rotation = Quaternion.RotationYawPitchRoll(Yaw, Pitch, 0);

 Entity.Transform.Rotation = rotation;
}

989 / 1211

That should be all that is needed to see the smoothing in action as a before and after. You can see the
original issue in the Stride GitHub here if you need to find more info on the problem.

https://github.com/stride3d/stride/issues/2216
https://github.com/stride3d/stride/issues/2216
https://github.com/stride3d/stride/issues/2216

990 / 1211

Platforms

Stride is cross-platform game engine. This means you can create your game once, then compile and
deploy it on all the platforms Stride supports. The engine converts C# and shaders to the different native
languages, and abstracts the concepts that differ between platforms, so you don't have to adapt your
code for each platform.

Supported platforms
Windows 7, 8, 10
Windows Universal Platform (UWP)
Linux
Android 2.3 and later
iOS 8.0 and later

Supported graphics platforms
Direct3D 9 (limited support), 10, 11, 12
OpenGL 3, 4
OpenGL ES 2 (limited support), 3
Vulkan

TIP

To check which platform your project uses, add a break point to your code (eg in a script), run the
project, and check the Platform.Type variable.



NOTE

Stride only supports MSAA (multisample anti-aliasing) for Direct3D 11 and later. Depending on your
device's OpenGL shader compiler, Stride might not run with OpenGL ES2.



991 / 1211

Set the graphics platform
You set the graphics platform in the Game settings asset under Rendering settings > Target graphics
platform.

For more information, see Set the graphics platform.

Preprocessor variables
Stride defines preprocessor variables if you want to write code that compiles only under a specific
platform. For more information, see Preprocessor variables.

In this section
Linux
UWP

Xbox Live
iOS
Add or remove a platform
Set the graphics platform
Game settings

WARNING

Direct3D 9 doesn't support HDR textures. Using HDR textures with DirextX 9 will crash your game.


992 / 1211

Linux
Setup and requirements
Create a Linux game

993 / 1211

Setup and requirements
To develop for Linux using Stride, you need a Linux PC with a graphics card that supports at least
OpenGL 4.2 or Vulkan 1.0. The preferred Linux distribution for Stride is Debian 12 or later, as this was the
setup we used to develop the Linux version of Stride.

The instructions below assume you have Debian 12 installed.

You will also need a Windows PC to build your projects for Linux using Game Studio.

Setup
You need the following packages:

FreeType
OpenAL
SDL2
FreeImage

FreeType
To render fonts, we use the FreeType library. The minimum required version is 2.6 and can be installed
via:

Debian / Ubuntu Fedora Arch

OpenAL
To play sounds and music, we use the OpenAL library. It can be installed via:

Debian / Ubuntu Fedora Arch

SDL2

sudo apt install libfreetype6-dev

sudo apt install libopenal-dev

https://www.freetype.org/
https://www.freetype.org/
https://www.freetype.org/
https://www.openal.org/
https://www.openal.org/
https://www.openal.org/

994 / 1211

To run games on Linux, we use the SDL2 library which provides the ability to create windows, handle
mouse, keyboard and joystick events. The minimum required version is 2.0.4 and can be installed via:

Debian / Ubuntu Fedora Arch

FreeImage
FreeImage is battle-tested library for loading and saving popular image file formats like BMP, PNG,
JPEG etc. The minimum required version is 3.18 and can be installed via:

Debian / Ubuntu Fedora Arch

See also
Create a Linux game

sudo apt install libsdl2-dev

sudo apt install libfreeimage-dev

https://www.libsdl.org/
https://www.libsdl.org/
https://www.libsdl.org/
https://freeimage.sourceforge.io/
https://freeimage.sourceforge.io/
https://freeimage.sourceforge.io/

995 / 1211

Create a Linux game

1. In the Stride launcher, create a new game and select Linux as a target platform.

2. In Game Studio, in the platforms menu, select Linux.

3. Press F5 to build and run the project.

4. The first time you run the project, enter information about your Linux host:

NOTE

Before following these instructions, make sure you've followed the instructions in Linux - Setup and
requirements.



996 / 1211

Enter your information as below:

5. Click Test settings to test the credentials.

If you made an error, Game Studio displays:

997 / 1211

If the credentials are correct, Game Studio displays:

Click the OK button to continue.

Game Studio copies the files over your Linux host in a subdirectory of the location you have
provided. The name of the subdirectory is the name of your game.

If something goes wrong, check the Output pane for details.

Settings
Your credentials are saved in the Settings dialog:

998 / 1211

The password is encrypted using the Micrsoft System.Security.Cryptograph.ProtectedData.Protect method
for the current user, and saved in Base64, displayed in the Settings. You can't change the password from
the Settings dialog.

There are two additional settings that control the execution of a game:

Use CoreCLR: forces execution using .NET Core

X Display: forces execution on a specific X display of your Linux host

Compile outside Game Studio
Like any Stride project, you can also compile the project directly from Visual Studio or from the
command line. In both cases, you need to select a valid configuration:

Debug
Release
CoreCLR_Debug
CoreCLR_Release

Debug and Release target Mono. The others target .NET Core.

Visual Studio

999 / 1211

Once your project is loaded in Visual Studio, select the Linux project. In the Solution Configurations
drop-down menu, you select a valid Linux configuration:

MSBuild
To compile for Linux, from a command line, use:

Where CONFIG is a valid Linux configuration.

Limitations
No debugging facility yet

Switching the rendering graphics platform might cause the game to hang on startup. As a
workaround, on the Linux host, in the directory where the game is deployed, delete the following
directories:

cache

local

roaming

See also
Linux — Setup and requirements

msbuild /p:Platform=Linux /p:Configuration=CONFIG YourGame.sln

1000 / 1211

UWP
Windows 10 introduces the Universal Windows Platform (UWP), which provides a common app platform
available on every device that runs Windows 10. For more information about UWP, see Intro to the
Universal Windows Platform on the MSDN documentation.

In this section
Xbox Live

https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide

1001 / 1211

Xbox Live
This page explains how to configure your project to work with Xbox Live.

1. Before you start
1. Make sure your project uses UWP as a platform. To do this, you can either:

create a project and select UWP as a platform, or
add UWP as a platform to an existing project

2. Make sure you can run the project from UWP. To do this, in Visual Studio, select the platform you
want (UWP-64, UWP-32, or UWP-ARM) from the Solution Platform drop-down list, and run the
project.

3. Download the Xbox Live SDK.

To write this page, we used XboxLiveSDK-1612-20170114-002. The sample is loosely based on the
Achievements sample in the Xbox Live SDK.

4. Change your Xbox Live environment. In the SDK folder, under Tools, run:

XDKS.1 is the sandbox used for the Microsoft samples.

5. Make sure you can run the Achievements sample with your developer account.

TIP

For this tutorial, you might find it useful to create a new project to test the process, then apply
the knowledge to your existing projects.



SwitchSandbox.cmd XDKS.1

WARNING

This blocks regular Xbox accounts and only permits developer accounts. To switch back, run:


SwitchSandbox.cmd RETAIL

1002 / 1211

2. Add the Xbox Live SDK to your solution
1. In Visual Studio, open your game solution.

2. Open the Package Manager Console (Tools > NuGet Package Manager > Package Manager
Console).

3. In the Default project field, select your UWP project (eg MyGame.UWP).

4. In the console, type:

Visual Studio adds the NuGet package to your project.

5. Make sure the package appears in the References list.

3. Configure the UWP project
1. Delete MyGame.UWP.TemporaryKey.pfx.

2. Add xboxservices.config to your project.

You can get this file from any Xbox Live SDK sample (eg the Achievements sample) for test
purposes. When you want to publish the game, change the TitleId and Service config Id with the
ones provided for your project. For details, see the Xbox Live documentation.

PM > Install-Package Microsoft.Xbox.Live.SDK.WinRT.UWP

1003 / 1211

3. In the xboxservices.config properties, under Build Action, select Content, and under Copy to
Output Directory, select Always.

4. Edit Package.appxmanifest with details relevant to your project.

Again, you can use the manifest file from any Xbox Live SDK sample (eg the Achievements sample)
for test purposes. If you associate your game with a store app, use the generated manifest file. For
details, see the Xbox Live documentation.

5. Make sure the capability InternetClientServer is enabled.

4. Add user account scripts to your game
You need to enable Xbox Live capability in your game project without exposing the Xbox Live SDK. As
MyGame.UWP already references MyGame.Game, we can't reference it. Instead, we can create an
interface and implement it from the UWP project side.

1004 / 1211

1. Add two interfaces to your game, IAccountManager and IConnectedAccount.

2. On your UWP project (eg MyGame.UWP), implement the interfaces public class XboxAccount :
IConnectedAccount and public class XboxLiveAccountManager : IAccountManager.

3. Add the account factory to your game so you can access it later from a game script. In the
MyGameMainPage.xaml.cs, add the following line:

The final script should look like this at minimum:

NOTE

There are several ways to do this. This page explains one method.


Game.Services.AddService(typeof(IAccountManager), new XboxLiveAccountManager());

 public class LoginScript : AsyncScript
 {
 private IConnectedAccount account;

 public override async Task Execute()
 {
 var accountMgr = Services.GetServiceAs<IAccountManager>();
 account = accountMgr?.CreateConnectedAccount();
 if (account == null)
 return;

 var result = account.LoginAsync();

 // TODO Add your code here!
 }
 }

1005 / 1211

Now you can expose the xbox_live_user functionality and other classes in your game.

Sample project
Download a sample project with Xbox Live login functionality

1006 / 1211

See also
Platforms

1007 / 1211

iOS
To deploy your game on iOS devices, you need to connect the device to a Mac with Xamarin.

1. Make sure Xamarin is installed on the PC and the Mac. For instructions about how to install and set
up Xamarin, see the Xamarin documentation:

Installing Xamarin in Visual Studio on Windows

Connecting to Mac

2. Make sure your iOS device is provisioned. For instructions, see Device provisioning in the Xamarin
documentation.

3. Make sure the iOS platform is added to your Stride project. To do this, in Game Studio, right-click
the solution, select Update package > Update Platforms, and make sure iOS is selected.

For more information about adding platforms in Game Studio, see Add or remove a platform.

4. Open your solution in Visual Studio.

https://developer.xamarin.com/guides/cross-platform/getting_started/installation/windows/
https://developer.xamarin.com/guides/cross-platform/getting_started/installation/windows/
https://developer.xamarin.com/guides/cross-platform/getting_started/installation/windows/
https://developer.xamarin.com/guides/ios/getting_started/installation/windows/connecting-to-mac/
https://developer.xamarin.com/guides/ios/getting_started/installation/windows/connecting-to-mac/
https://developer.xamarin.com/guides/ios/getting_started/installation/windows/connecting-to-mac/
https://developer.xamarin.com/guides/ios/getting_started/installation/device_provisioning/
https://developer.xamarin.com/guides/ios/getting_started/installation/device_provisioning/
https://developer.xamarin.com/guides/ios/getting_started/installation/device_provisioning/

1008 / 1211

5. In the Visual Studio toolbar, click .

Xamarin Agent opens.

6. Connect to the Mac via Xamarin. For instructions, see Introduction to Xamarin iOS for Visual Studio
 in the Xamarin documentation.

7. In the Solution Explorer, right-click the project and select Set as StartUp Project.

TIP

To open your project in Visual Studio from Game Studio, in the Game Studio toolbar, click
(Open in IDE).



https://developer.xamarin.com/guides/ios/getting_started/installation/windows/introduction_to_xamarin_ios_for_visual_studio/
https://developer.xamarin.com/guides/ios/getting_started/installation/windows/introduction_to_xamarin_ios_for_visual_studio/
https://developer.xamarin.com/guides/ios/getting_started/installation/windows/introduction_to_xamarin_ios_for_visual_studio/
https://developer.xamarin.com/guides/ios/getting_started/installation/windows/introduction_to_xamarin_ios_for_visual_studio/

1009 / 1211

8. In the Solution Platforms menu, select iPhone to build on physical iOS devices (including iPad), or
iPhoneSimulator to build for the simulator. The simulator emulates iOS devices on your machine,
but has some drawbacks (see below).

9. In the Visual Studio toolbar, select the iOs device you want to build for.

1010 / 1211

10. From the Solution Explorer, open info.plist.

1011 / 1211

11. If you want to create a release build, set the bundle identifier. This is a unique ID for your
application.

1012 / 1211

12. If you want to deploy on iPad, under Targeted device family, click .

Speed up builds on iOS devices

1013 / 1211

It takes a long time to build on iOS devices. This is because:

the Mac needs to build code ahead of time (AOT) for the different devices

the Apple sandbox system doesn't let you update packages incrementally, so the Mac needs to
completely redeploy the application on the device for every change

To compile code more quickly, in the Solution Explorer, right-click the iOS project and select Properties.

Under Linker Behavior, select Don't link.
Under Supported Architectures, select only the architecture of the debug device.
Disable Strip native debugging symbols.
Enable incremental builds (only code that changes from one execution to another is AOT)

1014 / 1211

For more information, see iOS Build Mechanics in the Xamarin documentation. For information about
profiling, see Using instruments to detect native leaks using markheap .

To make redeploying each time faster, make your debug packages as small as possible.

In Game Studio, reduce the Size of the textures in your project.

Remove unused assets.

Test your scenes one by one rather than loading them simultaneously.

Debug your application on the iPhone simulator instead of a real device. However, execution is
slow on the simulator and it produces some rendering artifacts, so we don't recommend using it to
debug real-time graphics.

Compile shaders on iOS
As converting Stride shaders to OpenGL shaders on iPhone devices is slow, we recommend you convert
them remotely (ie in Game Studio).

Our recommended workflow is:

1. Execute the app on Windows. This creates the shader permutations.

2. Import the new shaders in Game Studio. This generates an effect log.

https://developer.xamarin.com/guides/ios/advanced_topics/ios-build-mechanics/
https://developer.xamarin.com/guides/ios/advanced_topics/ios-build-mechanics/
https://developer.xamarin.com/guides/ios/advanced_topics/ios-build-mechanics/
https://developer.xamarin.com/guides/ios/deployment,_testing,_and_metrics/using_instruments_to_detect_native_leaks_using_markheap
https://developer.xamarin.com/guides/ios/deployment,_testing,_and_metrics/using_instruments_to_detect_native_leaks_using_markheap
https://developer.xamarin.com/guides/ios/deployment,_testing,_and_metrics/using_instruments_to_detect_native_leaks_using_markheap

1015 / 1211

3. Save and run the game on iOS.

Ideally, this creates all the shader permutations remotely, so you don't need to convert them on the
device. However, new permutations might still occur due to differences such as supported screen
resolutions. For more information, including information about how to compile shaders remotely on iOS,
see Compile shaders.

See also
iOs in the Xamarin documentation
Compile shaders

https://developer.xamarin.com/guides/ios/
https://developer.xamarin.com/guides/ios/
https://developer.xamarin.com/guides/ios/

1016 / 1211

Add or remove a platform
Beginner

You can add and remove platforms to and from projects.

1. In the Solution Explorer (default bottom left), right-click the project and select Update package >
Update platforms.

The Select Platforms dialog opens.

1017 / 1211

2. Select the platforms you want to support and click OK.

3. Reload the assemblies by clicking the Reload game assembles button in the toolbar.

The supported platforms are updated. To refresh the platforms list in the toolbar, restart Game Studio.

See also
Platforms

1018 / 1211

Set the graphics platform
Beginner

The graphics platform controls the graphics hardware in the device you run your project on. Different
devices support different graphics platforms; for example, iOS supports the OpenGL ES graphics
platform. You can select which graphics platform your game uses, and add overrides for different
platforms (eg Windows, Android, etc).

You set the graphics platform in the game settings asset.

1. In the Asset View, select the Game Settings asset.

2. In the Property Grid, under Rendering Settings > Target graphics platform, select the graphics
platform you want to use.

WARNING

Moving from Direct3D to an earlier Direct3D version can create problems. For example, if your
game contains HDR textures, it will crash, as Direct3D 9 doesn't support them.



NOTE

Make sure you have the latest drivers for the graphics platforms you want to use.


1019 / 1211

If you select Default, Stride uses the graphics platform appropriate for your platform (eg Windows,
Android) when you build.

Platform Default graphics platform

Windows, UWP Direct3D11

Linux, Mac OS OpenGL

Other OpenGL ES

Override the graphics platform
You can override the graphics platform Stride uses for specific platforms. For example, you can have
Linux use Vulkan while other platforms use the default.

1. With the GameSettings asset selected, in the Property Grid, under Overrides, click (Add).

1020 / 1211

Game Studio adds an override.
2. In the new override, next to Platforms, select the platforms you want this override to apply to.

3. In the Configuration drop-down menu, select Rendering Settings.

1021 / 1211

4. Under Rendering Settings, in the Preferred Graphics Platform drop-down menu, select the
graphics platform you want to use.

Stride overrides the graphics platform for the platforms you selected.

Check which graphics platform your project uses
1. Add a break point to your game code (eg in a script).

2. Run the project.

1022 / 1211

3. Check the value of the GraphicsDevice.Platform variable.

For example, this project is using Vulkan:

See also
Platforms index
Game settings

1023 / 1211

Scripts
Scripts are units of code that handle game events, respond to user input, and control entities. In short,
scripts make games interactive by adding gameplay.

