Stride manual

m-r = M = W . -

+ ol al +lr Bl efe L f

Srapa ®

These pages contain information about how to use Stride, an open-source C# game engine.

(0 NOTE

The Stride manual is under construction and is regularly updated with new content. Follow Stride on
X&' for documentation updates.

Latest documentation

Recent updates
Manual

® Updated Graphics - Materials - Materials for developers - Modifying parameters at runtime added
o Scripts - Best Practises docs added

o Physics - Bepu Physics docs added

e Updated Bullet Physics - Bullet Physics docs moved

Tutorials

e Updated Tutorials - Quick Tutorails section added

171211

https://x.com/stridedotnet?s=20
https://x.com/stridedotnet?s=20
https://x.com/stridedotnet?s=20
https://x.com/stridedotnet?s=20

Contributing

e Updated Contributing - Roadmap - GitHub Project - Roadmap link added

Previous updates
Manual

e Updated Files and Folders - Game distribution steps updated

® Updated Scripts - Types of script - Asynchronous script example improved

o Scripts - Gizmos - Description and example of the Flexible Processing system

o ECS - Flexible Processing - Description and example of the Flexible Processing system

® Updated Linux - Setup and requirements - Fedora OS option added

o Scripts - Serialization - Explanation of serialization

e Updated Scripts - Public properties and fields - Content improvements and additions

o Engine - Entity Component model - Usage - Explanation of ECS usage

e Updated Engine - Entity Component model - Content improvements

Updated Stride for Unity® developers - Content improvements

Tutorials

® Updated Tutorials - Added lesson counts and total length

Contributing

o Contributing - Core Team - The Stride core team

e Updated Contributing - Roadmap - Status added

Improve this documentation

The Stride documentation is open source, so anyone can edit it. If you find a mistake, you can correct it
or comment in GitHub.

To edit any page of this manual, click the Edit this page link at the bottom. Please make sure to follow
the writing_guidelines.

Stride community toolkit

Check out our Stride community toolkit® for additional helpers and extensions.

2/121

https://github.com/stride3d/stride-docs
https://github.com/stride3d/stride-docs
https://github.com/stride3d/stride-docs
https://stride3d.github.io/stride-community-toolkit/index.html
https://stride3d.github.io/stride-community-toolkit/index.html
https://stride3d.github.io/stride-community-toolkit/index.html

Development Requirements

General requirements

To develop projects with Stride, you need:

Requirement Specifications

Hard drive space 5GB

Operating system Windows 10, 11 [see (1)]

CPU x64

GPU Direct3D 10+ compatible GPU

RAM 4GB (minimum), 8GB (recommended) [see (2)]
.NET SDK 8+ [see (3)]

(1) Earlier versions of Windows may work but are untested.
(2) RAM requirements vary depending on your project:

e Developing simple 2D applications doesn't require much RAM.
e Developing 3D games with lots of assets requires larger amounts of RAM.

(3) .NET SDK is being downloaded with the Stride installer.

Mobile development requirements

To develop for mobile platforms, you also need:

Platform Requirements
Android Xamarin [see (4)]
i0S Mac computer, Xamarin [see (4)]

(4) Xamarin is included with Visual Studio installations. For instructions on installing Xamarin with Visual
Studio, see this MSDN page®.

Running Stride Games
To run games made with Stride, you need:

3/1211

https://docs.microsoft.com/en-us/visualstudio/cross-platform/setup-and-install
https://docs.microsoft.com/en-us/visualstudio/cross-platform/setup-and-install
https://docs.microsoft.com/en-us/visualstudio/cross-platform/setup-and-install

e _NET 8 if your application is not self-contained#
e DirectX11 (included with Windows 10 and later), OpenGL, or Vulkan depending on the platform, and

the graphics API override set in your .csproj
e Visual C++ 2015 runtimes (x86 and/or x64, depending on what you set in your project properties in

Visual Studio)

Supported Platforms

For information about platforms Stride supports, see Platforms.

4/1211

https://learn.microsoft.com/en-us/dotnet/core/deploying/#publish-self-contained
https://learn.microsoft.com/en-us/dotnet/core/deploying/#publish-self-contained
https://learn.microsoft.com/en-us/dotnet/core/deploying/#publish-self-contained

Stride for Unity® developers

Stride and Unity® both use C# and share many concepts, with a few major differences.

< »

The Stride editor is Game Studio. This is the equivalent of the Unity® Editor.

@ Unitye

N\

W

HIERARCHY INSPECTOR
WINDOW 3 WINDOW:-

e =
v

PROJECT
WINDOW

DOW

5/1211

ASSET PROPERTY
EDITOR GRID

\‘

< T
= SOLUTION | _ _ | ASSET ASSET
" EXPLORER i = VIEW PREVIEW

You can customize the Game Studio layout by dragging tabs, similar to Visual Studio.