You use scripts by adding them to entities in the scene as components. Stride loads a script when the
entity it is added to is loaded in the scene.

Stride scripts are written in C#. You can edit scripts in Game Studio or another IDE (such as Visual Studio).
Scripts are debugged in Visual Studio.

Scripts have access to the main modules of the Stride engine:

Audio: the audio system
Content: loads and saves content from assets
DebugText: prints debug text
EffectSystem: loads and compiles effects and shaders
Game: accesses all information related to your game
GraphicsDevice: low-level graphics device to create GPU resources
Input: keyboard, mouse and gamepad states and events
Log: logs messages and errors from scripts
SceneSystem: the currently displayed scene

NOTE

Explaining C# is out of the scope of this documentation.


1024 / 1211

Script: accesses the script manager to schedule or wait for the termination of scripts
Services: a registry of services you can use to register your own services
SpriteAnimation: animates sprites
Streaming: streams content

You can still use standard C# classes in Stride, but these aren't called scripts and you can't attach them to
entities in Game Studio.

In this section
Types of script
Create a script
Use a script
Public properties and fields
Scheduling and priorities
Events
Debugging
Preprocessor variables
Create a model from code
Create Gizmos for your components
Create Custom Assets
Best Practice

1025 / 1211

Types of script
Beginner Programmer

There are three main types of script in Stride: startup scripts, synchronous scripts, and asynchronous
scripts.

When you write your script, inherit from the type of script with the behavior that best fits your needs.

Startup scripts
Startup scripts only run when they are added or removed at runtime. They're mostly used to initialize
game elements (eg spawning characters) and destroy them when the scene is unloaded. They have a
Start method for initialization and a Cancel method. You can override either method if you need to.

Example:

Synchronous scripts
Synchronous scripts are initialized, then updated every frame, and finally canceled (when the script is
removed).

The initialization code, if any, goes in the Start method.
The code performing the update goes in the Update method.
The code performing the cancellation goes in the Cancel method.

The following script performs updates every frame, no matter what:

public class StartUpScriptExample : StartupScript
{
 public override void Start()
 {
 // Do some stuff during initialization
 }
}

public class SampleSyncScript : SyncScript
{
 public override void Update()
 {
 // Performs the update on the entity — this code is executed every frame
 }
}

1026 / 1211

Asynchronous scripts
Asynchronous scripts are initialized only once, then canceled when removed from the scene.

Asynchronous code goes in the Execute function.
Code performing the cancellation goes in the Cancel method.

The following script performs actions that depend on events and triggers:

Check out an example from our Async scripts tutorial.

public class SampleAsyncScript : AsyncScript
{
 public override async Task Execute()
 {
 // The initialization code should come here, if necessary
 // This method starts running on the main thread

 while (Game.IsRunning) // loop until the game ends (optionalpendingon the script)
 {
 // We're still on the main thread

 // Task.Run will pause the execution of this method until the task is completed,
 // while that's going on, the game will continue running, it will display new frames
and process inputs appropriately
 var lobbies = await Task.Run(() => GetMultiplayerLobbies());

 // After awaiting a task, the thread the method runs on will have changed,
 // this method now runs on a thread pool thread instead of the main thread
 // You can manipulate the data returned by the task here if needed
 // But if you want to interact with the engine safely, you have to make sure the
method runs on the main thread

 // await Script.NextFrame() yields execution of this method to the main thread,
 // meaning that this method is paused, and once the main thread processes the
next frame,
 // it will pick that method up and run it
 await Script.NextFrame();
 // So after this call, this method is back on the main thread

 // You can now safely interact with the engine's systems by displaying the lobbies
retrieved above in a UI for example
 }
 }
}

1027 / 1211

See also
Create a script
Use a script
Public properties and fields
Scheduling and priorities
Events
Debugging
Preprocessor variables

1028 / 1211

Create a script
Beginner Programmer

You can create scripts using Game Studio or an IDE such as Visual Studio.

Create a script in Game Studio
1. In the Asset View, click Add asset > Scripts and select a script type.

The New script dialog opens.

NOTE

For information about different types of script, see Types of script.


1029 / 1211

2. Specify a class and namespace for the script and click Create script.

3. To use the script, you need to save it. By default, Game Studio prompts you to save the script now.

After you save the script, you can see it in the Asset View.

You can also see the new script in Visual Studio.

NOTE

Although scripts are a kind of asset, they're not saved in the Assets folder. Instead, they're saved in
the relevant assembly folder. For more information, see Project structure.



TIP

To open your solution in Visual Studio from Game Studio, click the (Open in IDE) icon in the
Game Studio toolbar.



1030 / 1211

Create a script in Visual Studio
1. Open Visual Studio.

The game solution is composed of several projects:

The project ending .Game is the main project, and should contain all your game logic and
scripts.

Other projects (eg MyGame.Windows, MyGame.Android etc) contain platform-specific code.

For more information, see Project structure.

2. Add a new class file to the .Game project. To do this, right-click the project and select Add > New
Item.

using System;
using System.Text;
using System.Threading.Tasks;
using Stride.Core.Mathematics;
using Stride.Input;
using Stride.Engine;

namespace MyGame
{

public class BasicAsyncScript : AsyncScript
{

public override async Task Execute()
{

while(Game.IsRunning)
{

// Do some stuff every frame
await Script.NextFrame();

}
}

}
}

TIP

To open your solution in Visual Studio from Game Studio, click the (Open in IDE) icon in
the Game Studio toolbar.



1031 / 1211

The Add New Item dialog opens.
3. Select Class, type a name for your script, and click Add.

Visual Studio adds a new class to your project.

4. In the file you created, make sure the script is public and derives from either AsyncScript or
SyncScript.

5. Implement the necessary abstract methods.

For example:

6. Save the project and script files.

7. Because you modified the script, Game Studio needs to reload the assembly to show the changes.

 using System;
 using System.Text;
 using System.Threading.Tasks;
 using Stride.Core.Mathematics;
 using Stride.Input;
 using Stride.Engine;

 namespace MyGame
 {
 public class SampleSyncScript : SyncScript
 {
 public override void Update()
 {
 if (Game.IsRunning)
 {
 // Do something every frame
 }
 }
 }
 }

1032 / 1211

Click Yes.

You can see the script in the Asset View.

See also
Best Practice
Types of script
Use a script
Public properties and fields
Scheduling and priorities
Events
Debugging
Preprocessor variables

NOTE

Although scripts are a kind of asset, they're not saved in the Assets folder. Instead, they're saved in
the relevant assembly folder. For more information, see Project structure.



1033 / 1211

Use a script
Beginner Programmer

To use a script, add it to an entity as a component. You can do this in Game Studio or in code. Stride runs
scripts when the entity they are attached to loads.

You can add a single script to as many entities as you need. You can also add multiple scripts to single
entities; in this case, Stride creates multiple instances of the script. This means the same script can have
different values in its public properties and fields.

Add a script in Game Studio
There are three ways to add scripts to entities in Game Studio:

drag the script from the asset view to the entity tree
drag the script from the asset view to the entity properties
add the script in the property grid

Drag to the entity tree
This method automatically creates a new entity that contains the script.

1. In the solution explorer (in the bottom left by default), select the assembly that contains your
script. Game Studio shows your script in the asset view.

2. Drag the script from the asset view to the entity tree.

Game Studio adds an entity to your scene, with the script as a component on the entity.

1034 / 1211

Drag to the property grid
1. In the entity tree (on the left by default), or in the scene, select the entity you want to add the script

to.

2. In the solution explorer (in the bottom left by default), select the assembly that contains your
script. Game Studio shows your script in the asset view.

3. Drag the script from the asset view to the property grid.

Game Studio adds the script to the entity.

Add the script in the property grid
1. In the scene editor, select the entity you want to add the script to.

1035 / 1211

2. In the property grid (on the right by default), click Add component and select the script you want
to add.

Game Studio adds the script to the entity.

NOTE

You can customize where scripts appear in the dropdown using the ComponentCategoryAttribute:


1036 / 1211

Add a script from code
The code below adds a script to an entity.

See also
Types of script
Create a script
Public properties and fields
Scheduling and priorities
Events
Debugging
Preprocessor variables

[ComponentCategory("My Startup Scripts")]
public class SampleStartupScript : StartupScript
{
 public override void Start()
 {
 // Do some stuff during initialization
 }
}

// myEntity is an existing entity in the scene; myAsyncScript is the script you want to add
to the entity
myEntity.Add(new myAsyncScript());

1037 / 1211

Public properties and fields
Beginner Programmer

When you declare a public property or field in a script, the property becomes accessible in Game Studio
from the script component properties.

You can attach the same script to multiple entities and set different property values on each entity.

Add a public property or field
This script has a public property (DelayTimeOut):

Game Studio shows the DelayTimeOut property in the script component properties:

NOTE

Properties and fields must be serializable to be used in Game Studio.


public class SampleSyncScript : StartupScript
{

// This public member will appear in Game Studio
public float DelayTimeOut { get; set; }

}

1038 / 1211

For example, the following code will create problems, as it tries to access Entity.Components, which is
only available at runtime:

If you want to include code like this in a property or field, hide it so Game Studio doesn't display it (see
below).

Hide properties or fields in the Property Grid
If you don't want Game Studio to show a property in the Property Grid, you can:

declare your member internal or private, or
use the DataMemberIgnore attribute like this:

NOTE

As a general rule, if you want to display the property or field in Game Studio, getters and setters
should do as little as possible. For example, they shouldn't try to call methods or access Stride
runtime API.



public class SampleSyncScript : StartupScript
{

private float delayTimeOut;
// This public member will appear in Game Studio
public float DelayTimeOut
{

get { return delayTimeOut; }
set
{

delayTimeOut = value;
Entity.Components.Add(new SkyboxComponent());

}
}

}

// This public property isn't available in Game Studio
[DataMemberIgnore]

1039 / 1211

Game Studio no longer shows the property:

Adding property descriptions
When you add a <userdoc> comment block above your public property in code, Game Studio will display
it in the description field.

Enable documentation file generation:

On next reload, the Game Studio should display the documentation:

public float DelayTimeOut { get; set; }

///<summary>
/// This summary won't show in Game Studio
///</summary>
///<userdoc>
/// This description will show in Game Studio
///</userdoc>
public float DelayTimeOut { get; set; }

<PropertyGroup>
 <TargetFrameworks>net6.0</TargetFrameworks>

<DocumentationFile>bin\$(Configuration)\$(TargetFramework)\$(AssemblyName).xml</Documentatio
nFile>
</PropertyGroup>

NOTE

Game Studio will only look in your build output directory for each assembly. Using the above path is
recommended.



1040 / 1211

MemberRequiredAttribute
The MemberRequiredAttribute is used to specify if a field or property should not be left null in the editor.
If no values are set for this member, a warning or error will be logged when building your game.

Additional Serialization Attributes
DataMemberRangeAttribute

InlinePropertyAttribute

ItemCanBeNullAttribute

ItemNotNullAttribute

MemberCollectionAttribute

DataStyleAttribute

DisplayAttribute

See also
Serialization
Types of script
Create a script
Use a script
Scheduling and priorities
Events

[Stride.Core.Annotations.MemberRequired(MemberRequiredReportType.Error)] public
CharacterComponent MyCharacter;

1041 / 1211

Debugging
Preprocessor variables

1042 / 1211

Serialization
Beginner Programmer

The editor and serialization system uses four attributes to determine what is serialized and visible in the
editor.

DataContractAttribute
Adding the DataContractAttribute to your class or struct notifies the serializer that it should serialize
the data it contains, and the editor that it should display fields and properties of that type, along with
the scenes or assets that might include it.

DataMemberAttribute
The DataMemberAttribute notifies the editor and serializer that the property or field on this
DataContract'ed class or struct should be serialized. Note that you can omit this attribute for most
public fields and properties, as they will be included by default. See Fields and Properties for specifics.

[Stride.Core.DataContract(Inherited = true)]
public class MySerializedClass
{
 public float MyValue;
}

// 'DataContract' is inherited above. You don't need to specify it for a derived class.
public class MyDerivedSerializedClass : MySerializedClass
{
 public string MyName;
}

NOTE

Your IDE may wrongfully add System.Runtime.Serialization to your list of using when adding
DataContract. They are not interchangeable. Make sure that your DataContract comes from
Stride.Core, specifying the namespace explicitly like shown above if necessary.



[Stride.Core.DataContract]
public class MySerializedClass
{
 [Stride.Core.DataMember]

1043 / 1211

DataAliasAttribute
The DataAliasAttribute can be used to ensure you do not break previously serialized data whenever you
have to change how that member is named in your source.

DataMemberIgnoreAttribute
The DataMemberIgnoreAttribute notifies the editor and serializer that the property or field on this
DataContract'ed class or struct should NOT be serialized.

TODO
DataMemberCustomSerializerAttribute
DataMemberUpdatableAttribute

Rule of Thumb
Serialization and the editor's access and view of your properties mirrors how access modifiers work in
C#.

Think of the serializer/editor as being a class external to your codebase, if you want the serializer to read
and write your properties you have to ensure that the access modifiers for its getter and setter allows the
serializer to access them.

 internal float MyValue;
}

[Stride.Core.DataAlias("PreviousNameOfProp")]
public string MyRenamedProp { get; set; }

NOTE

Alias remaps values only while in the editor; this feature is specific to the YAML serialization system.
Alias will be ignored during builds and at runtime.



[Stride.Core.DataContract]
public class MySerializedClass
{
 [Stride.Core.DataMemberIgnore]
 public float MyValue { get; set; } // This public property will NOT show up in
the editor
}

1044 / 1211

If you're hiding that property behind an internal access modifier, you have to annotate it with the
attribute to ensure it is visible to the serializer.

Fields

Properties

// Read and set in the editor by default
public object obj;

// Read and set in editor with attribute
[DataMember] public internal object obj;

// Read only fields cannot be modified to point at another object, but the currently set
object may be modified
public readonly object obj;
[DataMember] internal readonly object obj;

// Never
private protected/private/protected object obj;

// Read and set in the editor ...

// By default
public object obj { get; set; }
public object obj { get => x; set => x = value; }

// Forced with the attribute for 'internal' modifiers
[DataMember] public object obj { internal get; public/internal set; }
[DataMember] public object obj { internal get => x; public/internal set => x; }

// Read only
public object obj { get; }

// Read only for any non-public access modifier
public object obj { get; internal/private protected/private/protected set; }
public object obj { get => x; internal/private protected/private/protected set => x =
value; }

// Read only for internal properties must be enforced through the attribute
[DataMember] internal object obj { get; }
[DataMember] internal object obj { get => x; }

// Read only, special case for get-only public properties without backing field,

1045 / 1211

What about init ?
The init access modifier is seen as a public set by the editor and serialization, it will be settable in the
editor.

See also
Public properties and fields

//They must use the attribute to be deserialized, see the comment below
[DataMember] public object obj { get => x; }

// Read only for access modifiers more restrictive than internal, even with the attribute
[DataMember] public object obj { internal get; private protected/private/protected set; }
[DataMember] public object obj { internal get => x; private protected/private/protected set
=> x; }

// Never
private protected/private/protected object obj { get; set; }
private protected/private/protected object obj { get => x; set => x; }

NOTE

Get-only public properties without backing field (public object obj { get => x; }) are not
serialized by default as they are, more often than not, shortcuts to values of another object or used
purely as a function. It might make more sense to change it to { get; } = new MyObject(); or {
get; init; } if you want to serialize it, and if that doesn't work for you, feel free to add the
attribute to enforce serialization.



https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/init
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/init
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/init

1046 / 1211

Scheduling and priorities
Beginner Programmer

Stride doesn't run scripts simultaneously; they run one at a time. Where scripts depend on each other,
you should make sure they run in the correct order by giving them priorities.

Priorities apply to all kinds of scripts. This means that, for example, synchronous and asynchronous
scripts don't have separate priority lists. They both join the same queue.

Scripts with lower priority numbers have higher priorities. For example, a script with priority 1 runs
before a script with priority 2, and a script with priority -1 runs before a script with priority 1. By default,
scripts have a priority of 0.

If scripts have the same priority, the order in which Stride runs them isn't deterministic. You might give
scripts the same priority if you don't care which order they run in.

Set a script priority
Priorities aren't set in the scripts themselves. Instead, they're set in the script component properties on
the entity the script is attached to.

1. Attach the script to an entity. For information about how to do this, see Use a script.

2. With the entity selected, in the Property Grid, under the script component properties, set the
Priority you want the script to have.

NOTE

Currently, there's no way to see a list of priorities in one place. You have to set each priority of each
script individually in the script component properties.



1047 / 1211

See also
Types of script
Create a script
Use a script
Public properties and fields
Events
Debugging
Preprocessor variables

1048 / 1211

Events

Intermediate Programmer

Events facilitate communication between scripts. They work one-way, broadcast from broadcasters to
receivers. Events come in two flavors, a non-generic version for basic event broadcasting, and a generic
version for when data needs to be passed to receivers.

For example, imagine your game has a "Game Over" state that occurs when the player dies. To handle
this, you can create a "Game Over" event, which is broadcast to all scripts with receivers listening for the
event. When the event is broadcast, the receivers run appropriate scripts to handle the Game Over event
(eg reset enemies, replace level objects, start a new timer, etc). You can also send information related to
the "Game Over" state (eg game stats, who won, etc).