For more information about Game Studio, see the Game Studio page.

Terminology

Unity® and Stride use mostly common terms, with a few differences:

Unity® Stride

Hierarchy Window Entity Tree

Inspector Window Property Grid

Project Window Asset View

Scene View Scene Editor

GameObject Entity

MonoBehaviour™ SyncScript, AsyncScript, StartupScript

Folders and files

Like Unity®, Stride projects are stored in a directory that contains:

6/1211

https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

e The project .sln solution file, which you can open with Game Studio or any IDE such as Visual Studio

e A MyGame.Game folder with project source files, dependencies, resources, configurations, and
binaries

w MyGame
Assets
Ein
MyGame Game
MyGame.Platform
ohj

Resources

e Assets contains asset configuration files.

e Bin contains the compiled binaries and data. Stride creates the folder when you build the project,
with a subdirectory for each platform.

e MyPackage.Game contains your source code.

o MyPackage.Platform contains additional code for the platforms your project supports. Game
Studio creates folders for each platform (e.g. MyPackage Windows, MyPackage.Linux, etc.). These
folders are usually small and only contain the entry point of the program.

e obj contains cached files. Game Studio creates this folder when you build your project. To force a
complete asset and code rebuild, delete this folder and build the project again.

e Resources is the recommended location for storing source files for your project, such as textures,
models, and audio files.

Stride and Unity® differ in the following ways:

e Stride doesn't automatically copy resource files to your project folder when you import them into
assets. You have to do this yourself. We recommend you save them in the Resources folder.

e Stride doesn't require resource files and asset files to be in the same folder. You can save resource
files in the Assets folder if you want, but instead, we recommend you save them in the Resources
folder. This makes sharing your project via version control easier.

For more information about project structure in Stride, including advice about how to organize and
share your files, see the Project structure page.

Open the project directory from Game Studio

You can open the project directory from Project > Show in explorer in Game Studio.

7/1211

File Edit Project View
™ e H i Build project
MainScene b Start project
+ |

Folder

¥ (1 MainScen
LLL W Create folder

b W Coins

P B Globalli i'm Add dependency...
P B LootCrat ,—

| Set as current project
v [l Platform
v W Grid

P 8 Grid) new project..
b @ Gid | Add existing project...
b & Grid
b & Grid
b @ Grid Actions
v % Grid Delete

Package

. Package properties

Solution

4] Open in IDE

H Gri] Rename

P @ Grid Acset
P @ Grid 4 Add asset.. Ctrl+1
b & Grd [? Update selected assets from their sourceCtrl+Shift+R
b @ Gridl 2
» @ Gridl Explore
b 4 Gridl [«% Show in Explorer

P Walls

b & PlayerCharacter

cH Highlight

LT Gamelogic

Navigation bounding box

Game settings

Unity ® saves global settings in separate assets (i.e. Graphics Settings, Quality Settings, Audio Manager,
and so on).

Stride saves global settings in a single asset, the Game Settings asset. You can configure:

The default scene

Rendering settings

Editor settings

Texture settings

8/1211

e Physics settings
e Overrides

To use the Game Settings asset, in the Asset View, select GameSettings and view its properties in the
Property Grid.

Property grid

0 Game Settings GameSettings

B

I o _
Default Scene Frmore

¥ Rendering Settings

Default Back Buffer Wi... &40
Default Back Buffer He... 1136
Adapt Back Buffer To 5...
Default Graphics Profile Direct3D 0.3
Color Space Linear
Display Orientation Portrait
Target graphics platform Default

Editor Settings

Texture Settings

Physics Settings

Owverrides

Platform Filters

Scenes

Like Unity®, in Stride, you place all objects in a scene. Game Studio stores scenes as separate .sdscene
assets in your project directory.

Set the default scene

You can have multiple scenes in your project. The scene that loads up as soon as your game starts is
called the Default Scene.

To set the default scene:

1. In the GameSettings properties, next to Default Scene, click (Select an asset).

9/1211

Property grid

0 Game Settings GameSettings

I

Default Scene MainScene

The Select an asset window opens.
2. Select the default scene and click OK.

For more information about scenes, see Scenes.

Entities vs GameObjects

In Unity ®, objects in the scene are called GameObjects. In Stride, they're called entities.

Like GameObjects, entities are carriers for components such as transform components, model

components, audio components, and so on. If you're used to working with GameObjects in Unity®, you
should have no problem using entities in Game Studio.

Entity components

In Stride, you add components to entities just like you add components to GameObjects in Unity®.

10/1211

To add a component to an entity in Game Studio:
1. Select the entity you want to add the component to.

2. In the Property Grid (on the right by default), click Add component and select the component
from the drop-down list.

Property grid

0 No selection

I

Mame PlayerCharacter

Group Group0

Add component

Transform component

Like GameObjects in Unity®, each entity in Stride has a Transform component which sets its position,

rotation, and scale in the world.

Property grid

O Mo selection

I

Name PlayerCharacter

Group Group0

Add component

¥ 1 Transform

Position

Rotation

Scale

All entities are created with a Transform component by default.

In Stride, Transform components contain a LocalMatrix and a WorldMatrix that are updated in every
Update frame. If you need to force an update sooner than that you can use

11/1211

TranformComponent.UpdateLocalMatrix(), Transform.UpdateWorldMatrix(), or
Transform.UpdateLocalFromWorld() to do so, depending on how you need to update the matrix.

Local Position/Rotation/Scale

Stride uses position, rotation, and scale to refer to the local position, rotation, and scale.

Unity® Stride
transform.localPosition Transform.Position
transform.localRotation Transform.Rotation
transform.localScale Transform.Scale
transform.localEulerAngles Transform.RotationEulerXYZ

World Position/Rotation/Scale

In comparison to Unity, many of the Transform component's properties related to its location in the
world have been moved to the WorldMatrix.

Unity® Stride

transform.position Transform.WorldMatrix.TranslationVector
transform.rotation N/A

transform.scale N/A

transform.eulerAngles Transform.WorldMatrix.DecomposeXYZ(out Vector3 rotation)
transform.scale and Transform.WorldMatrix.Decompose(out Vector3 scale, out
transform.position Vector3 translation)

transform.scale, Transform.WorldMatrix.Decompose(out Vector3 scale, out
transform.rotation, and Quaternion rotation, out Vector3 translation)

transform.position

12/1211

(0 NOTE

WorldMatrix is only updated after the entire Update loop runs, which means that you may be
reading outdated data if that object's or its parent's position changed between the previous frame
and now. To ensure you're reading the latest position and rotation, you should force the matrix to
update by calling Transform.UpdateWorldMatrix() before reading from it.

Transform Directions

Unlike Unity, Stride provides a Backward, Left, and Down property. Note that those are matrix properties,
so setting one of those is not enough to properly rotate the matrix.

Unity® Stride
Transform.WorldMatrix.Forward

transform.forward

transform.forward * -1 Transform.WorldMatrix.Backward

transform.right Transform.WorldMatrix.Right
transform.right * -1 Transform.WorldMatrix.Left
transform.up Transform.WorldMatrix.Up
transform.up * -1 Transform.WorldMatrix.Down
(i) NOTE

See note in World Position/Rotation/Scale

Assets

In Unity®, you select an asset in the project browser and edit its properties in the Inspector tab.

Stride is similar. You select an asset in the Asset View and edit its properties in the Property Grid.

13/1211

2= FirstPersonShooter.sin - Xenko GameStudio 1.9.3-beta

iew Help

Source
Pivot Pasition
Scale Import

¥ Materials

} enkologo

Solution explorer ~ 0 > Assetview

o Add asset

Box3xTxl
Model

s
=
—
%

7
WallOx2x5

Urk: Models/Stairstx1x2 2 Model
Type: Model
 Included to build as dependency

BESENE Asscterrors (0) Output

10 items (1 selected)

For certain types of assets, Game Studio also has dedicated editors:

e prefabs

e scenes

e sprite sheets
e Ul pages

e Ul libraries
e scripts

To open the dedicated editor for these types of assets:

e double-click the asset, or
e right-click the asset and select Edit asset, or
e select the asset and type Ctrl + Enter

The editor opens in a new tab. You can arrange the tabs how you like, or float them as separate windows,
just like tabs in web browsers.

File Edit Project View

SErA OO9C e b

MainScene X Core/ClickResult Textures/SpnteSheet MNorthernChunk GndBase10x10 (13)

14 /1211

(0 NOTE

When you modify resource files outside Game Studio, the corresponding assets update
automatically in Game Studio.

Scriptable Objects

See the Custom Assets page.

Import assets

To import an asset, drag it from Explorer to the Asset View. You can also click an Add asset button,
navigate to the desired file, and specify the type of asset you want to import.

As soon as you add an asset to your project, you can edit its properties in the Property Grid.

Jump_Loop Jump_Start Run Walk
Animation Animation Animation Animation Animation

(0 NOTE

Unlike Unity®, Stride doesn't automatically copy resource files to the project directory when you
import them to projects.

Supported file formats

Like Unity®, Stride supports file formats including:

Asset type Supported formats
Models, animations, skeletons .fbx, .dae, .3ds, .obj, .blend, .x, .md2, .md3, .dxf
Sprites, textures, skyboxes .dds, .jpg, .jpeg, .png, .gif, .bmp, .tga, .psd, .tif, .tiff

15/1211

Asset type Supported formats

Audio .wav, .mp3, .ogg, .aac, .aiff, .flac, .mda, .wma, .mpc
Fonts .ttf, Lotf
Video .mp4

For more information about assets, see Assets.