Create and broadcast an event
Broadcasters in the Stride API are of type EventKey or EventKey<T>. They use the method Broadcast or
Broadcast(T) to broadcast events to receivers.

For example, this code creates two "Game Over" events. One with a non-generic and the other with a
generic version of EventKey:

NOTE

Events are not recommended anymore, see Best Practice


NOTE

Events are handled entirely in scripts. You can't configure them in Game Studio.


public static class GlobalEvents
{
 public static EventKey GameOverEventKey = new EventKey("Global", "Game Over");
 public static EventKey<string> GameOverWithDataEventKey = new EventKey<string>("Global",
"Game Over With Data");

 public static void SendGameOverEvent()
 {
 GameOverEventKey.Broadcast();
 GameOverWithDataEventKey.Broadcast("Player 1");

1049 / 1211

Create a receiver
Receivers in the Stride API are of type EventReceiver or EventReceiver<T>.

To receive the "Game Over" events described above, use:

See also
Best Practice
Types of script
Create a script
Use a script
Public properties and fields
Scheduling and priorities
Debugging
Preprocessor variables

 }
}

var gameOverListener = new EventReceiver(GlobalEvents.GameOverEventKey);
var gameIsOver = gameOverListener.TryReceive();

var gameOverListenerWithData = new EventReceiver<string>
(GlobalEvents.GameOverWithDataEventKey);
if(gameOverListenerWithData.TryReceive(out string data))
{

//data == "Player 1"
}

//Or in Async
await gameOverListener.ReceiveAsync();
string asyncData = await gameOverListenerWithData.ReceiveAsync();
//asyncData == "Player 1"

1050 / 1211

Debugging
Beginner Programmer

If your script isn't producing the expected result at runtime, you can debug it in an IDE such as Visual
Studio.

1. Open the script in Visual Studio.

2. Press F9 to add a break point at the required places.

3. In Visual Studio, press F5 or click Start in the toolbar to run the game in debug mode.

The game starts in a new window. In Visual Studio, on the script page, the first break point
highlights and stops the execution.

4. Verify the state of your variables.

5. Press F10 (step over) if you want to execute the code line by line, or press F5 to continue code
execution.

For more information about debugging in Visual Studio, see the MSDN documentation .

NOTE

There are lots of ways to debug code. This page suggests one method, using Visual Studio.


TIP

To open your project in Visual Studio from Game Studio, in the Game Studio toolbar, click
(Open in IDE).



NOTE

If Visual Studio doesn't stop at the break point, make sure you attached the script to an entity in the
active scene.



https://msdn.microsoft.com/en-us/library/sc65sadd.aspx
https://msdn.microsoft.com/en-us/library/sc65sadd.aspx
https://msdn.microsoft.com/en-us/library/sc65sadd.aspx

1051 / 1211

See also
Debugging in Visual Studio (MSDN documentation)
Types of script
Create a script
Use a script
Public properties and fields
Scheduling and priorities
Events
Preprocessor variables

https://msdn.microsoft.com/en-us/library/sc65sadd.aspx
https://msdn.microsoft.com/en-us/library/sc65sadd.aspx
https://msdn.microsoft.com/en-us/library/sc65sadd.aspx

1052 / 1211

Preprocessor variables
Advanced Programmer

If you're developing for multiple platforms, you often need to write custom code for each platform. In
most cases, the best way to do this is to use Platform.Type and GraphicsDevice.Platform. Alternatively,
you can use preprocessor variables.

Platforms
Variable Value

STRIDE_PLATFORM_WINDOWS Windows (standard and RT)

STRIDE_PLATFORM_WINDOWS_DESKTOP Windows (non-RT)

STRIDE_PLATFORM_MONO_MOBILE Xamarin.iOS or Xamarin.Android

STRIDE_PLATFORM_ANDROID Xamarin.Android

STRIDE_PLATFORM_IOS Xamarin.iOS

Graphics APIs
Variable Value

STRIDE_GRAPHICS_API_DIRECT3D Direct3D 11

STRIDE_GRAPHICS_API_OPENGL OpenGL (Core and ES)

STRIDE_GRAPHICS_API_OPENGLCORE OpenGL Core (Desktop)

STRIDE_GRAPHICS_API_OPENGLES OpenGL ES

STRIDE_GRAPHICS_API_VULKAN Vulkan

WARNING

We recommend you avoid using preprocessor variables where possible, and instead use Platform.
Type and GraphicsDevice.Platform. This is because you might miss errors in your code, as only code
for your target platform is checked at compile time.



1053 / 1211

Example

See also
Platforms
Types of script
Create a script
Use a script
Public properties and fields
Scheduling and priorities
Events
Debugging

#if STRIDE_PLATFORM_WINDOWS
 // Windows-specific code goes here...

#elif STRIDE_PLATFORM_MONO_MOBILE
 // iOS and Android-specific code goes here...

#else
 // Other platform code goes here...

#endif

1054 / 1211

Create a model from code
Beginner Programmer

You can create models in scripts at runtime. You can do this in several different ways, including:

creating a model from an asset
creating a procedural model using built-in geometric primitives (eg a sphere or cube)
instantiating a prefab that contains a model (see Use prefabs)

Create a model from an asset
1. Create a new, empty synchronous script. For full instructions, see Create a script.

2. In the script, load the model using its asset URL. For example:

// Create a new entity and add it to the scene.
var entity = new Entity();
SceneSystem.SceneInstance.RootScene.Entities.Add(entity);

// Add a model included in the game files.
var modelComponent = entity.GetOrCreate<ModelComponent>();
modelComponent.Model = Content.Load<Model>("MyFolder/MyModel");

1055 / 1211

3. Add the script as a script component to any entity in the scene. It doesn't matter which entity you
use. For instructions, see Use a script.

4. In the Asset View, right-click the model you want to create at runtime and select Include in build
as root asset.

This makes sure the asset is available for the script to use at runtime. For more information, see
Manage assets.

Create a procedural model
1. Create a new, empty synchronous script. For full instructions, see Create a script.

TIP

To find the model's asset URL, in the Asset View, move the mouse over the model.


1056 / 1211

2. Add the script as a script component to any entity in the scene. It doesn't matter which entity you
use. For instructions, see Use a script.

3. In your script, instantiate an empty entity and an empty model. For example:

4. In your script, create a procedural model using built-in geometric primitives (eg a sphere or cube).
For example:

// Create an entity and add it to the scene.
var entity = new Entity();
SceneSystem.SceneInstance.RootScene.Entities.Add(entity);

// Create a model and assign it to the model component.
var model = new Model();
entity.GetOrCreate<ModelComponent>().Model = model;

// Add one or more meshes using geometric primitives (eg spheres or cubes).
var meshDraw = GeometricPrimitive.Sphere.New(GraphicsDevice).ToMeshDraw();

1057 / 1211

Alternatively, create a mesh using your own vertex and index buffers. For example:

5. Here is a more complete example that draws a custom triangle..

var mesh = new Mesh { Draw = meshDraw };
model.Meshes.Add(mesh);

NOTE

To use the code above, make sure you add using Stride.Extensions to the top of your script.


// Create a mesh using your own vertex and index buffers.

mesh = new Mesh { Draw = new MeshDraw { /* Vertex buffer and index buffer setup */ } };
model.Meshes.Add(mesh);

var vertices = new VertexPositionTexture[3];
vertices[0].Position = new Vector3(0f,0f,1f);
vertices[1].Position = new Vector3(0f,1f,0f);
vertices[2].Position = new Vector3(0f,1f,1f);
var vertexBuffer = Stride.Graphics.Buffer.Vertex.New(GraphicsDevice, vertices,
 GraphicsResourceUsage.Dynamic);
int[] indices = { 0, 2, 1 };
var indexBuffer = Stride.Graphics.Buffer.Index.New(GraphicsDevice, indices);

var customMesh = new Stride.Rendering.Mesh
{
 Draw = new Stride.Rendering.MeshDraw
 {
 /* Vertex buffer and index buffer setup */
 PrimitiveType = Stride.Graphics.PrimitiveType.TriangleList,
 DrawCount = indices.Length,
 IndexBuffer = new IndexBufferBinding(indexBuffer, true, indices.Length),
 VertexBuffers = new[] { new VertexBufferBinding(vertexBuffer,
 VertexPositionTexture.Layout,
vertexBuffer.ElementCount) },
 }
};
// add the mesh to the model
model.Meshes.Add(customMesh);

1058 / 1211

Finally, you need to give the model one or more materials. There are two ways to do this.

Option 1: load a material in code
1. In your code, load one or more materials and add them to the model. Because models can use

multiple materials (one for each mesh in the model), use Mesh.MaterialIndex to specify which
materials in the list are used for which mesh.

For example:

2. In the Asset View, right-click every material asset your script uses and select Include in build as
root asset.

This makes sure the asset is available for the script to use at runtime. For more information, see
Manage assets.

Option 2: Create new materials in code
For example:

NOTE

For more information about how to set up vertex and index buffers, see Drawing vertices.


// Add one or more materials. Because models might expect multiple materials (one per
mesh), Mesh.MaterialIndex specifies which material in the list is used for which mesh.

Material material = Content.Load<Material>("MyFolder/MyMaterial");
model.Materials.Add(material);

// Create a material (eg with red diffuse color).
var materialDescription = new MaterialDescriptor
{

1059 / 1211

See also
Create a script
Use a script
Use prefabs

 Attributes =
 {
 DiffuseModel = new MaterialDiffuseLambertModelFeature(),
 Diffuse = new MaterialDiffuseMapFeature(new ComputeColor { Key =
MaterialKeys.DiffuseValue })
 }
};
var material = Material.New(GraphicsDevice, materialDescription);
material.Parameters[0].Set(MaterialKeys.DiffuseValue, Color.Red);
model.Materials.Add(0, material);

1060 / 1211

Gizmos
Intermediate Programmer

Gizmos are a tool which you can implement over your components to provide visual assistance for
designers when manipulating component values.

Here's an exhaustive example one could implement:

using Stride.Core;
using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Engine.Gizmos;
using Stride.Graphics;
using Stride.Graphics.GeometricPrimitives;
using Stride.Rendering;
using Stride.Rendering.Materials;
using Stride.Rendering.Materials.ComputeColors;

// We will be implementing a Gizmo for the following class
public class MyScript : StartupScript
{

}

// This attribute specifies to the engine that the following gizmo class is bound
to 'MyScript',
// the game studio will pick that up and spawn an instance of that class for each 'MyScript'
in the scene
[GizmoComponent(typeof(MyScript), isMainGizmo:false/*When true, only the first gizmo on an
entity with true is visible, false means that it is always visible*/)]
public class Gizmo : IEntityGizmo
{
 private bool _selected, _enabled;
 private MyScript _component;
 private ModelComponent _model;
 private Material _material, _materialOnSelect;

 // This property is set based on whether the gizmo is globally turned on or off in the
editor's view settings
 public bool IsEnabled
 {
 get
 {
 return _enabled;

1061 / 1211

 }
 set
 {
 _enabled = value;
 _model.Enabled = _enabled;
 }
 }

 // The size slider value in the view settings pane
 public float SizeFactor { get; set; }

 // The editor will set this property whenever the entity the component is on is selected
 public bool IsSelected
 {
 get
 {
 return _selected;
 }
 set
 {
 _selected = value;
 _model.Materials[0] = _selected ? _materialOnSelect : _material;
 // The logic below shows gizmos for all components when they are on in the gizmo
settings, and when off, only shows the one from the selected entity
 // Removing the line hides gizmos even when selected when the gizmo settings
is off
 _model.Enabled = _selected || _enabled;
 }
 }

 // This constructor is called by the editor,
 // A gizmo class MUST contain a constructor with a single parameter of the
component's type
 public Gizmo(MyScript component)
 {
 _component = component;
 }

 public bool HandlesComponentId(OpaqueComponentId pickedComponentId, out
Entity? selection)
 {
 // This function is called when scene picking/mouse clicking in the scene on a gizmo
 // The engine calls this function on each gizmos, gizmos in term notify the engine
 // when the given component comes from them by returning true, and provide the
editor with the corresponding entity this gizmo represents
 if (pickedComponentId.Match(_model))

1062 / 1211

 {
 selection = _component.Entity;
 return true;
 }
 selection = null;
 return false;
 }

 public void Initialize(IServiceRegistry services, Scene editorScene)
 {
 // As part of initialization, we create a model in the editor scene to visualize
the gizmo
 var graphicsDevice = services.GetSafeServiceAs<IGraphicsDeviceService>
().GraphicsDevice;

 // In our case we'll just rely on the GeometricPrimitive API to create a sphere
for us
 // You don't have to create one right away, you can delay it until the component is
in the appropriate state
 // You can also dynamically create and update one in the Update() function
further below
 var sphere = GeometricPrimitive.Sphere.New(graphicsDevice);

 var vertexBuffer = sphere.VertexBuffer;
 var indexBuffer = sphere.IndexBuffer;
 var vertexBufferBinding = new VertexBufferBinding(vertexBuffer, new
VertexPositionNormalTexture().GetLayout(), vertexBuffer.ElementCount);
 var indexBufferBinding = new IndexBufferBinding(indexBuffer,
sphere.IsIndex32Bits, indexBuffer.ElementCount);

 _material = Material.New(graphicsDevice, new MaterialDescriptor
 {
 Attributes =
 {
 Emissive = new MaterialEmissiveMapFeature(new ComputeColor(new
Color4(0.25f,0.75f,0.25f,0.05f).ToColorSpace(graphicsDevice.ColorSpace))) { UseAlpha =
true },
 Transparency = new MaterialTransparencyBlendFeature()
 },
 });
 _materialOnSelect = Material.New(graphicsDevice, new MaterialDescriptor
 {
 Attributes =
 {
 Emissive = new MaterialEmissiveMapFeature(new ComputeColor(new
Color4(0.25f,0.75f,0.25f,0.5f).ToColorSpace(graphicsDevice.ColorSpace))) { UseAlpha =

1063 / 1211

true },
 Transparency = new MaterialTransparencyBlendFeature()
 },
 });

 _model = new ModelComponent
 {
 Model = new Model
 {
 (_selected ? _materialOnSelect : _material),
 new Mesh
 {
 Draw = new MeshDraw
 {
 StartLocation = 0,
 // You can swap to LineList or LineStrip to show the model in
wireframe mode, you'll have to adapt your index buffer to that new type though
 PrimitiveType = PrimitiveType.TriangleList,
 VertexBuffers = new[] { vertexBufferBinding },
 IndexBuffer = indexBufferBinding,
 DrawCount = indexBuffer.ElementCount,
 }
 }
 },
 RenderGroup = IEntityGizmo.PickingRenderGroup, // This RenderGroup allows scene
picking/selection, use a different one if you don't want selection
 Enabled = _selected || _enabled
 };

 var entity = new Entity($"{nameof(Gizmo)} for {_component.Entity.Name}"){ _model };
 entity.Transform.UseTRS = false; // We're controlling the matrix directly in
this case
 entity.Scene = editorScene;

 vertexBuffer.DisposeBy(entity);
 indexBuffer.DisposeBy(entity); // Attach buffers to the entity for manual
disposal later
 }

 public void Dispose()
 {
 _model.Entity.Scene = null;
 _model.Entity.Dispose(); // Clear the two buffers we attached above
 }

 public void Update()

1064 / 1211

And the result:

Do note that you may have to restart the editor if it was open while you introduced this new gizmo.