Prefabs

Like Unity®, Stride uses prefabs. Prefabs are "master" versions of objects that you can reuse wherever

you need. When you change a prefab, every instance of the prefab changes too.

Just like with Unity ®, in Stride, you can add prefabs to other prefabs. These are called nested prefabs. If
you modify a nested prefab, all the dependent prefabs inherit the change automatically.

For example, imagine you create a Vehicle prefab with acceleration, braking, steering, and so on. Then
you nest the Vehicle prefab inside prefabs of different types of vehicles: a taxi, bus, truck, etc. If you
adjust a property in the Vehicle prefab, the changes are inherited by all other prefabs. For example, if you

16 /1211

increase the Acceleration property in the Vehicle prefab, the acceleration property in the taxi, bus, and
truck prefabs also increase.

For more information about using prefabs in Stride, see Prefabs.

Archetypes

Archetypes are master assets that control the properties of assets you derive from them. Derived assets
are useful when you want to create a "remixed" version of an asset. This is similar to prefabs.

For example, imagine we have three sphere entities that share a material asset named Metal. Now
imagine we want to change the color of only one sphere, but keep its other properties the same. We
could duplicate the material asset, change its color, and then apply the new asset to only one sphere. But
if we later want to change a different property across all the spheres, we have to modify both assets. This
is time-consuming and leaves room for mistakes.

The better approach is to derive a new asset from the archetype. The derived asset inherits properties
from the archetype and lets you override individual properties where you need them. For example, we
can derive the sphere's material asset and override its color. Then, if we change the gloss of the
archetype, the gloss of all three spheres changes.

File Edit Project View Help

S8B-"SF R S5c w9~

InitialScene/Scene X = Property grid

sen Nl - y &) A, - . ~
+ i o S G# &, © © Material FinalScene/Copper

]

Scene settings
FinalScene/Metal
Camera

nal light
5 . ¥ Geometry
ctional light
nd
B Metal
P Gold
'@ Copper

¥ Shading
b Diffuse Map
P Diffuse Map B =rrrocrco
Lambert
Metalness Map
Solution € 1 X Assetview
ER & H + Add asset " Microfacet
¥ Solution 'Matenial>* - Schlick
v B Material5* : - . Schlick-GGX
v & Assets*

B FinalScene*

. . GGX

Copper*
Material

P External Packages = _
- Assetview | Asset errors (0) Output

Ready 3 items (1 selected)

17 /1211

You can derive an asset from an archetype, then in turn derive another asset from that derived asset. This
way you can create different layers of assets to keep your project organized:

Archetype
Derived asset
Derived asset

For more information about archetypes, see Archetypes.

Object Life Time

Entities and components are not destroyed in Stride, they are removed from the scene they exist in and
then freed by the Garbage Collector.

This seemingly small difference significantly changes how objects are managed within the engine. For
example, entities can be removed from a scene, kept as a reference in a component, and added back
into another scene later on. Components can be removed from an entity and added onto another
without losing its internal state.

Input

Stride supports a variety of inputs. The code samples below demonstrate the difference in input code
between Stride and Unity ®.

For more information about Input in Stride, see Input.

Unity ®

void Update()
{

// true for one frame in which the space bar was pressed
if (Input.GetKeyDown(KeyCode.Space))

{
// Do something.

// true while this joystick button is down
if (Input.GetButton("joystick button 0"))

{
// Do something.

float horiz = Input.GetAxis("Horizontal™);
float vert = Input.GetAxis("Vertical");

18/1211

https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://learn.microsoft.com/en-us/dotnet/standard/garbage-collection/

// Do something else.

}
Stride

public override void Update()
{

// true for one frame in which the space bar was pressed

if (Input.IsKeyDown(Keys.Space))

{

// Do something.

}

// true while this joystick button is down

if (Input.GameControllers[@].IsButtonDown(0))

{

// Do something.

}

float horiz = (Input.IsKeyDown(Keys.Left) ? -1f : @) + (Input.IsKeyDown(Keys.Right) ? 1f
1 0);

float vert = (Input.IsKeyDown(Keys.Down) ? -1f : @) + (Input.IsKeyDown(Keys.Up) ? 1f
:09);

// Do something else.
}

Time

Unity ® Stride
Time.deltaTime Game.UpdateTime.WarpElapsed.TotalSeconds
Time.unscaledDeltaTime Game.UpdateTime.Elapsed.TotalSeconds
Time.realtimeSinceStartup Game.UpdateTime.Total.TotalSeconds
Time.timeScale Game.UpdateTime.Factor
Time.fixedDeltaTime myRigidbodyComponent.Simulation.FixedTimeStep

Physics

Just like Unity®, Stride has three types of colliders:

19/1211

e static colliders
e rigidbodies
e characters

They're controlled by scripts in slightly different ways.

Kinematic rigidbodies

Unity ®
public class KinematicX : MonoBehaviour
{
public Rigidbody rigidBody;
void Start()
{
// Initialization of the component.
rigidBody = GetComponent<Rigidbody>();
}
void EnableRagdoll()
{
rigidBody.isKinematic = false;
rigidBody.detectCollisions = true;
}
void DisableRagdoll()
{
rigidBody.isKinematic = true;
rigidBody.detectCollisions = false;
}
}
Stride

public class KinematicX : SyncScript

{
public RigidbodyComponent rigidBody;

public override void Start()

{

// Initialization of the component.
rigidBody = Entity.Get<RigidbodyComponent>();

20/1211

public override void Update()

{
// Perform an update every frame.
}
void EnableRagdoll()
{
rigidBody.IsKinematic = false;
rigidBody.ProcessCollisions = true;
}
void DisableRagdoll()
{
rigidBody.IsKinematic = true;
rigidBody.ProcessCollisions = false;
}

For more information about rigidbodies in Stride, see Rigidbodies.

Triggers
Unity ®

// Occurs when game objects go through this trigger.
void OnTriggerEnter(Collider Other)

{
Other.transform.localScale = new Vector3(2.0f, 2.0f, 2.0f);

// Occurs when game objects move out of this trigger.
void OnTriggerExit(Collider Other)

{
Other.transform.localScale = new Vector3(1l.ef, 1.0f, 1.0f);

Stride

var trigger = Entity.Get<PhysicsComponent>();
trigger.ProcessCollisions = true;

// Start state machine.
while (Game.IsRunning)

{
// 1. Wait for an entity to collide with the trigger.

21 /1211

Collision firstCollision = await trigger.NewCollision();

PhysicsComponent otherCollider = trigger == firstCollision.ColliderA
? firstCollision.ColliderB
: firstCollision.ColliderA;

otherCollider.Entity.Transform.Scale = new Vector3(2.0f, 2.0f, 2.0f);

// 2. Wait for the entity to exit the trigger.
Collision collision;

do
{
collision = await trigger.CollisionEnded();
}
while (collision != firstCollision);

otherCollider.Entity.Transform.Scale = new Vector3(l.0f, 1.0f, 1.0f);

For more information about triggers in Stride, see Triggers

Raycasting
Unity ®

public static Collider FindGOCameraIsLookingAt()

{
int distance = 50;
// Cast a ray and set it to the mouse cursor position in the game
Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
RaycastHit hit;
if (Physics.Raycast(ray, out hit, distance))
{
// Draw invisible ray cast/vector
Debug.DrawLine(ray.origin, hit.point);
// Log hit area to the console
Debug.Log(hit.point);
return hit.collider;
}
return null;
}

Stride

22 /1211

public static bool ScreenPositionToWorldPositionRaycast(Vector2 screenPos, CameraComponent
camera, Simulation simulation)

{

Matrix invViewProj = Matrix.Invert(camera.ViewProjectionMatrix);

Vector3 sPos;

sPos.X = screenPos.X * 2f - 1f;
sPos.Y = 1f - screenPos.Y * 2f;
sPos.Z = of;

Vector4 vectorNear = Vector3.Transform(sPos, invViewProj);

vectorNear /= vectorNear.W;

sPos.Z = 1f;
Vector4 vectorFar = Vector3.Transform(sPos, invViewProj);
vectorFar /= vectorFar.W;

HitResult result = simulation.Raycast(vectorNear.XYZ(), vectorFar.XYZ());
return result.Succeeded;

For more information about Raycasting in Stride, see Raycasting.

Scripts

Stride saves scripts in a subfolder in the MyGame.Game folder in the project directory.

To open a script in the Game Studio script editor, double-click it in the Asset View. The script editor has
syntax highlighting, auto-completion, and live diagnostics.

AnimationBlend : SyncScript, IBlendTreeBuilder

ponent™)]
nent AnimationComponent;

AnimationClip Animationl;

[Display(“Animation 2")]
ip Animation2;

tange(@, 1, 0.001, ©.1)]
"Blend Lerp™}]
BlendlLerp = 8.5t;

2371211

You can also edit scripts in other IDEs, such as Visual Studio. When you edit a script in an external IDE,
Stride reloads it automatically.

If you install the Visual Studio plug-in during the Stride installation, you can open your project in Visual
Studio from Game Studio. To do this, in the Game Studio toolbar, click Open in IDE.

File Edit Project View Help
Tl O 9 |

MainScene x

Alternatively, right-click the script in the Asset View and click Open asset file:
Cor
Fold Explore
. Open with text editor

B8 Open source file

C’ B Show in Explorer
[l l - I

MyScript Prefablnstance Script
Script Source... Script Source... Script Source...

Event functions (Start, Update, Execute, etc)
In Unity®, you work with MonoBehaviours with Start(), Update(), and other methods.

Instead of MonoBehaviours, Stride has three types of scripts: SyncScript, AsyncScript, and StartupScript.
For more information, see Types of script.