 {
 // This is where you'll update how the gizmo looks based on MyScript's state
 // Here we'll just ensure the gizmo follows the entity it is representing whenever
that entity moves,
 // note that UseTRS is disabled above to improve performance and ensure that there
are no world space issues
 _model.Entity.Transform.LocalMatrix = _component.Entity.Transform.WorldMatrix;
 }
}

1065 / 1211

Creating Custom Assets
Stride supports the creation of custom asset types that can be referenced in your scenes as well as
reference other assets. To do so, you must add a reference to the Stride.Core.Assets package in your
game's .csproj: Here's how it looks like in a default game project:

Inside the same project, create a new csharp file and replace its content with the following:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFrameworks>net8.0-windows</TargetFrameworks>
 </PropertyGroup>

 <ItemGroup>
 <PackageReference Include="Stride.Engine" Version="4.2.0.1" />
 <PackageReference Include="Stride.Video" Version="4.2.0.1" />
 <PackageReference Include="Stride.Physics" Version="4.2.0.1" />
 <PackageReference Include="Stride.Navigation" Version="4.2.0.1" />
 <PackageReference Include="Stride.Particles" Version="4.2.0.1" />
 <PackageReference Include="Stride.UI" Version="4.2.0.1" />
 <PackageReference Include="Stride.Core.Assets.CompilerApp" Version="4.2.0.1"
IncludeAssets="build;buildTransitive" />

 <PackageReference Include="Stride.Core.Assets" Version="4.2.0.1" />
 </ItemGroup>
</Project>

WARNING

Make sure that the version specified for Stride.Core.Assets matches the other package's versions.


using System.Collections.Generic;
using System.Threading.Tasks;
using Stride.Core;
using Stride.Core.Assets;
using Stride.Core.Assets.Compiler;
using Stride.Core.BuildEngine;
using Stride.Core.Serialization;
using Stride.Core.Serialization.Contents;
using Stride.Engine;

1066 / 1211

namespace YOUR_GAME_NAMESPACE;

/// <summary>
/// Runtime representation of the asset, this is the actual class you would use in your
scripts
/// </summary>
[DataContract]
[ContentSerializer(typeof(DataContentSerializerWithReuse<YOUR_CLASS>))]
[ReferenceSerializer, DataSerializerGlobal(typeof(ReferenceSerializer<YOUR_CLASS>), Profile
= "Content")]
public class YOUR_CLASS
{

// Replace this with whatever you would want this asset to hold at runtime
 public List<Prefab> PrefabCollection { get; set; } = new();
}

/// <summary>
/// Design time and file representation of <see cref="YOUR_CLASS"/>, you can add content
here that won't be included in the build
/// </summary>
[AssetDescription(FileExtension, AllowArchetype = false)]
[AssetContentType(typeof(YOUR_CLASS))]
[AssetFormatVersion(nameof(YOUR_GAME_NAMESPACE), CurrentVersion, "1.0.0.0")]
public sealed class YOUR_CLASS_ASSET : Asset
{
 private const string CurrentVersion = "1.0.0.0";
 public const string FileExtension = ".blks";

// Replace this with whatever you would want this asset to have while inside the
gamestudio
 public List<Prefab> PrefabCollection { get; set; } = new();
}

/// <summary> Compiler which transforms your <see cref="YOUR_CLASS_ASSET"/> into <see
cref="YOUR_CLASS"/> when building your game </summary>
[AssetCompiler(typeof(YOUR_CLASS_ASSET), typeof(AssetCompilationContext))]
public sealed class YOUR_CLASS_COMPILER : AssetCompilerBase
{
 protected override void Prepare(AssetCompilerContext context, AssetItem assetItem,
string targetUrlInStorage, AssetCompilerResult result)
 {
 var asset = (YOUR_CLASS_ASSET)assetItem.Asset;

 // you can have many build steps, each one is running an AssetCommand
 result.BuildSteps = new AssetBuildStep(assetItem);
 result.BuildSteps.Add(new DESIGN_TO_RUNTIME_COMMAND(targetUrlInStorage, asset,

1067 / 1211

assetItem.Package));
 }

 public override IEnumerable<ObjectUrl> GetInputFiles(AssetItem assetItem)
 {
 // Yield assets that must be built before this one is built,

// this is for cases were you need to read from a compiled version of an asset to
build this one.

// Note that creating cyclic references through this method will cause a deadlock
when building

// (e.g.: A is input of B while B is input of A)

// below only for reference purposes, useless in this context
 var asset = (YOUR_CLASS_ASSET)assetItem.Asset;
 foreach (var block in asset.PrefabCollection)
 {
 var url = AttachedReferenceManager.GetUrl(block);

 if (!string.IsNullOrEmpty(url))
 {
 yield return new ObjectUrl(UrlType.Content, url);
 }
 }
 }

 /// <summary>
 /// An <see cref="AssetCommand"/> that converts design time asset into runtime asset.
 /// </summary>
 public class DESIGN_TO_RUNTIME_COMMAND(string url, YOUR_CLASS_ASSET parameters,
IAssetFinder assetFinder)
 : AssetCommand<YOUR_CLASS_ASSET>(url, parameters, assetFinder)
 {
 protected override Task<ResultStatus> DoCommandOverride(ICommandContext
commandContext)
 {
 var assetManager = new
ContentManager(MicrothreadLocalDatabases.ProviderService);

 var runtimeObject = new YOUR_CLASS{ PrefabCollection =
Parameters.PrefabCollection };
 assetManager.Save(Url, runtimeObject);

 commandContext.Logger.Info($"Saving {nameof(YOUR_CLASS)}:
{runtimeObject.PrefabCollection}");

 return Task.FromResult(ResultStatus.Successful);

1068 / 1211

This takes care of the support for this asset, you could create a *.blks file inside your Assets directory
and fill in the content manually, but might as well do it through the editor ...

Adding a section for the Add asset menu inside the editor
Create a new directory named Templates within your Game's directory, this directory will be used to store
your templates. Inside of that directory, create a new file named after your new asset with the .sdtpl
extension.

Open the file and paste the following into it

 }
 }
}

WARNING

Every changes made to the runtime asset will break previously built asset databases, make sure to
delete the build artifacts stride generates for assets (YOUR_PROJECT.Windows/obj/stride and bin/db)
after changing the class to make sure the asset database is fully rebuilt on the next build.



!TemplateAssetFactory
Id: 21CC3354-9F0B-4D1F-8242-62D56454B27C
AssetTypeName: YOUR_CLASS_ASSET
Name: THE NAME IN THE EDITOR
Scope: Asset
Description: A DESCRIPTIVE DESCRIPTION OF YOUR ASSET
Group: WHERE THIS WOULD BE CLASSIFIED UNDER IN THE EDITOR
DefaultOutputName: THE DEFAULT FILE NAME

1069 / 1211

Edit the different fields appropriately,

Id must be unique ! There are a couple of services online to generate one if you need to, search for
generate guid online

AssetTypeName must match the name of the class that inherits from Asset (the namespace can be
omitted)

Now you have to edit your *.sdpkg to include this new template, to do so you just have to add the
following lines below your TemplateFolders:

Here's how it looks like when included into a default game *.sdpkg:

And you're finally done, have fun !

TemplateFolders:
 - Path: !dir Templates
 Group: Assets
 Files:
 - !file Templates/YOUR_TEMPLATE.sdtpl

!Package
SerializedVersion: {Assets: 3.1.0.0}
Meta:
 Name: MyGame21
 Version: 1.0.0
 Authors: []
 Owners: []
 Dependencies: null
AssetFolders:
 - Path: !dir Assets
 - Path: !dir Effects
ResourceFolders:
 - !dir Resources
OutputGroupDirectories: {}
ExplicitFolders: []
Bundles: []
TemplateFolders:
 - Path: !dir Templates
 Group: Assets
 Files:
 - !file Templates/YOUR_TEMPLATE.sdtpl
RootAssets: []

1070 / 1211

See also
Best Practice

1071 / 1211

Best Practices
Tips to build a robust and maintainable codebase for your Stride project.

Think Twice, Implement Once
Before starting on major systems, make sure it would integrate with the rest of the existing systems; how
would it behave when saving and reloading, with the multiplayer architecture, when the game is paused,
would it leak into other scenes or game modes ...

Having this in mind ensures you won't write yourself into a corner, creating a system that would need to
be patched up when you could have figured it out earlier with a bit of planning, best to avoid
introducing any technical debt if you can help it.

A trap you may fall into is to then over design your systems, supporting features that your game will
never need, convincing yourself that you could re-use that system for another game, that you could
share or sell it. The vast majority of systems in games are purpose built for that game, your next game
will require other features you could not support, let alone predict. You will also acquire a significant
amount of experience working on this one, seeing issues it had and wanting to rewrite a better one.

Figuring Out Your System's Lifetime
What is the scope of the system you're writing:

Should the same instance be used throughout the entire lifetime of the application?
Only while playing a game session?
Only for the duration of the currently loaded game session?
Within a single map?
For a specific game mode?
...

This will set some expectation as to where the system you're building should reside, how it interacts with
other systems, and when it should be started and disposed ...

Some entry and exit points to manage your systems' lifetime:

On demand by getting and setting it in the Services
System as a singleton script with the Start() and Cancel()
Through your game's BeginRun() and EndRun()
As a component processor when associated component types are added to the scene

Statics, Singletons and Other Globals

1072 / 1211

We strongly advise you to make sure that the entirety of your game's state is implemented as instance
properties on components inside the root scene's hierarchy. Avoid static properties and static objects.

This is essential to reduce bugs that come in when implementing systems that manage the game's state,
like the saving system, or the multiplayer layer. Those systems can then be implemented with the
expectation that everything they may care about is within the root scene, they can replace this root
scene and expect the game state to be completely reset, they can serialize or monitor those entities for
changes, etc. without the risk of your game's state leaking between play sessions and creating issues that
are really hard to reproduce.

Some systems may not make sense as part of the scene when:

The functionality and variables saved by such systems persist for the duration of the program, or
across all sessions

Saving, loading systems, meta-progression trackers or achievements
The system is read-only

Multiplayer server browser or matchmaking back-end. Once connected to a session it's a
different story though, now you must hold a bunch of states that are only valid to this session, it
should not leak to the rest of the program, and so is best left as a component on an entity in
the scene.

Those restrictions do not prevent you from using the singleton pattern, you can use the ServiceRegistry
which can be accessed from any ScriptComponent.

Show Example

Implement Custom Assets
Some of the systems you will build make far more sense as assets rather than entities, consider making
them an asset when any of the following is true:

It survives between multiple scenes
It is read only
It is not part of the definition of an entity, doesn't exist within your game world
It should be editable within the editor, by a designer

Examples of such are:

Player Input Configuration, defining actions in the source, assigning buttons in editor, saving and
loading to disk when initializing the game
Balance settings, tweaking constants and formulas from the editor to improve iteration when testing
your game

1073 / 1211

Mission/quest, referencing quests inside of components to unlock spots in game when they are
completed, giving the ability for your designer to set those up
Loot tables, having a list of UrlReference<Prefab> with a probability of drop to easily re-use across
multiple mobs
As an all-purpose robust 'key' or 'identifier' type, see this section

Do not Mutate Assets
To that point, make sure to only mutate assets when it makes sense to do so. Remember that a single
asset may be referenced by hundreds of components and systems, those may not expect them to
change at runtime. Adhering strictly to this idea also ensures that your game's state does not leak
through them when loading a new session, game mode, or whatever else. For example, let's say you
have an Axe Asset which has a list of modifier, you save the game, progress for a bit then add a modifier,
but end up reloading ot the previous save, the modifier will carry over to that previous game state.

Scene Quirks
The default scene the game spawns for you is the instance stored in the content manager, when running
the game you mutate that very instance, meaning that if you want to retrieve the scene in its initial state,
you must force the content manager to unload it, and then reload it. This makes it a bit counterintuitive
when you just want to re-spawn the current scene to roll back your changes.

Strings as Keys or Identifiers
This is a very popular anti-pattern, strings that are used as keys or identifiers shows up all over the place,
here's a short example describing such a usage: The quest you're implementing requires the player to
gather 10 bear arses, your check for that is to loop through the list of items the player has and check
that the item's name match bear arses.

Here's a couple of reasons why this is a bad idea:

Hard to maintain; if your item ends up changing names because bears are banned in Freedonia,
your checks will silently fail
Fragile; your string isn't checked against anything, typos - bear ass wouldn't work, careful with
leading or trailing whitespaces ...
Obtuse; designers not aware of how your system work may not understand what they should input
there
Non-explicit uniqueness requirement, if your system expects those to be unique, i.e.: you are
looking for a very specific "bear arse"; but you could have multiple different items all named bear
arse

Hard to keep track of; strings are too ubiquitous, hard to quickly retrieve all instances/usages of
those to build a database for different purposes, like translations, validations ...

1074 / 1211

All of this will inevitably lead to bugs, or additional work to avoid them - time you could definitely use to
take care of other, more fun parts of your game.

There are a couple ways to avoid this, one of the more robust ones is to rely on assets themselves; see
custom assets.

Robust; you can change its name and its path, as long as you do not delete it or change its internal
id, all components referencing it will keep that reference.
Easy to use and understand; If a component requires a specific asset, you don't have an infinite
amount of possibilities, you can either set it to an existing one or create a new one. It's far more
foolproof too now that typos are out of the equation.
Easy to keep track of; each type has a unique extension which you can search for in your file
explorer, they exist on disk, and so can be organized into the same directory.

The editor's reference window lists all assets that use the selection, this greatly helps when you
need to swap the identifier for another or remove it altogether, just go through all the assets
that refer to it.
you won't need to keep a document going over each identifier you might have in game, one
just has to look at the directory were they are stored in the editor.

Easy to extend; your identifier can now be more than just that, you can attach properties to it,
perhaps a description to keep more information about this key.

Avoid Patterns with High Levels of Indirection
Particularly when mutating the game state, Event Keys and async methods carry a lot of implicit
complexity as they may not complete when signaled/called. When the async resumed/the event key is
received, the game may not be in a state where the logic you run is still valid. Some entities might have
been removed from the scene, the inventory might no longer hold the item, the player character may be
incapacitated ...

public class Item { }

// Now in your component ...
public Item ItemToCheck; // You would assign this reference in the editor
public int AmountRequired = 10;

public bool HasTheItem()
{
 if (Inventory.TryGetAmount(ItemToCheck, out var amount) && amount >= AmountRequired)
 return true;
 return false;
}

1075 / 1211

This quirk also means that their execution are not part of their callers' stack, making debugging issues
with them far harder to figure out.

Their lifetime is also far harder to reason about as EventKeys will carry the signal even if the scene was
replaced in the meantime, while async will continue running when running outside your AsyncScript's
Execute().

Alternatives to EventKeys:

C# events, although this requires the receivers to have a direct reference to the sender
Components with an interface bound to a Flexible processors. Add the processor to the service
registry, call some method which goes through and call each one of the components implementing
the interface of that processor

Alternatives to async:

Restructure your async into a synchronous one ... obviously!
If you can't avoid using async:

Don't touch the game state, just take some input, spit out an output that gets read by a
SyncScript

Ensure you always leave the game state in a valid state before awaiting, and after awaiting
check that it is still in a state were continuing the async method makes sense. I.e.: are we
suddenly back on the main menu?!

You may notice that those two last ones could require a ton of additional logic to support properly, this
is an indication that your logic should be rethought - you're writing yourself into a corner.

Avoid Writing Shortcut Extension Methods
This is specifically referring to methods of this kind:

It's a double-edged sword:

You are reducing the skill floor required for users not accustomed to the API, but you're also
hindering their growth as they now rely on your shortcut instead of discovering the API for
themselves, making them aware of concepts and objects neighboring that one, giving them a
clearer view of how all the objects fit together. What if they need to access all children, from this

static Entity GetFirstChild(this Entity Entity) => Entity.Transform.Children[0].Entity;
// Or
static void AddAsFirstChild(this Entity Entity, Entity entity) =>
Entity.Transform.Children.Insert(0, entity);

1076 / 1211

extension method they would not be aware that the transform component stores them, that they
could access it directly for that.
Make sure that accessing what you are hiding is never error-prone, even more so if the name of the
method does not make that obvious. You may be reducing the time wasted from typing, but you
could very well increase the time you would take to debug it when it does create issues.
It may very well be a slippery slope to introduce even more shortcuts to other properties or
methods of the object you are presenting, how about creating an extension for the second child of
the entity, the third ...
Polluting intellisense; in most cases this is a non-issue, but collection types are a prime example of
this. Discoverability for extension methods through intellisense is nigh-on-impossible, there are just
far too many extension methods introduced by linq.
It might imply to the user that your shortcut is somehow different from the source.

Entity and Components' Lifetime
One unexpected quirk of Stride is that components and entities are expected to survive across any
number of removal and re-insertion into the scene. Those objects are never truly 'destroyed', they are
treated like any other c# object, they either exist or are out of scope.

Make sure that your components adhere to this rule by rolling back any effects introduced in Start()
through Cancel() This quirk provides a couple of nice benefits, a major one is that you can temporarily
remove components, entities and even scenes from your game and re-introduce them whenever you
need without any loss of data or complex serialization steps.

This also means that you should avoid writing any custom 'destroy' function to ensure that any part of
the engine at any time can simply remove the entity from the scene and rely on your implementation of
Cancel() to take care of anything that should occur when 'destroyed'.

Usage of Get
When using Get<MyComponent> ask yourself whether the function would fail to operate if that call were to
return null, if that is the case, then your function is dependent on that component existing on that entity.
This is a hard dependency, you should do everything you can to notify the rest of your codebase and
designers using the editor that in this component is a requirement to avoid wasting time debugging
issues related to it.

There are a couple of ways to do so, here we simply add the component directly as a parameter to the
function:

// From
public void MyFunction(Entity entity)
{
 entity.Get<MyComponent>().DoSomething();

1077 / 1211

And here we add this component as a property to set in the editor:

A trap you may fall into after reading this is to write defensively, checking if it is null and returning in
such cases even if the rest of the logic expects some sort of change. This will more often than not force
you to write far more boilerplate logic than you would have if you ensured you had a valid one in the
first place.

One thing you may also consider is whether to simply merge the dependant object together, if either
one of the objects are used only for the other's purpose, it may make far more sense to simply merge
them instead of having two different components.

See also
Scheduling and priorities
Flexible processors
Custom Assets

}
// To
public void MyFunction(MyComponent component)
{
 component.DoSomething();
}

// From
public void MyFunction()
{
 Entity.Get<MyComponent>().DoSomething();
}

// To
// The 'required' keyword will generate a warning on build when the value is not set in
the editor
public required MyComponent MyRequiredComponent { get; set; }

public void MyFunction()
{
 MyRequiredComponent.DoSomething();
}

1078 / 1211

Sprites
2D applications are made of sprites.

The most efficient way to render sprites is to add them all to a sprite sheet, a single image. You can then
define regions of the sprite sheet as different sprites in Game Studio's Sprite Editor. After you define
sprites, you can add them to entities using sprite components and render them with scripts.

In this section
Import sprite sheets
Edit sprites

Set sprite borders
Use sprites

1079 / 1211

Import sprite sheets
Beginner Designer

You can import sprite sheets (image files containing sprites) just like any other kind of asset.