Unity® MonoBehaviour

public class BasicMethods : MonoBehaviour

{
void Start() { }
void OnDestroy() { }
void Update() { }

}

Stride SyncScript

24 /1211

public class BasicMethods : SyncScript

{
public override void Start() { }
public override void Cancel() { }
public override void Update() { }
}

Stride AsyncScript

public class BasicMethods : AsyncScript

{
// Declared public member fields and properties that will appear in the game studio
public override async Task Execute()
{
while (Game.IsRunning)
{
// Do stuff every new frame
await Script.NextFrame();
}
}
public override void Cancel()
{
// Cleanup of the script
}
}

Stride StartupScript

public class BasicMethods : StartupScript

{
// Declared public member fields and properties that will appear in the game studio
public override void Start()
{
// Initialization of the script
}
public override void Cancel()
{
// Cleanup of the script
}
}

25/1211

Script components

Like Unity®, in Stride, you attach scripts to entities by adding them as script components.

Create a script

To create a script, click the Add asset button and select Scripts.

Async Script

. An asynchronous script. [t has a single Execute method to implement in
Amimations R S T
which async/await ca be used.

Audio .

Sync Script

_ A synchronous script, It has a Start method called when it's loaded and
Miscellanecus an synchronous Update method called each frame,

Models

Matenals

e Startup Script
Navigation A startup scnipt. It has a Start method invoked when it is loaded that

Physics allows initialize content of your scene.

fietake Animation Blend
Scenes User script which blends between two animations

Scripts
Sprite Studio Animation Start
Sprites User script which loads an animation sequence in an animation

Texture component and starts playing it.
(=1 es

] Basic camera controller

In Unity®, when you create a MonoBehaviour® script, it has two base functions: MonoBehaviour.Start()™

and MonoBehaviour.Update() ™. Stride has a SyncScript that works similarly. Like MonoBehaviour,

SyncScript has two methods:

e SyncScript.Start() is called when it the script is loaded.

® SyncScript.Update() is called every update.

Unlike MonoBehaviour®, implementating the SyncScript.Update() method is not optional, and as such,

must be implemented in every SyncScript.
If you want your script to be a startup or asynchronous, use the corresponding script types:

e StartupScript: this script has a single StartupScript.Start(). method. It initializes the scene and its

content at startup.

e AsyncScript: an asynchronous script with a single method AsyncScript.Execute() and you can use

async/await inside that method. Asynchronous scripts aren't loaded one by one like synchronous
scripts. Instead, they're all loaded in parallel.

Reload assemblies
26 /1211

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

After you create a script, you may have to reload the assemblies manually. To do this, click Reload
assemblies in the Game Studio toolbar.

File Edit Project View Help
% | Ao] = 2 Windows

Reload game assemkblies and update scripts
A I:. ; Pu o

Add scripts to entities

1. In the Entity Tree (on the left by default), or in the scene, select the entity you want to add the script
to.
File Edit Project View
ER-TS BRSO

Sceme™ X
Scene settings

W Camera

°9- Ambient light

'Z'if' Directional light
- @ Character
W Sprite
@' Background
@' GameScript

e

2. In the Property Grid (on the right by default), click Add component and select the script you want
to add.

27 /1211

-+ Add component

Ef BasicCameraController

Animation Lf CharacterScript

Audio

Lights
Miscellanecus
Model

My Startup Scripts
Mavigation
Particles
Physics
Seripts

Sprites

u

Video

In Unity®, script components are grouped under Components > Scripts. In Stride, scripts are not
grouped. Instead, Game Studio lists them alphabetically with other components.

For more information about adding scripts in Stride, see Use a script.

Scripting gameplay

Unity® and Stride both use C#. However, scripting gameplay in Stride is a little different from Unity ®.

Instantiate Entity / GameObject

In Unity®, you use Instantiate to create new object instances. This function makes a copy of
UnityEngine.Object and spawns it to the scene.

Unity®

public GameObject CarPrefab;
public Vector3 SpawnPosition;
public Quaternion SpawnRotation;

void Start()

{
GameObject newGameObject = (GameObject)Instantiate(CarPrefab,

SpawnPosition, SpawnRotation);
newGameObject.name = "NewGameObjectl";

28 /1211

Stride

In Stride, you can instantiate Entities similarly to Unity® GameObjects:

// Declared public member fields and properties displayed in the Game Studio Property Grid.
public Prefab CarPrefab;

public Vector3 SpawnPosition;

public Quaternion SpawnRotation;

public override void Start()

{
// Initialization of the script.
List<Entity> car = CarPrefab.Instantiate();
SceneSystem.SceneInstance.RootScene.Entities.AddRange(car);
car[@].Transform.Position = SpawnPosition;

car[@].Transform.Rotation = SpawnRotation;

car[@].Name = "MyNewEntity";

Use default values

Each class in Unity® has certain default values. If you don't override these properties in the script, the
default values will be used. This works the same in Stride:

Unity ®

public int NewProp = 30;
public Light MyLightComponent = null;

void Start()

{
// Create the light component if we don't already have one.
if (MyLightComponent == null)
{
MyLightComponent = gameObject.AddComponent<Light>();
MyLightComponent.intensity = 3;
}
}
Stride

// Declared public member fields and properties displayed in the Game Studio Property Grid.
public int NewProp = 30;
public LightComponent MyLightComponent = null;

29 /1211

public override void Start()

{
// Create the light component if we don't already have one.
if (MyLightComponent == null)
{
MyLightComponent = new LightComponent();
MyLightComponent.Intensity = 3;
Entity.Add(MyLightComponent);
}
}

Disable GameObject/entity
Unity ®
MyGameObject.SetActive(false);

Stride

Entity.EnableAll(false, true);

Access component from GameObject/entity
Unity ®

Light lightComponent = GetComponent<Light>();

Stride

LightComponent lightComponent = Entity.Get<LightComponent>();

Access GameObject/entity from component
Unity ®

GameObject componentGameObject = lightComponent.gameObject;

Stride

Entity componentEntity = lightComponent.Entity;

30/1211

Log output

To see the output, in the Game Studio toolbar, under View, enable Output.

x MyGame.sln - Xenko GameStudio 1.10.0-beta
File Edit Project [JNIEHE Help
ﬁ - =', B Visualization

¥ Solution explorer

Scene X

+

v Asset preview
“#- Ambient light Edition
§- Front light v Property grid
“§- Back light ¥ Action history
WM Camera front Information
WM Camera back ¥ Asset errors
'Q} CharacterMeodel _
“ RenderToTexture
[=} Background

£ ue

“ RenderToTextureTilted

OQutput*®
Build™" Live-scripting
Py -

Asset view Asset errors (C

Print debug messages

Logging from a ScriptComponent:

3171211

public override void Start()
{

// Enables logging. It will also spawn a console window if no debuggers are attached.

// The argument dictates the kinds of message that will be filtered out, in this case,

anything with less priority than warning won't show up
Log.ActivatelLog(LogMessageType.Warning);
// Log this message to your console or IDE output window
Log.Warning("hello");

System.Diagnostics.Debug.WritelLine("hello");

(0 NOTE

To print debug messages, you have to run the game from your IDE, not Game Studio. Running
games cannot print to the Game Studio output window.

Attributes

Unity® Stride

[Serializable] [DataContract]

[SerializeField] [DataMember]

[HideInInspector] [DataMemberIgnore]

[Range] [DataMemberRange]

[Header("My Header")] [Display(category: "My Header")]
[Tooltip("My tooltip")] /// <userdoc>My tooltip</userdoc>
(i) NOTE

You cannot serialize private fields in Stride, if you want to set a field in editor but prevent other
scripts from writing to that field, you should use a init property =

32/1211

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/init
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/init
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/init

public float MyProperty { get; init; }

Unity® is a trademark of Unity Technologies.

See also

e Best Practice

3371211

Stride Launcher

Start 4.2.0.2232

Close the launcher after starting Stride

< Switch/update version

Stride 4.2

Stride 4.1 {not installed)

Stride 4.0 (not installed)

KXenko 3.1 (not installed)

:‘E* Projects

MyGame

CAUsers\... \MyGame\MyGame.sin

TopDownRPG 4.2

CAUsers\...\TopDownRPG\TopDownRPG.sin

With the Stride launcher, you can install, manage and run different versions of Stride.

Getting started

Create a project

Create an empty project, or create one based on
a template or sample,

Game Studio

Understand the central tool for game production
in Stride

Introduction to assets

Create and manage images, models, sounds, and
other assets.

Visual Studio extension

Set up a scene

Visual Studio 2019 extension: Install Setup a graphics pipefine 2ERigEes and
mowve around the scene.
Visual Studio 2022 extension: Reinstall

Launch a game

4 Run your game from Game Studio or Visual

@ Report an issue ';-_J Discuss about Stride Studio.

E Chat with us O Fork on GitHub

m Check the roadmap

f =m»Q)

Launcher v5.0.6+90522b7bcbd5161c4dbeSealdf5dob1331c275d9

fl Start Stride Game Studio P]Stride Different Versions [l Visual Studio Plugins
Elinteract with Community [ElOpen Recent Projects [Documentation and News

Install the latest Stride version

If you don't have Stride installed, the Stride Launcher prompts you to install the latest version.

34 /1211

It seems you do not have any version of Stride
currently installed. Would you like to install the

latest version?

You can install other versions of Stride in the Switch/update version section (2). To do this, click the
install icon next to the version in the list.

Install the Stride Visual Studio extension

If you choose to install the latest version of Stride, the Stride Launcher asks if you want to install the
Visual Studio extension.