1. Drag the sprite sheet file from Explorer to the Game Studio Asset View.

Alternatively, in the Asset View, click Add asset.

2. Choose a preset for the sprite sheet.

If you want to use the sprite sheet for UI elements such as menu buttons, select Sprite sheet - UI
sprites. This lets you set borders for the sprite (see Set sprite borders). Otherwise, select Sprite sheet
- 2D sprites.

1080 / 1211

Game Studio adds a sprite sheet asset.

See also
Edit sprites
Use sprites
Assets

NOTE

You can change this any time. For more information, see Edit sprites.


1081 / 1211

Edit sprites
Beginner Designer

After you import a sprite sheet, you can use the dedicated Sprite Editor to select sprites within the
sprite sheet.

You can also edit sprite properties in the Property Grid like any other asset.

Open the Sprite Editor
To open the Sprite Editor, in the Asset View, double-click the sprite sheet asset.

The sprite sheet opens in the Sprite Editor.

Set sprite sheet type
You can set whether the sprite sheet contains gameplay sprites (Sprite2D) or UI sprites (UI). This has no
effect on how the sprite is rendered at runtime, but lets you set slightly different properties, described
under Sprite properties below. You can change the sprite sheet type any time.

1082 / 1211

Add a sprite
1. Click the Add empty sprite button.

Game Studio adds a empty sprite to the list.

2. In the Property Grid on the right, in the Source field, specify the sprite sheet that contains the
sprite.

1083 / 1211

Sprite list
The Sprite Editor lists the sprites in your project on the left. Each sprite has an index number; the first has
the index [0], second has index [1], and so on. You can use these indexes in your scripts (see Use sprites).

To change the order (and index number) of sprites, use the (Move selected sprite up/down)
buttons. For example, if you move [1] Sprite down, it becomes [2] Sprite.

To rename a sprite in the list, double-click it and type a new name.

Set the texture region
You create sprites by defining rectangular texture regions in the sprite sheet.

TIP

If you want to create a new sprite from the same sprite sheet as other sprites in the list, it's often
faster to duplicate an existing sprite. To duplicate a sprite, select it and click Duplicate selected
sprites or press Ctrl + D.



1084 / 1211

There are three ways to do this: by using the Magic Wand tool, by setting the edges of the region
manually, or by specifying the pixel coordinates in the sprite properties.

Use the Magic Wand
The Magic Wand selects the texture region around a sprite automatically. This is usually the fastest way
to select sprites.

To select or deselect the Magic Wand, click the icon in the Sprite Editor toolbar, or press the M key.

To choose how the Magic Wand identifies texture regions, use the drop-down list in the toolbar.

1085 / 1211

Transparency: The Magic Wand treats the edges of the non-transparent regions as the edges of the
texture region. For example, if the sprite is surrounded by transparent space, it sets the texture
region at the edge of the transparent space.

Color key: The Magic Wand identifies texture regions using the color set under Color key in the
Sprite Editor. For example, if the sprite is surrounded by absolute black (#FF000000), and you set
absolute black as the color key, the Magic Wand sets the texture region at the edge of the absolute
black space.

Set texture region manually
You can drag the edges of the texture region and reposition the region manually.

Set the texture region in the Property Grid
You can define the pixel coordinates of the texture region in Property Grid under Texture Region. X is
the left edge, Y is the top, Z is the right, and W is the bottom.

1086 / 1211

Use entire sprite sheet for the sprite
If you want to use the entire sprite sheet image for the sprite, you can do this quickly by clicking Use
whole image for this sprite in the toolbar. This is useful when you have only one sprite in a sprite sheet.

Set transparency
By default, Stride treats transparent areas of the sprite sheet as transparent at runtime. Alternatively, you
can set a key color as transparent. To do this, select Use color key and define a color. For example, if you
set absolute black (#FF000000), areas of absolute black are transparent at runtime.

You can also use the color picker tool to select a color from the sprite sheet.

1087 / 1211

Sprite properties
You can set the properties of individual sprites in the Property Grid.

Property Description

Source The path to the sprite sheet

Name The name of this sprite. You can also edit this by double-clicking a sprite in the sprite
list in the Sprite Editor

Texture
region

The region of the sprite sheet used for this sprite

Pixels per
unit

The number of pixels representing a unit in the scene. The higher this number, the
smaller the sprite is rendered in the scene

Orientation If you select Rotated90, Stride rotates the sprite 90 degrees at runtime

Center The position of the center of the sprite, in pixels. By default, the center is 0, 0. Note:
this property is only available if the sprite sheet type is set to Sprite2D in the Sprite
Editor.

Center from
middle

Have the value in the Center property represent the offset of the sprite center from
the middle of the sprite. Note: this property is only available if the sprite sheet type is
set to Sprite2D in the Sprite Editor.

1088 / 1211

Property Description

Borders The size in pixels of the sprite borders (areas that don't deform when stretched). X is
the left border, Y is the top, Z is the right, and W is the bottom. For more information,
see Set sprite borders. Note: this property is only available if the sprite sheet is set to
UI on the left.

Sprite sheet properties
You can also set the properties for the entire sprite sheet asset. To access the properties:

select the sprite sheet asset in the Asset View and set the properties in the Property Grid, or

in the Sprite Editor, click Sprite sheet properties.

Many of the properties are the same as texture properties.

1089 / 1211

Property Description

Sheet Type Specify whether this sprite sheet is used for 2D sprites or UI elements. If you select
Sprite sheet for UI, you can define sprite borders in the sprites.

Color Key Color The color used for transparency at runtime. This is only applied if Color Key
Enabled is selected below

Color Key
Enabled

Use the color set in the Color Key Color property for transparency at runtime. If
this isn't selected, the project uses transparent areas of the sprite sheet instead

Compress Compress the texture to a format based on the target platform. The final texture
size will be a multiple of 4.

ColorSpace The color space for the sprites in the sprite sheet (Auto, Linear, or Gamma)

Alpha The texture alpha format which all the sprites in the sprite sheet are converted to
(None, Mask, Explicit, Interpolated, or Auto)

1090 / 1211

Property Description

Generate
Mipmaps

Generates mipmaps for all sprites in the sprite sheet

Premultiply
Alpha

Premultiply all color components of the images by their alpha component

Allow
Multipacking

Generate multiple atlas textures if the sprites can't fit into a single atlas

Allow rotations Rotate sprites inside the sprite sheet to optimize space. This doesn't affect how
sprites are displayed at runtime.

Border size The size in pixels of the border around the sprites. This prevents side effects in the
sprite sheet.

See also
Import sprite sheets
Set sprite borders
Use sprites

1091 / 1211

Set sprite borders
Beginner Designer

Sprite borders are areas that don't deform when you scale the sprite. These are often useful for sprites
used for UI elements such as menu buttons. You can only set sprite borders for sprites set to the UI sheet
type.

Original sprite Scaled without borders Scaled with borders

Edges are deformed Edges not deformed

Set sprite borders
1. In the Sprite Editor, make sure the sheet type is set to UI.

2. From the Sprites list, select the sprite you want to add sprite borders to.

NOTE

This has no effect on how the sprite is rendered at runtime, but lets you set slightly different
properties, including sprite borders.



1092 / 1211

3. Make sure the texture region for the sprite is correct. For information about how to do this, see Edit
sprites.

4. In the Sprite Editor toolbar, select Sprite border resize tool.

5. Drag the sprite borders into position.

1093 / 1211

NOTE

By default, the sprite borders match the sprite texture region.


TIP

You can zoom in and out using Ctrl + mousewheel to make precise selections.


1094 / 1211

Lock the sprite borders
By default, sprite borders move as you resize the texture region. To stop this from happening, click Lock
the sprite borders in the toolbar.

See also
Import sprite sheets
Edit sprites
Use sprites

TIP

For fine-tune control over the sprite borders, adjusting one-by-one in the Property Grid


NOTE

Sprite borders always stay inside the texture region.


1095 / 1211

UI

1096 / 1211

Use sprites
Intermediate Programmer

To add a sprite to a scene, add a sprite component to an entity. Afterwards, you can control the sprite
with a script.

Add a sprite component
1. In the Scene Editor, select the entity you want to add a sprite to.

2. In the Property Grid, click Add component and select Sprite.

Game Studio adds a Sprite component to the entity.

3. From the Asset View, drag the sprite sheet to the Source field in the Sprite component:

TIP

To create an entity, right-click the scene or Entity Tree and select Empty entity.


1097 / 1211

Alternatively, click (Select an asset):

Then choose a sprite sheet:

1098 / 1211

Game Studio adds the sprite to the entity.

Sprite component properties
You can access the sprite component properties in the Property Grid.

1099 / 1211

Property Function

Source The source image file for the sprite

Type Sprites have 3D space in the scene.
Billboards always face the camera and appear fixed in 3D space.

Color Applies a color to the sprite

Intensity The intensity by which the color is scaled (mainly used for rendering LDR sprites in
HDR scenes)

Premultiply
alpha

Premultiply color components by their alpha component

Ignore depth Ignore the depth of other elements in the scene when rendering the sprite. This
always places the sprite on top of previous elements.

Alpha cutoff Ignore pixels with low alpha values when rendering the sprite

Sampler The texture sampling method used for the sprite: Point (nearest), Linear, or
Anisotropic

Swizzle How the color channels are accessed.
Default leaves the image unchanged (finalRGB = originalRGB)

Normal map uses the color channels as a normal map

Grayscale (alpha) uses only the R channel (finalRGBA = originalRRRR), so the sprite
is red

Grayscale (opaque) is the same as Grayscale (alpha), but uses a value of 1 for the
alpha channel, so the sprite is opaque

Render group Which render group the sprite belongs to. Cameras can render different groups. For
more information, see Render groups and render masks.

Use sprites in a script
You can use scripts to render sprites at runtime. To do this, attach the script to an entity with a sprite
component.

For information about how to add scripts to entities, see Use a script.

1100 / 1211

Code sample
This script displays a sprite that advances to the next sprite in the index every second. After it reaches the
end of the sprite index, it loops.

See also
Import sprite sheets
Edit sprites

using Stride.Rendering.Sprites;

public class Animation : SyncScript
{
 // Declared public member fields and properties are displayed in Game Studio.
 private SpriteFromSheet sprite;
 private DateTime lastFrame;

 public override void Start()
 {
 // Initialize the script.
 sprite = Entity.Get<SpriteComponent>().SpriteProvider as SpriteFromSheet;
 lastFrame = DateTime.Now;
 }

 public override void Update()
 {
 // Do something every new frame.
 if ((DateTime.Now - lastFrame) > new TimeSpan(0, 0, 1))
 {
 sprite.CurrentFrame += 1;
 lastFrame = DateTime.Now;
 }
 }
}

1101 / 1211

UI
Stride features a UI editor and layout system you can use to build sophisticated user interfaces. It
supports 2D and 3D independently of resolution.

Stride uses two types of UI asset: UIPageAsset and UILibraryAsset. Their runtime counterparts are UIPage
and UILibrary respectively.

To reduce the number of draw calls, Stride draws multiple elements using a sprite batch renderer.

Controls
Stride features many UI control components, including:

ImageElement
ContentControl

ScrollViewer
Button

ToggleButton
ContentDecorator

TextBlock
ScrollingText

EditText (displays soft keyboard on mobile devices)

1102 / 1211

Panel
StackPanel (supports virtualization)
Grid
UniformGrid
Canvas

ScrollBar
ModalElement

You can also create your own.

Sample project
Without scripts, UIs are simply non-interactive images. To make them interactive, add a script.

For an example of a UI implemented in Stride, see the game menu UI sample included with Stride.

In this section
UI pages
UI libraries
UI editor
Add a UI to a scene
Layout system

See also

1103 / 1211

VR — Display a UI in an overlay

1104 / 1211

UI pages
Beginner Artist Designer

A UI page is a collection of UI elements, such as buttons and grids, that form a piece of UI in your game,
such as a menu or title screen.

In terms of organization, a UI page is equivalent to a scene in the Scene Editor, and UI elements are
equivalent to entities in a scene. Just like entities, elements can have parents and children.

Each UI scene opens in its own tab in the UI editor. For information about how to edit UI pages, see the
UI editor page.

Create a UI page
In the Asset View, click Add asset > UI > UI page.

1105 / 1211

Game Studio adds the UI page to the Asset View.

Create a UI page from a UI element
1. In the UI editor, select the element or elements you want to create a page from.

2. Right-click and select Create page from selection.

1106 / 1211

Game Studio creates a page with a copy of the elements you selected.

Open a UI page
In the Asset View, double-click the UI page.

The UI page opens in the UI editor.

1107 / 1211

Add a UI element to a UI page
To add an element, such as a grid or button, drag it from the UI library to the UI page or the visual tree.

1108 / 1211

For more information about how to use the UI editor, see the UI editor page.

See also
UI libraries
UI editor
Add a UI to a scene
Layout system

1109 / 1211

UI libraries
Beginner Artist Designer

UI libraries contain UI elements such as grids, buttons, sliders and so on that you can use and re-use in
your UI pages.

Stride projects include a standard library of UI elements. You can create your own libraries of custom
elements too.

UI libraries are similar to prefabs in the Scene Editor; you can create your own elements, save them in a
custom UI library, and then use them wherever you need across multiple UI pages. You can also nest
libraries inside other libraries, just like nested prefabs.

At runtime, you can re-instantiate UI library roots and insert them into an existing UI tree.

Create a UI library
In the Asset View, click Add asset > UI > UI library.

1110 / 1211

Game Studio adds the UI library to the Asset View.

Alternatively, to create a UI library from an existing UI element:

1. Select the elements you want to create a UI library from.

2. Right-click and select Create library from selection.

1111 / 1211

Game Studio creates a library with a copy of the elements you selected.

Assign a UI library in code
// This property can be assigned from a UI library asset in Game Studio
public UILibrary MyLibrary { get; set; }

public Button CreateButton()
{
 // assuming there is a root element named "MyButton" of type (or derived from) Button
 var button = MyLibrary.InstantiateElement<Button>("MyButton");

 // if there is no root named "MyButton" in the library or the type does not match,
 // the previous method will return null
 if (button != null)
 {
 // attach a delegate to the Click event
 button.Click += delegate
 {
 // do something here...
 };

1112 / 1211

UI pages have only one root element. UI libraries can have multiple root elements.

See also
UI pages
UI editor
Add a UI to a scene
Layout system

 }

 return button;
}

1113 / 1211

UI editor
Beginner Artist Designer

You can edit UI pages and UI libraries with the UI editor.

To open the editor, in the Asset View, double-click a UI page or UI library.

The UI editor opens.

The UI editor comprises:

the list of UI libraries (A), which contain the elements (such as buttons and grids) you can add to
your UI

a visual tree of the elements in the UI page (B)

1114 / 1211

a preview of the UI page as it appears in the game (C)

a Property Grid (D) to edit the properties of your UI elements

UI libraries
A UI library contains UI elements (such as grids, buttons, sliders and so on) that you can use and re-use
in your UI pages. They work similarly to prefabs in the Scene Editor.

For more information, see UI libraries.

Visual tree
The visual tree shows the elements in the UI page and their hierarchy. This is similar to the Entity Tree
in the Scene Editor.

1115 / 1211

The number in parentheses indicates the number of children an element has. Some elements, such as
buttons, can only have one child.

To re-order elements in the visual tree, drag and drop them.

To move an element to a new group, right-click the element and select Group into. For example, to
create a new grid and move an element into it, right-click the element and select Group into > Grid.

UI preview
The UI preview displays a preview of the UI as it appears at runtime. The rendering is equivalent to the
rendering in the game, assuming the design resolution is the same as the UI component that uses the
edited asset.

By default, the UI is a billboard, meaning it always faces the camera. The UI view camera is
orthographic (see Cameras).

You can select, move, and resize elements in the preview as you do in image editing applications.

1116 / 1211

1117 / 1211

Controls
Action Control

Pan Hold middle mouse button + move mouse

Zoom Mouse wheel

Speed up pan/zoom Hold shift while panning or zooming

Tool options
To change the color and size of the selection tools, in the UI editor toolbar, click

NOTE

These options have no effect on how the UI is displayed at runtime.


1118 / 1211

Guideline: changes the width of the lines that indicate the distance to the margins (in pixels)

Highlight: changes the width of the highlight that appears when you move your mouse over an
element

Selection: changes the width of the selection highlight

Sizing: changes the size of the boxes at the edges of selections used to resize elements

Add a UI element to a UI page
To add an element (such as a grid or button), drag it from the UI library to the UI page or the visual
tree.

1119 / 1211

Properties
You can view and edit element properties in the Property Grid.

Properties are sorted by Appearance, Behavior, Layout and Misc.

Appearance
Commonly used properties include BackgroundColor, Opacity, Visibility and ClipToBounds.

1120 / 1211

Behavior
Commonly used properties include whether the element responds to touch events(CanBeHitByUser).

Layout
Commonly used properties include the size of the element (Height, Width and Depth), its alignment
(HorizontalAlignment, VerticalAlignment, DepthAlignement) and its Margin.

1121 / 1211

Misc
This category contains only the Name of the element.

See also

1122 / 1211

UI pages
UI libraries
Add a UI to a scene
Layout system

1123 / 1211

Add a UI to a scene
Beginner Artist Designer

After you create a UI page, add it to the scene as a component on an entity.

1. In the Scene Editor, create an empty entity. To do this, right-click the scene and select Empty
entity.

2. In the Property Grid (on the right by default), click Add component and select UI.

1124 / 1211

Game Studio adds a UI component to the entity.

3. Next to Page, click (Select an asset).

The Select an asset window opens.

1125 / 1211

4. Select the UI page you want to add and click OK.

For information about how to create and edit UI pages, see the UI editor page.

TIP

To stop the UI obscuring the rest of the scene in the editor, disable the UI component in the
Property Grid.



1126 / 1211

Remember to enable the component again before you run the game. If you don't, Stride doesn't
display the UI.

Assign a UI page to a UI page component in code
You can assign a UI page to the Page property of a UI component.

UI component properties
Property Description

Page The UI page displayed by the component

Sampler Texture sampling method: Point (Nearest), Linear (Default option), or Anisotropic

// This property can be assigned from a UI page asset in Game Studio
public UIPage MyPage { get; set; }

protected override void LoadScene()
{
 InitializeUI();
}

public void InitializeUI()
{
 var rootElement = MyPage.RootElement;
 // to look for a specific element in the UI page, extension methods can be used
 var button = rootElement.FindVisualChildOfType<Button>("buttonOk");

 // if there's no element named "buttonOk" in the UI tree or the type doesn't match,
 // the previous method returns null
 if (button != null)
 {
 // attach a delegate to the Click event
 button.Click += delegate
 {
 // do something here...
 };
 }

 // assign the page to the UI component
 var uiComponent = Entity.Get<UIComponent>();
 uiComponent.Page = MyPage;
}

1127 / 1211

Property Description

Full screen Note: We recommend you use this as other stuff is broken

Resolution The UI resolution in pixels

Size Gets or sets the actual size of the UI component in world units

Resolution
stretch

How the virtual resolution value should be used (FixedWithFixedHeight,
FixedWithAdaptableHeight, or FixedHeightAdaptableWidth)

Billboard If selected, the UI always faces the camera. Note: Disabling billboard mode causes UI
text errors in the current version of Stride

Snap text If selected, the UI text is snapped to the closest pixel

Fixed size Gets or sets the value indicating whether the UI should always be a fixed size on screen
(eg a component with a height of 1 will use 0.1 of the screen). Note: This feature
doesn't work in the current version of Stride

Render
group

The render group the UI uses

UI scripts
To make UIs interactive, you need to add a script. Without scripts, UIs are simply non-interactive images.

For an example of a UI implemented in Stride, see the game menu UI sample included with Stride.

1128 / 1211

See also
UI pages
UI libraries
UI editor
Layout system
VR — Display a UI in an overlay

1129 / 1211

Layout system
Intermediate Programmer Designer

The Stride UI layout system is similar to Windows Presentation Foundation (WPF). For more information
about the WPF layout system, see the MSDN documentation . Much of the WPF documentation also
applies to the Stride layout system.

Every UIElement in the Stride UI system has a surrounding rectangle used in layouts. Stride computes
layouts according to the UIElement requirement, available screen space, constraints, margins, padding,
and the special behavior of Panel elements (which arrange children in specific ways).

Processing this data recursively, the layout system computes a position and size for every UIElement in
the UI system.

Measure and arrange
Stride performs the layout process recursively in two passes: Measure and Arrange.

Measure
In the Measure pass, each element recursively computes its DesiredSize according to the properties you
set, such as Width, Height, and Margin.

Some Panel elements call Measure recursively to determine the DesiredSize of their children, and act
accordingly.

Arrange
The Arrange pass arranges the elements, taking into account:

Margin
Width
Height
HorizontalAlignment
VerticalAlignment
Panel
specific Arrange rules

See also
MSDN WPF layout documentation
UI pages
UI libraries
UI editor

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/layout
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/layout
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/layout
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/layout
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/layout
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/layout

1130 / 1211

Add a UI to a scene

1131 / 1211

Video
Beginner Designer

You can import video files and use them in your scenes.

In this section
Set up a video
Video properties
Use a video as a skybox

NOTE

Currently, Stride doesn't support video on iOS platforms.


1132 / 1211

Set up a video
Beginner Programmer Designer

1. Add a video asset
Before you can use a video in your game, you need to import it as an asset.

1. Drag the video file from Explorer into the Asset View.

Alternatively, in the Asset View, click Add asset and select Media > Video, then browse to the video you want to add and click Open.

NOTE

Stride supports most major video formats, but converts them to .mp4. To reduce compilation time, we recommend you use .mp4 files so
Stride doesn't have to convert them.



NOTE

Currently, Stride doesn't support video on iOS platforms.


1133 / 1211

2. If the video has audio tracks, you can import these at the same time, or import just the audio from the video.

3. Click OK.

Stride adds the video as an asset in the Asset View. If you imported audio tracks from the video file, Stride adds them as separate audio
assets.

NOTE

Currently, you can't preview videos in the Asset Preview.


1134 / 1211

For information about video asset properties, see Video properties.

2. Add a video component
1. In the Scene Editor, select or create an entity to add a video component to.

2. In the Property Grid, click Add component and select Video.

Stride adds a video component to the entity.

TIP

It's usually simplest to add the component to the same entity that has the texture plays the video. This just makes it easier to organize
your scene.



1135 / 1211

3. In the Video properties, under Source, select the video asset.

4. Under Target, select the texture you want to display the video from.

Models that use this texture will display the video.

When the video isn't playing in your scene, Stride displays the texture instead.

3. Create a script to play the video
After you set up the video component, play it from a script using:

myVideoComponent.Instance.Play();

1136 / 1211

Other functions
LoopRange: The looping range (must be an area in the video in PlayRange)
IsLooping: Loop the video loop infinitely
SpeedFactor: Set the video play speed. 1 is normal speed.
PlayState: The current video play state (playing, paused or stopped)
Duration: The duration of the video
CurrentTime: The current play time in the video
Volume: The audio volume
PlayRange: The video start and end time
Play/Pause/Stop: Play, pause, or stop the video
Seek: Seek to a given time

Example script

4. Add the script to the entity
1. In the Scene Editor, select the entity that has the video component.

2. In the Property Grid, click Add component and select the video script.

Stride adds the script as a component.

{
 public class VideoScript : StartupScript
 {
 // Game Studio displays the public member fields and properties you declare in this script

 public override void Start()
 {
 // Initialization of the script.
 Entity.Get<VideoComponent>().Instance.Play();
 }
 }
}

1137 / 1211

You can adjust public variables you define in the script in the Property Grid under the script component properties.

See also
Video properties

1138 / 1211

Video properties
Beginner Designer

To view the properties of a video asset, select it in the Asset View and use the Property Grid.

Property Description

Width Resize the video width. The value is in a percentage or actual pixel size depending on
whether you select Use percentages.

Height Resize the video height. The value is in a percentage or actual pixel size depending
on whether you select Use percentages.

Use
percentages

Use percentages for the video height and width. If enabled, and the height is set to
100%, Stride displays 100% of the video's actual width. If disabled, the height and
width values use pixels, so you can stretch them beyond the video's actual size.

Trimming Display only the part of the video you define using the Start and End times

Start time The time to start playing the video from (in seconds, eg 100.500)

End time The time to stop playing the video (in seconds, eg 100.500)

1139 / 1211

Property Description

Force mono
channel

Convert video audio to mono. This is useful when you want the video to use
spatialized audio.

See also
Set up a video
Use a video as a skybox

NOTE

Currently, you can't preview videos in the Asset Preview.


1140 / 1211

Use a video as a 3D skybox
1. Create a panorama movie.

2. Add a background component.

3. Add a video component to the scene and use the panorama as the video source and the
background component as a texture target.

Skybox lights with videos
Currently, you can't use videos for skybox lights.

To create matching lighting for a video background, use a screenshot from the video, or blend between
several screenshots.

See also
Skyboxes and backgrounds
Skybox lights.
Set up a video
Video properties

1141 / 1211

Virtual reality (VR)
Stride currently supports the Oculus Rift and Vive virtual reality (VR) devices.

VR template
Stride includes a VR template you can use to check out VR implementation.

1142 / 1211

In this section
Enable VR
Preview a scene in VR
Overlays

Display a UI in an overlay
VR sickness

1143 / 1211

Enable VR
Beginner Programmer

This page explains how to add support for the Oculus Rift and Vive devices to your game. Stride doesn't
support other VR devices yet.

1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

The graphics compositor editor opens.

2. In the graphics compositor editor, select the forward renderer node.

3. In the Property Grid (on the right by default), expand VR Settings.

1144 / 1211

4. Next to Required APIs, click (Add).

Game Studio adds a new API to the list.

5. From the Item drop-down menu, select a VR API you want your game to support.

1145 / 1211

API Description

Oculus Supports Oculus Rift devices (best support for Oculus Rift)

OpenVR Supports Vive and Oculus Rift devices (best support for Vive)

Dummy Displays the game on the screen with two cameras (one per eye), instead of in the VR
device. This is mainly useful for development. To display the dummy view in the Game
Studio Scene Editor, make sure the editor is connected to the forward renderer.

6. Repeat steps 4 and 5 to add as many APIs as you need.

7. Make sure the list order is correct. When your game runs, it attempts to use the devices in the list
order. For example, if the first item is Dummy, the game uses no VR device. If the last item is
Dummy, the game only uses it if there is no VR device available.

To change the order, change the selected VR device in each item.

8. Enable VRRendererSettings.

Your game is now ready to use VR.

TIP

Although the OpenVR API supports both Vive and Oculus Rift devices, the Oculus API provides
better support for Oculus Rift. For this reason, we recommend the following list order for most
situations:

Item 0: Oculus

Item 1: OpenVR

This means your game uses the Oculus API if an Oculus Rift device is connected, and the
OpenVR API if another device (eg a Vive) is connected.



1146 / 1211

VR properties
Property Description

Ignore camera
rotation

Disable camera movement from inputs other than VR devices, helping to reduce
VR sickness

Resolution scale The resolution of the image displayed in the VR device. Higher resolutions
produce better images, but require more GPU.

Multisample anti-aliasing
As aliasing artifacts are more obvious in VR, we recommend you enable MSAA (multisample anti-
aliasing) in the forward renderer properties (above the VR settings).

NOTE

After you change APIs, you need to reload the project (File > Reload project) for the change to
take effect at runtime.



1147 / 1211

Disable screen synchronization
For best performance, VR games need to run at 90FPS. This means you have to turn off synchronization
with your monitor.

For now, this is done in a script. We recommend you use IsDrawDesynchronized in IsFixedTimeStep.

See also
VR sickness
Graphics compositor

NOTE

MSAA isn't supported for Direct3D 11 or lower.


using System;
using Stride.Engine;

namespace VRSandbox
{
 class VRSandboxApp
 {
 static void Main(string[] args)
 {
 using (var game = new Game())
 {
 //VR needs to run at 90 fps, vsync must be disabled, draw must be
not synchronized
 //You might want to set physics time step to 90 fps as well if you use
character controller with unregular movements, but please avoid that! use Kinematic
rigidbodies when possible.
 game.IsFixedTimeStep = true;
 game.IsDrawDesynchronized = true;
 game.GraphicsDeviceManager.SynchronizeWithVerticalRetrace = false;
 game.TargetElapsedTime = TimeSpan.FromSeconds(1 / 90.0f);
 game.Run();
 }
 }
 }
}

1148 / 1211

Preview a scene in VR
To preview your scene in your VR device, connect the editor to a VR-enabled renderer.

To do this:

1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

The graphics compositor editor opens.

1149 / 1211

2. Select the forward render node connected to the editor node. For example, in the screenshot
below (taken from the Stride VR sample project), the editor is connected to the lower forward
renderer node.

3. With the forward renderer node selected, in the Property Grid, enable VRRendererSettings.

1150 / 1211

Your VR device displays the scene preview. To display the scene on your monitor instead, disable
VRRendererSettings.

Create a separate renderer to preview scenes in VR
If your editor and game nodes are connected to the same forward renderer, you might want to create a
separate renderer dedicated to the editor. This lets you easily switch between previewing the scene in
your VR device and on your monitor.

1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

NOTE

If your editor and game nodes already use separate renderers (as in the VR sample project), you
don't need to follow these instructions.



1151 / 1211

The graphics compositor editor opens.

2. Create a new forward renderer node. To do this, right-click the game compositor editor and select
Create > Forward renderer.

3. Select the Entry points node.

1152 / 1211

4. In the Property Grid, next to Editor renderer, select the forward renderer you created.

Stride links the editor to the forward renderer node.

1153 / 1211

5. Set the properties of the new forward renderer so they're identical to the forward renderer you use
to run the game in VR, including the VR settings.

Stride displays the scene preview in your VR device. To display the scene on your monitor instead,
disable VRRendererSettings in the properties of the new forward renderer.

TIP

You can right-click a property to copy or paste it.


NOTE

Make sure the forward renderer has VR enabled. For instructions, see Enable VR.


1154 / 1211

See also
Enable VR
Graphics compositor

1155 / 1211

Overlays
In VR games, you can display textures (including render textures) as overlays that appear to float in front
of the player. This is especially useful for UIs.

This page explains how to add an overlay. To display a UI in an overlay, you need to render the UI to a
render texture, and display the render texture in the overlay. For instructions, see Display a UI in an
overlay.

Add an overlay
1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

The graphics compositor editor opens.

For more information about the graphics compositor, see the Graphics compositor page.

2. In the graphics compositor editor, select the forward renderer node.

NOTE

You can't see overlays when you don't run your game in your VR device. This is because the VR
device itself creates the overlay.



1156 / 1211

3. In the Property Grid (on the right by default), expand VR Settings.

4. Next to Overlays, click (Add).

Game Studio adds a new overlay to the list.

5. Next to Texture, click (Select an asset).

The Select an asset window opens.

1157 / 1211

6. Select the texture you want to display in the overlay and click OK.

Your game is now ready to render the UI to an overlay in your VR device.

Multiple overlays
You can add as many overlays as you need. To add another overlay, click Add to overlays and follow
the instructions above from step 4.

Overlay properties

NOTE

If overlays overlap in the user view, overlays first in the list appear on top.


1158 / 1211

Property Description

Texture The texture displayed in the overlay

Local position The position of the overlay relative to the user

Local rotation The rotation of the overlay relative to the user

Surface size The size of the overlay in world units

Follows head Follow the user's head so the overlay is always in front of their view

VR template
For an example of a UI overlay implemented in a VR game, see the VR template included with Stride.

1159 / 1211

See also
Display a UI in an overlay
Render textures
Graphics compositor

1160 / 1211

Display a UI in an overlay
This page explains how to render a UI to a texture, then display it as an overlay.

These instructions assume you already have a UI that you want to display in the overlay. For information
about creating UIs, see the UI section.

1. Create a render target texture
In the Asset View, click Add asset and select Texture > Render target.

Game Studio adds a render target texture to your project assets.

NOTE

You can't see overlays when you don't run your game in your VR device. This is because the VR
device itself creates the overlay, not other hardware.



1161 / 1211

In the following steps, we'll render the UI to this texture, then display it in the overlay.

2. Add a VR overlay
1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

The graphics compositor editor opens. For more information about the graphics compositor, see the
Graphics compositor page.

2. In the graphics compositor editor, select the forward renderer node.

3. In the Property Grid (on the right by default), expand VR Settings.

1162 / 1211

4. Next to Overlays, click (Add).

Game Studio adds a new overlay to the list.

5. Next to Texture, click (Select an asset).

The Select an asset window opens.

1163 / 1211

6. Select the render texture you created and click OK.

3. Set up the UI render feature
1. In the graphics compositor editor, on the left, under Render Features, select the UIRenderFeature.

1164 / 1211

2. In the Property Grid, make sure SimpleGroupToRenderStageSelector is selected.

3. Under Render Stage, make sure UIRenderStage is selected.

1165 / 1211

This makes sure the UI is rendered in the UI render stage, which we'll use in the next step.

4. Set up the renderers
To display an overlay, you need at least two renderers:

one to render your main camera
one to render the UI to the overlay

This page describes the simplest way to do this from scratch, using two cameras and two renderers.
Depending on your pipeline, you might need to create a different setup.

1. In the graphics compositor editor, select the Entry points node.

WARNING

These instructions involve deleting your existing renderers for the game entry point. You might want
to make a backup of your project in case you want to restore your pipeline afterwards.



1166 / 1211

2. In the Property Grid on the right, next to Game renderer, click (Replace) and select None to
delete your existing renderers.

3. Next to Game rendererer, click (Replace) and select Camera Renderer.

1167 / 1211

Currently, all renderers must have a camera, or be a child of a renderer that has a camera. This
applies even to renderers that don't necessarily use cameras, such as the single stage renderer,
which renders the UI.

For this reason, in these instructions, we'll add a game renderer with a camera, then make the two
renderers children of that renderer. This makes sure both renderers have a parent with a camera.

4. Next to Camera, click (Replace) and select your main game camera.

5. Next to Child, click (Replace) and select SceneRendererCollection.

1168 / 1211

6. Next to Children, Click (Add) and select RenderTextureSceneRenderer.

7. Next to Child, click (Replace) and select SingleStageRenderer.

1169 / 1211

8. Next to Render Stage, click (Replace) and select UIRenderStage. This is the renderer that
renders the UI.

9. Next to Render Texture, click (Select an asset).

The Select an asset window opens.

1170 / 1211

10. Select the render texture and click OK.

Game Studio adds the render texture to the renderer.

11. Under Game renderer, next to Children, click (Add) and select Forward renderer.

1171 / 1211

Your game is now ready to render the UI to an overlay in your VR device.

VR template
For an example of a UI overlay implemented in a VR game, see the VR template included with Stride.

1172 / 1211

See also
Overlays
UI
Render textures
Graphics compositor

1173 / 1211

Virtual reality sickness
Some players experience nausea and discomfort when playing VR games. Though the causes aren't
completely understood, it seems to be mainly caused by the player moving around a virtual environment
while their real-world body remains still.

There may be no way to completely prevent VR sickness in every player. However, there are a few things
to keep in mind to minimize it in your game. We recommend you test your game with as wide a range of
players as possible.

Camera movement
In general, players should control the camera by moving their head. Moving the camera by other
methods, such as gamepads or keyboards, seems to be the biggest cause of VR sickness, especially with
horizontal (yaw) movement.

Disable camera movement
To disable camera movement from inputs other than VR devices:

1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

The graphics compositor editor opens.

2. Select the ForwardRenderer.

1174 / 1211

3. In the Property Grid (on the right by default), expand VR Settings.

4. Select Ignore camera rotation.

For more information about the graphics compositor, see the Graphics compositor page.

Framerate
In general, the higher the framerate, the less likely players are to become sick. Framerates below 60fps
seem especially likely to cause sickness.

1175 / 1211

Vection
Vection is the sensation of movement caused by the environment changing. You might have experienced
this in the real world; for example, if you've been on a stationary train and a nearby train moves, creating
the sensation that your own train is moving in the opposite direction. This can cause sickness in VR.

To reduce vection in your game, use simple textures and reduce the player movement speed.

Acceleration
Acceleration can cause VR sickness. For example, if the player moves on a train that speeds up and slows
down, this causes more sickness than if the train moves at a constant speed.

Static point of reference
Adding a static point of reference to the player view, such as a HUD or virtual "helmet", may help reduce
sickness.

See also
Virtual reality sickness (Wikipedia)

https://en.wikipedia.org/wiki/Virtual_reality_sickness
https://en.wikipedia.org/wiki/Virtual_reality_sickness
https://en.wikipedia.org/wiki/Virtual_reality_sickness

1176 / 1211

Packaging
Introduction
Since 3.1, Stride is using NuGet format to pack and reference not only the code libraries, but also Stride
assets.

As a result, you can:

Create a NuGet package out of your project to share your Stride assets.
Consume a NuGet package by simply referencing it. You can then use its Stride assets.

Topics
Consume packages
Create packages

1177 / 1211

Consume packages
Beginner Programmer

Open your project in Visual Studio

First of all, after saving all your changes, open your project with Visual Studio. You can easily do this by
clicking the appropriate button on the toolbar:

Add a reference
1. In the Solution Explorer, right-click on the project and click on Manage NuGet Packages...

2. For our example, let's use Stride.AssetPack.BuildingBlocks package:

Choose "nuget.org" or "All" as the Package source

NOTE

Game Studio will later support adding NuGet packages directly.


1178 / 1211

Make sure Include prerelease is checked (if necessary)
Go to the Browse tab
Search for a Stride asset package (i.e. Stride.AssetPack.BuildingBlocks) and select Install

3. Save the Visual Studio project.

Use assets in Game Studio
1. In Game Studio, go to the File menu and select Reload project

2. You should now be able to see the referenced project and its assets in Solution explorer

NOTE

Those assets are readonly and as such can't be dragged and dropped into the scene. This will be
fixed soon. In the meantime, you can still use the asset selector to change an existing model or
material reference to one from the asset pack.



1179 / 1211

Create packages
Intermediate Programmer

Open your project in Visual Studio
First of all, after saving all your changes, open your project with Visual Studio. You can easily do this by
clicking the appropriate button on the toolbar:

A few things to look out for:

Delete unnecessary assets (i.e. GameSettings, etc...)
Delete unnecessary PackageReference

Optional: Setup Package properties
1. In the Solution Explorer, right-click on the project and click on Properties.

2. Go to the Package tab and edit Package version, description, URL, etc.

Pack
1. In the Solution Explorer, right-click on the project and click on Pack.

1180 / 1211

2. Visual Studio will build and pack the project. The resulting .nupkg should be in bin\Debug or
bin\Release folder, depending on your configuration.

Publish
You can now publish the .nupkg file on a NuGet repository such as nuget.org .

There is several ways to do that: nuget.exe client, dotnet.exe client or nuget.org Upload Package

For additional information, please reference to Publishing packages in NuGet documentation.

Once your package is properly listed, it can now be consumed by other Stride users!

https://nuget.org/
https://nuget.org/
https://nuget.org/
https://www.nuget.org/packages/manage/upload
https://www.nuget.org/packages/manage/upload
https://www.nuget.org/packages/manage/upload
https://docs.microsoft.com/en-us/nuget/create-packages/publish-a-package
https://docs.microsoft.com/en-us/nuget/create-packages/publish-a-package
https://docs.microsoft.com/en-us/nuget/create-packages/publish-a-package

1181 / 1211

Extensibility
Introduction
Stride game project is a regular .NET project, and as such, it can be extended by a regular C# library. This
is a great way to share code between multiple projects, or to create reusable components.

Read more about this subject in C# Libraries.

1182 / 1211

C# Libraries
Advanced Programmer

If you want to share code between multiple projects or create reusable components, you can create a C#
library and reference it in your Stride project.

If your library uses the DataContractAttribute and you want to reference it through a NuGet package,
there are additional steps required to make it compatible with Stride.

Adding a Module Initializer
First, add a module initializer to your library. This ensures your library is properly registered with Stride's
serialization system.

Example Module.cs:

Updating to the Latest Stride NuGet Packages
If your library references any Stride NuGet packages, you must recompile it with the latest version of
those packages. This ensures compatibility with the current Stride ecosystem.

About the Module Initializer Attribute
The ModuleInitializer attribute is now generated using a Roslyn source generator. This means the file
sources/core/Stride.Core.CompilerServices/Generators/ModuleInitializerGenerator.cs must run
during your code's compilation. Otherwise, the module initializer and potentially other source generators
added in the future will not function correctly.

using Stride.Core.Reflection;
using System.Reflection;

namespace MyProjectName;

internal class Module
{
 [ModuleInitializer]
 public static void Initialize()
 {
 AssemblyRegistry.Register(typeof(Module).GetTypeInfo().Assembly,
AssemblyCommonCategories.Assets);
 }
}

1183 / 1211

Troubleshooting
These pages describe how to fix problems with Stride.

Logging
Debug text
Profiling
Unit Tests
Stride doesn't run
Default value changes ignored at runtime
Lights don't cast shadows
Full call stack not available
Error: "A SceneCameraRenderer in use has no camera assigned to its [Slot]. Make sure a camera is
enabled and assigned to the [Slot]"

1184 / 1211

Logging
Intermediate Programmer

You can log information about your game while it runs using Log.

Unlike profiling, which retrieves information automatically, it's up to you to create your own log
messages and define when they're triggered. For example, you can create a log message that triggers
when a character performs a certain action. This is useful to investigate how your game is performing.

When you use logging and run your game in debug mode, Stride opens a console in a second window
to display logging information. The messages are color-coded by level. The name of the module (such as
the script containing the log message) is displayed in brackets. This is followed by the log level (eg
Warning, Error, etc), then the log message.

The console displays log messages from all modules, not just your own scripts. For example, it also
displays messages from the ContentManager.

If you run your game from Visual Studio, log messages are shown in the Visual Studio Output window
instead.

NOTE

Logging is disabled when you build the game in release mode.


1185 / 1211

Log levels
There are six levels of log message, used for different levels of severity.

Log level Color Description

Debug Gray Step-by-step information for advanced debugging purposes

Verbose White Detailed information

Info Green General information

Warning Yellow Minor errors that might cause problems

Error Red Errors

Fatal Red Serious errors that crash the game

By default, the log displays messages for the level Info and higher. This means it doesn't display Debug
or Verbose messages. To change this, see Set the minimum level below.

Write a log message
In the script containing code you want to log, write:

You can replace Debug with the level you want to use for the log message (see Log levels above).

You can combine this with if statements to log this message under certain conditions (see Example
script below).

Set the log level
You can set a minimum log level to display. For example, if you only want to see messages as severe as
Warning or higher, use:

Log.Debug("My log message");

Log.ActivateLog(LogMessageType.Warning);

NOTE

This isn't a global setting. The log level you set only applies to the script you set it in.


1186 / 1211

Change the log level at runtime

Disable a specific log

Disable logging in the console

Create a log file
To save the log output to a text file, add this code to the Start method:

This creates a file in the Debug folder of your project (eg
MyGame\MyGame\Bin\Windows\Debug\myLogFile.txt).

Example script
The following script checks that the texture MyTexture is loaded. When the texture loads, the log displays
a debug message (Log.Debug). If it doesn't load, the log records an error message (Log.Error).

((Game)Game).ConsoleLogLevel = LogMessageType.myLogLevel;

GlobalLogger.GetLogger("RouterClient").ActivateLog(LogMessageType.Debug,
LogMessageType.Fatal, false);
// Disables logging of the RouterClient module

((Game)Game).ConsoleLogMode = ConsoleLogMode.None;

var fileWriter = new TextWriterLogListener(new FileStream("myLogFile.txt",
FileMode.Create));
GlobalLogger.GlobalMessageLogged += fileWriter;

using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Stride.Core.Diagnostics;
using Stride.Core.Mathematics;
using Stride.Input;
using Stride.Engine;
using Stride.Graphics;

namespace MyGame
{
 public class Script : SyncScript

1187 / 1211

See also
Debug text
Profiling
Scripts

 {
public Texture myTexture;

 public override void Start()
 {
 // Initialization of the script.
 Log.ActivateLog(LogMessageType.Debug);
 Log.Debug("Start loading MyTexture");

 myTexture = Content.Load<Texture>("MyTexture");
 if (myTexture == null)
 {
 Log.Error("MyTexture not loaded");
 }
 else
 {
 Log.Debug("MyTexture loaded successfully");
 }
 }
 }
}

1188 / 1211

Debug text
Beginner Programmer

You can print debug text at runtime with DebugText. For example, you can use this to display a message
when a problem occurs.

In the Update method of your script, add:

Where x and y are the pixel coordinates to display the text at.

The debug message is displayed when you run the game.

To hide debug text, use:

NOTE

Debug text is automatically disabled when you build the game in release mode.


DebugText.Print("My debug text",new Int2(x: 50, y: 50));

1189 / 1211

Example script
The following script checks that the texture MyTexture is loaded. If it isn't loaded, the game displays the
debug text "MyTexture not loaded".

See also
Logging
Scripts

DebugText.Visible = false;

using Stride.Core.Mathematics;
using Stride.Engine;
using Stride.Graphics;

namespace MyGame
{
 public class Script : SyncScript
 {

public Texture myTexture;

 public override void Start()
 {
 // Initialization of the script.
 myTexture = Content.Load<Texture>("MyTexture");
 }

 public override void Update()
 {

if (myTexture == null)
 DebugText.Print("MyTexture not loaded", new Int2(x: 50, y: 50));
 }
 }
}

1190 / 1211

Profiling
Beginner Programmer

You can profile your project to check its runtime performance and find problems. Use the Stride Game
Profiler script or an external profiling tool such as the Performance Profiler in Visual Studio.

Profile with the Stride Game Profiler script
The Game Profiler script shows how performance costs change at runtime. This helps isolate
bottlenecks and find their cause.

1191 / 1211

To use the script:

1. In the Asset View, click and select Scripts > Game Profiler.

2. The New script dialog opens. Leave the default information and click Create script.

Game Studio adds the GameProfiler script to your project.

3. Add the script to an entity. For instructions, see Use scripts.

4. Select the entity that contains the GameProfiler.

5. In the Property Grid (on the right by default), enable the Game Profiler component.

1192 / 1211

6. Run the game.

The Game Profiler shows profiling results as your game runs.

Game Profiler properties
To change the Game Profiler properties, select the GameProfiler entity and use the Property Grid.

Property Description

Filter The kind of information the profiler displays (FPS only, CPU, or GPU). At runtime,
change with F1.

Sort by Sort the result pages by:
Name: the profile key (the thing being profiled)

TIP

You can also enable and disable the profiler at runtime with Left Ctrl + Left Shift + P.


NOTE

Game Profiler disables VSync. This gives you the true profiling values, ignoring sync time.


1193 / 1211

Property Description

Time: the key that uses the most time

At runtime, toggle with F2.

Refresh interval
(ms)

How frequently the profiler gets and displays new results. At runtime, control with -
/ +.

Display page The results page displayed. At runtime, jump to a page with the number keys, or
move forward and backwards with F3 and F4.

Text color The color of the profiler text

Priority See Scheduling and priorities

Understanding the Game Profiler results
The top row displays information about basic performance.

Displaying: the kind of information the profiler displays (FPS only, CPU, or GPU)
Frame: the current frame
Update: the average time (ms) taken to update the game since the profiler last refreshed
Draw: the average time (ms) taken to render the frame since the profiler last refreshed
FPS: the average number of frames rendered per second

If you select CPU as the display mode, the profiler displays:

Total: the amount of memory currently used
Peak: the peak memory use since the game started
Allocations: the amount of memory allocated or freed since the profiler last refreshed
Gen0, Gen1, Gen1: the number of garbage collections per each generation of object (Gen0 is the most
recent generation)

If you select GPU as the display mode, the profiler displays:

Device: the graphics device (manufacturer's description)

1194 / 1211

Platform: the currently used backend (eg DirectX, OpenGL, Vulkan, etc)
Profile: the feature level for your game, set in Game Settings > Rendering (see Game settings)
Resolution: the game resolution
Drawn triangles: the number of triangles drawn per frame
Draw calls: the number of draw calls per frame
Buffer memory: the amount of memory allocated to buffers
Texture memory: the amount of memory allocated to textures

In the GPU and CPU modes, the profiler displays information about the parts of the code being profiled,
including active scripts.

Column Description

TOTAL The total time taken to execute the code in one frame

AVG/CALL Average time taken to execute a single call of the code

MIN/CALL The shortest amount of time taken to execute a single call of the code

MAX/CALL The longest amount of time taken to execute a single call of the code

CALLS The number of times the code was executed in one frame

MARKS The number of times per frame marked code is executed. This column is only
displayed if marked code is executed

PROFILE KEY /

EXTRA INFO

The part of the code (such as a function or script) being profiled. This column also
displays additional information, such as the number of entities affected.

Game Profiler runtime controls

NOTE

Each value describes the events per frame since the last profiler refresh.


1195 / 1211

You can change the Game Profiler settings at runtime using keyboard shortcuts.

Action Control

Left Ctrl + Left Shift + P Enable/disable the profiler

F1 Toggle between CPU, GPU, and FPS-only results

F2 Toggle between sorting by profile key and time

/ + | Slow down / speed up the refresh time F3 / F4 | Page back / page forward Number keys | Jump
to a page

Use the Game Profiler in code
Enable profiling:

Enable profiling only for the profiler keys you specify:

Enable the profiling except for the profiler keys you specify:

To access the prolifing key of a script, use ProfilingKey.

Use external profiling tools
Instead of using the Stride Game Profiler, you can use external profiling tools to profile your project.

Profiler Type Platforms

Visual Studio profiler Visual Studio feature Desktop and mobile

Xamarin Profiler Standalone tool distributed with Xamarin Studio Mobile

RenderDoc Standalone Desktop and mobile

Use the Visual Studio profiler

GameProfiler.EnableProfiling();

GameProfiler.EnableProfiling(true, {mykey1,mykey2});

GameProfiler.EnableProfiling(false, {mykey1,mykey2});

https://msdn.microsoft.com/en-us/library/mt210448.aspx
https://msdn.microsoft.com/en-us/library/mt210448.aspx
https://msdn.microsoft.com/en-us/library/mt210448.aspx
https://www.xamarin.com/profiler
https://www.xamarin.com/profiler
https://www.xamarin.com/profiler
https://renderdoc.org/builds
https://renderdoc.org/builds
https://renderdoc.org/builds

1196 / 1211

Visual Studio has powerful in-built profiling tools that can identify common performance issues.

1. In Visual Studio, open your project solution (.sln) file.

2. To open the profiler, press Alt + F2, or in the task bar click Analyze > Performance Profiler.

3. In the Profiler window, select the profiling tools you want to run.

You can run multiple profiling tools at once.

4. To launch the profiler, in the Performance Profiler tab, at the bottom, click Start.

1197 / 1211

Visual Studio runs your application and begins profiling.

For more information about the Visual Studio profiler, see the MSDN documentation .

Use RenderDoc
RenderDoc is a free MIT licensed stand-alone graphics debugger that allows quick and easy single-frame
capture and detailed introspection of any application using Vulkan, D3D11, OpenGL & OpenGL ES or
D3D12 across Windows, Linux, Android, or Nintendo Switch™.

1. Download RenderDoc .

2. Optional: This step is optional and only necessary if you want to have render pass markers with
name following the Graphics Compositor:

2.1. In your executable project (Windows), locate game.Run(); and insert the following code just
before:

game.GraphicsDeviceManager.DeviceCreationFlags |= DeviceCreationFlags.Debug;

NOTE

If you have a SharpDXException of type DXGI_ERROR_SDK_COMPONENT_MISSING, please follow the
instructions from https://docs.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-
runtime-and-visual-studio-graphics-diagnostic-features



https://msdn.microsoft.com/en-us/library/mt210448.aspx
https://msdn.microsoft.com/en-us/library/mt210448.aspx
https://msdn.microsoft.com/en-us/library/mt210448.aspx
https://renderdoc.org/builds
https://renderdoc.org/builds
https://renderdoc.org/builds
https://docs.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-runtime-and-visual-studio-graphics-diagnostic-features
https://docs.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-runtime-and-visual-studio-graphics-diagnostic-features
https://docs.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-runtime-and-visual-studio-graphics-diagnostic-features
https://docs.microsoft.com/en-us/windows/uwp/gaming/use-the-directx-runtime-and-visual-studio-graphics-diagnostic-features

1198 / 1211

2.2. Also, make sure profiler is enabled by calling this code from any of your game script:

3. Optional: Add a package reference to Stride.Graphics.RenderDocPlugin.

You can then use the @'Stride.Graphics.RenderDocManager' class to trigger captures:

Common bottlenecks
As CPU and GPU process different types of data, it's usually easy to identify which part is causing a
bottleneck.

Most GPU problems arise when the application uses expensive rendering techniques, such as post
effects, lighting, shadows, and tessellation. To identify the problem, disable rendering features.

If instead there seems to be a CPU bottleneck, reduce the complexity of the scene.

For graphics:

decrease the resolution of your game
reduce the quality of your post effects
reduce the number of lights and size of shadow maps
reduce shadow map sizes
use culling techniques to reduce the number of objects and vertices rendered

For textures:

use compressed textures on slower devices
use sprite sheets, not individual images
use texture atlases, not separate textures

See also
Profiling

GameProfiler.EnableProfiling();

var renderDocManager = new RenderDocManager();
renderDocManager.StartFrameCapture(GraphicsDevice, IntPtr.Zero);
// Some rendering code...
renderDocManager.EndFrameCapture(GraphicsDevice, IntPtr.Zero);

1199 / 1211

Unit Tests
Unit tests in Stride are set up like any other unit tests in dotnet, you create a new project specifically for
unit tests, then write your tests in different C# files.

Here's a bare-bone project to get you started: YOUR_PROJECT_NAME.Windows.Tests.csproj

And an example C# file:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <!-- Change this framework to match the one specified in your *.Windows.csproj -->
 <TargetFramework>net8.0-windows</TargetFramework>
 <RuntimeIdentifier>win-x64</RuntimeIdentifier>
 <OutputType>WinExe</OutputType>

 <OutputPath>..\Bin\Tests\Windows\$(Configuration)\</OutputPath>
 <AppendTargetFrameworkToOutputPath>false</AppendTargetFrameworkToOutputPath>

 <!-- Force msbuild to check to rebuild this assembly instead of letting VS IDE guess
-->
 <DisableFastUpToDateCheck>true</DisableFastUpToDateCheck>

 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>

 <IsPackable>false</IsPackable>
 <IsTestProject>true</IsTestProject>
 </PropertyGroup>
 <ItemGroup>
 <!-- Add a reference to your game project here, do not reference the windows project
here -->
 <PackageReference Include="coverlet.collector" Version="6.0.0"/>
 <PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.8.0"/>
 <PackageReference Include="xunit" Version="2.5.3"/>
 <PackageReference Include="xunit.runner.visualstudio" Version="2.5.3"/>
 </ItemGroup>
 <ItemGroup>
 <Using Include="Xunit"/>
 </ItemGroup>
</Project>

using Stride.Engine;

1200 / 1211

public class Tests
{
 [Fact]
 public void MyBareboneTest()
 {
 Assert.NotEqual(1, 2);
 }

 [Fact]
 public void MyGameTest()
 {
 RunGameTest(async (game, scene) =>
 {
 var myEntity = new Entity();
 scene.Entities.Add(myEntity);

 Assert.NotEmpty(scene.Entities);

 await game.Script.NextFrame(); // Wait one frame if you need to

 myEntity.Scene = null;

 Assert.Empty(scene.Entities);
 });
 }

 /// <summary>
 /// Run the given function within a game, providing support for tests requiring ECS,
physics simulation, graphics and others.
 /// </summary>
 private static void RunGameTest(Func<Game, Scene, Task> asyncFunction)
 {
 using var game = new Game();

 // Fixed time step to reduce framerate discrepancies
 game.IsFixedTimeStep = true;
 game.IsDrawDesynchronized = false;
 game.TargetElapsedTime = TimeSpan.FromTicks(10000000 / 60); // 60hz, 60fps

 game.Script.AddTask(async () =>
 {
 await asyncFunction(game, game.SceneSystem.SceneInstance.RootScene);
 game.Exit();
 });
 game.Run();

1201 / 1211

 }
}

1202 / 1211

Stride doesn't run
Prerequisites
If you're having trouble running Stride, make sure you've installed all the prerequisites:

.NET 8 SDK
Visual C++ Redistributable 2019 (or later)
.NET Framework 4.7.2 (required for the Visual Studio plugin)
Visual Studio or Build Tools (optional but recommended)

Alternatively, uninstall Stride, restart the Stride installer, and install the prerequisites when prompted.

.NET SDK 8.0

.NET SDK 8.0 should have been installed by Stride prerequisite installer, if Visual Studio 2022 didn't do it
previously.

If for some reason you need to install it manually, you can use this link and select the latest .NET 8 SDK
for Windows.

Visual C++ Redistributable 2019 (or later)
To check if this is installed, see Control Panel > Programs > Programs and Features and look for
2015-2019 Redistributable.

If it's not installed, you can download the Redistributable from Visual Studio Downloads (under Other
Tools and Frameworks). Make sure to install both x86 and x64 versions.

https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

1203 / 1211

.NET Framework 4.7.2 (or later)
To check if this is installed, follow the instructions on this page .

If it's not installed, you can download it from the Microsoft Download Center .

Visual Studio 2022 (optional)
If you have Visual Studio 2022 (or later) installed, you need to have the following workloads and/or
components installed:

.NET desktop development with Development tools for .NET optional component enabled.

Build Tools for Visual Studio 2022 (optional)
If you don't have Visual Studio installed and don't want to install it, you can install Build Tools for
Visual Studio instead. You can download this from Visual Studio Downloads (under Tools for Visual
Studio).

You need to have the following workloads and/or components installed:

.NET desktop build tools with .NET SDK optional component enabled.

NOTE

If you see 2015-2022 Redistributable instead, it's ok. Since 2015, they are cumulative. Just make
sure the last year is at least 2019.



NOTE

If you have .NET 4.8 installed, you don't need to install .NET 4.7.2. Each 4.x version is cumulative.


NOTE

Earlier versions might work with older version of Stride. However, for Stride 4.2 and later you only
need to have .NET 8 SDK installed.



https://learn.microsoft.com/en-us/dotnet/framework/migration-guide/how-to-determine-which-versions-are-installed
https://learn.microsoft.com/en-us/dotnet/framework/migration-guide/how-to-determine-which-versions-are-installed
https://learn.microsoft.com/en-us/dotnet/framework/migration-guide/how-to-determine-which-versions-are-installed
https://dotnet.microsoft.com/en-us/download/dotnet-framework
https://dotnet.microsoft.com/en-us/download/dotnet-framework
https://dotnet.microsoft.com/en-us/download/dotnet-framework
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

1204 / 1211

See also
Install Stride

NOTE

If you don't need Visual Studio, don't worry – it doesn't install it.


1205 / 1211

Default value changes ignored at runtime
When you add a script to your project as a component, Game Studio lists its public variables in the
Property Grid. These are the values used at runtime.

However, if you then change the default value in the script, Game Studio doesn't update the component
with the new value.

For example, imagine you have a script with the variable SpeedFactor with a default value of 5.0f. You
add the script to the project as a component. Now, in the script, you change the default value of the
SpeedFactor variable to 6.0f, save the script, and run the project. Game Studio doesn't update the
component with the script changes, so the speed SpeedFactor value is still 5.0f.

Fix
In your project, delete and re-add the script component.

Alternatively, if you want Game Studio to update the values in the component properties after you
change them in the script, you can do this with additional code. You need to add a new line of code for
every property you want this to apply to.

1. Add using System.ComponentModel at the top of the script.

2. Above the variable you want to update, add [DefaultValue()]. For example, if the variable is
SpeedFactor, use:

When you change the value, update both the SpeedFactor and the DefaultValue to the same value.

[DefaultValue(6.0f)]
public float SpeedFactor { get; set; } = 6.0f;

NOTE

This doesn't work in both directions. If you set a value other than the DefaultValue in the Property
Grid, Game Studio saves the value in the asset and overrides the default value at runtime.



1206 / 1211

Lights don't cast shadows
If you've enabled shadows on a light in your scene, but it isn't casting shadows, make sure you have
enough space in the shadow atlas. You might need to reduce the size of the shadows in the properties of
your light components to create room.

For more information about shadows and the shadow atlas, see Graphics - Shadows.

Shadow atlas comparison
Size: 2x Size: 1x

This light source uses the entirety of the shadow atlas.
This means other lights won't cast shadows, as there's
no room left in the atlas.

This light source uses one quarter of the
shadow atlas. The rest can be allocated to
other light sources.

Reduce the shadow size
1. In the Scene Editor, select an entity with a light that casts a shadow.

2. In the Light component properties, under Shadow > Size, reduce the size of the shadow using the
drop-down menu.

1207 / 1211

Alternatively, disable shadows on the light entirely by clearing the Shadows checkbox.

Repeat these steps for as many light entities as you need to create space in the shadow atlas.

See also
Graphics — Shadows
Graphics — Directional lights

1208 / 1211

Full call stack not available
Depending on your Visual Studio settings, when an exception is thrown in Stride, Visual Studio might
only show the call stack from the Stride runtime .DLL files or .NET framework assemblies, not user code.

To break as soon as an exception is thrown, add additional conditions to the Visual Studio Exception
Settings.

1. In the Visual Studio toolbar, under the Debug menu, select Windows > Exception Settings.

2. Expand Common Language Runtime Exceptions and select All Common Language Runtime
Exceptions not in this list. You might need to select other conditions too.

1209 / 1211

For more information about managing exceptions in Visual Studio, see Manage exceptions with the
debugger in Visual Studio in the Microsoft Visual Studio documentation.

TIP

To restore the default list of exceptions, right-click and select Restore Defaults.


https://docs.microsoft.com/en-us/visualstudio/debugger/managing-exceptions-with-the-debugger
https://docs.microsoft.com/en-us/visualstudio/debugger/managing-exceptions-with-the-debugger
https://docs.microsoft.com/en-us/visualstudio/debugger/managing-exceptions-with-the-debugger
https://docs.microsoft.com/en-us/visualstudio/debugger/managing-exceptions-with-the-debugger

1210 / 1211

Error: "A SceneCameraRenderer in use has no
camera assigned to its [Slot]. Make sure a camera
is enabled and assigned to the [Slot]."

This error means there's no camera available for the scene renderer to use. This has several possible
causes:

there's no enabled camera
the camera is set to the wrong camera slot
there are multiple enabled cameras assigned to the same camera slot

Fix
If you create your camera components in Game Studio, make sure:

the camera slots are set to the Main slot (see Graphics — Camera slots)
only the initial camera is enabled

If you create your camera components in code, make sure you retrieve the correct slot from the graphics
compositor. Use:

To change the camera at runtime, toggle the Enabled property.

NOTE

In earlier versions of Stride, this error message was: "A SceneCameraRenderer in use has no camera
set. Make sure the camera component to use is enabled and has its [Slot] property correctly set."



var camera = new CameraComponent();
camera.Slot = SceneSystem.GraphicsCompositor.Cameras[0].ToSlotId();

NOTE

Make sure you:

always have at least one enabled camera

don't have multiple cameras enabled and assigned to the same slot at the same time



1211 / 1211

See also
Graphics — Camera slots
Graphics — Cameras

	Manual
	Requirements
	Stride for Unity® developers
	Stride Launcher
	Get started
	Install Stride
	Visual Studio extension
	Update Stride
	Launch Stride
	Create a project
	Game Studio
	Assets
	Create assets
	Use assets

	Scenes
	Create a scene
	Add entities
	Manage entities
	Navigate in the Scene Editor

	Launch a game

	Animation
	Import animations
	Animation properties
	Set up animations
	Preview animations
	Animation scripts
	Additive animation
	Procedural animation
	Custom blend trees
	Model node links
	Custom attributes

	Audio
	Import audio
	Audio asset properties
	Non-spatialized audio
	Spatialized audio
	Audio emitters
	Audio listeners
	HRTF

	Stream audio
	Global audio settings
	Play a range within an audio file
	Custom audio data
	Set an audio device

	Engine
	Assets
	Asset bundles
	Asset control

	ECS (Entity Component System)
	Usage
	Manage entities
	Flexible processing

	File system
	Build pipeline
	Asset introspection

	Files and folders
	Project structure
	Cached files
	Version control
	Distribute a game

	Game Studio
	Scenes
	Create and open a scene
	Navigate in the Scene Editor
	Manage scenes
	Load scenes
	Add entities
	Manage entities

	Assets
	Create assets
	Manage assets
	Use assets
	Archetypes

	Prefabs
	Create a prefab
	Use prefabs
	Edit prefabs
	Nested prefabs
	Override prefab properties
	Prefab models

	Game settings
	Splash screen

	World units

	Graphics
	Cameras
	Camera slots
	Animate a camera with a model file

	Materials
	Material maps
	Attributes
	Geometry attributes
	Shading attributes
	Misc attributes
	Clear-coat shading

	Layers
	Slots
	Materials for developers

	Textures
	Normal maps
	Compression
	Streaming
	Skyboxes and backgrounds

	Lights and shadows
	Add a light
	Point lights
	Ambient lights
	Directional lights
	Skybox lights
	Spot lights
	Light probes
	Light shafts
	Shadows
	Voxel Cone Tracing GI

	Post effects
	Anti-aliasing
	Ambient occlusion
	Bloom
	Bright filter
	Color transforms
	Film grain
	Gamma correction
	ToneMap
	Vignetting
	Custom color transforms

	Depth of field
	Lens flare
	Light streaks
	Local reflections

	Graphics compositor
	Scene renderers
	Custom scene renderers

	Debug renderers
	Render textures
	Render group and masks

	Effects and shaders
	Effect language
	Shading language
	Classes, mixins and inheritance
	Composition
	Templates
	Automatic shader stage input/output
	Shader stages

	Custom shaders
	Compile shaders

	Low-level API
	Textures and render textures
	Pipeline state
	Resource binding
	Draw vertices
	SpriteBatch
	SpriteFont

	Rendering pipeline
	Render features
	Render stages

	Sprite fonts
	Graphics API

	Input
	Gamepads
	Gestures
	Keyboards
	Mouse
	Pointers
	Sensors
	Virtual buttons

	Navigation
	Navigation groups
	Navigation meshes
	Navigation bounding boxes
	Navigation components
	Dynamic navigation

	Particles
	Create particles
	Emitters
	Shapes
	Ribbons and trails

	Materials
	Spawners
	Initializers
	Updaters

	Tutorials
	Particle materials
	Inheritance
	Lasers and lightning
	Create a trail
	Custom particles

	Physics [WIP]
	Configuration
	Simulation
	Collidables
	Statics
	Bodies
	Kinematic Bodies
	Characters

	Collider shapes
	Triggers
	Constraints
	Physics Queries
	Physics Update
	Tutorials
	Create a bouncing ball
	Script a trigger

	Physics jitter

	Physics Bullet
	Colliders
	Static colliders
	Rigidbodies
	Kinematic rigidbodies
	Characters
	Collider shapes
	Triggers
	Constraints

	Raycasting
	Simulation
	Tutorials
	Create a bouncing ball
	Script a trigger

	Physics jitter

	Platforms
	Linux
	Setup and requirements
	Create a Linux game

	UWP
	Xbox Live

	iOS
	Add or remove a platform
	Set the graphics platform

	Scripts
	Types of script
	Create a script
	Use a script
	Public properties and fields
	Serialization
	Scheduling and priorities
	Events
	Debugging
	Preprocessor variables
	Create a model from code
	Create Gizmos for your components
	Create Custom Assets
	Best Practice

	Sprites
	Import sprite sheets
	Edit sprites
	Set sprite borders

	Use sprites

	UI
	Pages
	Libraries
	Editor
	Add a UI to a scene
	Layout system

	Video
	Set up a video
	Video properties
	Use a video as a skybox

	Virtual reality
	Enable VR
	Preview a scene in VR
	Overlays
	Display a UI in an overlay

	VR sickness

	NuGet
	Consume Packages
	Create Packages

	Extensibility
	C# Libraries

	Troubleshooting
	Logging
	Debug text
	Profiling
	Unit Tests
	Stride doesn't run
	Default value changes ignored at runtime
	Lights don't cast shadows
	Full call stack not available
	Error: A SceneCameraRenderer in use has no camera assigned to its [Slot]. Make sure a camera is enabled and assigned to the [Slot]