Would you like to install the latest version of the
Wisual Studio 2022 integration? This is highly
recommended for programmers!

The Visual Studio extension lets you edit shaders directly from Visual Studio, and provides syntax
highlighting, live code analysis with validation, error checking, and navigation (jump to definition).
Installing the extension isn't mandatory, but we recommend it.

To install or reinstall the Visual Studio extension at any time, click the Reinstall button in the Stride
Launcher.

dd Visual Studio extension

Visual Studio 2019 extension: Install

Visual Studio 2022 extension: Reinstall

Switch the Stride version

To choose which version of Stride runs, select it in the list under Switch/update version.

3571211

Manage different versions of Stride

You can install and uninstall multiple versions of Stride from the Switch/update version section.

Switch/update version

2

Stride 4.2

Stride 4.1 (not installed)

Stride 4.0 (not installed)

¥enko 3.1 [not installed)

ElRelease Notes

P] Version

E]Uninstall
F1Download and Install
Bl Install Minor Versions

You might need to use an older version of Stride to work with old projects. Newer versions of Stride
might contain changes that require old projects to be upgraded.

The version number consists of two numbers. The first number refers to the major version, and the
second number refers to the minor version.

Major updates add significant changes, and you might need to update your projects to use them. Minor
updates don't contain breaking changes, so they're safe use with your existing projects.

e To see the release notes for a particular version, click the note icon next to the version name (1).
e To install a particular version, click the Download and install icon next to the version name (4).
e To install a particular minor version, click the List icon (5).

Start Game Studio
1. Under Switch/update version, select the version of Stride you want to use.

The version number is updated on the Start button.

36 /1211

Start 4.1.0.1948

Close the launcher after starting Stnide

2. Click Start to launch Game Studio.

Recent projects

LY g
c“: p rDJ e Cts Getting starteq

1

o Create a proje

CAlsers\...\MyGame\MyGame.sln Create an empty p
a template or samj

TopDownRPG 32

CAUsers\...\ TopDownRPG\TopDownRPG.sln Game Studio

Understand the ce
in 5tride 4
MyGame2 4.1

*
CAlsers\...\MyGame2\MyGame2.sln - o -
Open with Stride 4.2

ElProject Name

PlProject Stride Version
ElProject Path

FlUpdate Project and Open with

more Current Version of Stride
The Projects section displays your recent projects. To open a project, click it.
Open a project with a newer version of Stride
The top right of each project button (2) shows which version of Stride the project was made with.
To open a project with a more recent version of Stride:
1. On the project button, click the upgrade icon in the bottom right (4).

2. Select the Stride version you want to open the project with. Game Studio prompts you to upgrade
the project when it opens.

3771211

(0 NOTE

After you update a project to use a newer version of Stride, you might need to make manual

changes to get it to work. Make sure you back up the project and all its related files before you
upgrade it.

3871211

Get started with Stride

Welcome to Stride! This chapter provides everything you need to start creating games using the Stride
game engine. If you're new to Stride, we recommend starting with the Install Stride guide, which will help
you set up the engine and get you ready for development.

Stride is designed for game developers who want a powerful, flexible, and open-source engine for their
projects. Whether you're an experienced developer or just starting out, these guides will walk you
through the basics and help you get up and running quickly.

For video tutorials, have a look at the Tutorials.

If you're interested in building the Stride engine from source or contributing to its development, please
refer to the instructions on our GitHub repository .

Project View Help Debug
o g b
= Property grid

v © Package MyGame

User Settings

Ground Material Sphere Material Skybox texture

et preview Edit history References

9 items (0 selected)

In this section

e |nstall Stride
e |aunch Stride
e Visual Studio extension

e Create a project

e Game Studio
e Assets

39/1211

https://github.com/stride3d/stride
https://github.com/stride3d/stride
https://github.com/stride3d/stride

e |ntroduction to scenes

e |aunch your game

40/1211

Install Stride

Introduction

If you want to create games using Stride, this guide provides the installation steps you'll need to follow.
You'll need to install the Stride installer and launcher. The Stride installer is approximately 55 MB and is
downloaded directly from our main GitHub repository.

The installer will automatically download and install the prerequisites if they are not detected, including
the Stride Launcher, which is essential for downloading and installing the latest version of Stride for

game development.

If you're interested in building the Stride engine from source or contributing to its development,
please visit the Stride GitHub repository@ for instructions on how to build from source and contribute to

the project.
Prerequisites (automatically installed if not present):

e Latest .NET SDK supported by Stride
e Microsoft Visual C++ Redistributable

The Stride Launcher will download and install the latest version of Stride.

Installation Steps

1. Download the Stride installer (StrideSetup.exe) from the Stride website.

2. Run the installer by double-clicking the StrideSetup.exe file.

3. The Stride Setup Wizard opens.

41 /1211

https://github.com/stride3d/stride
https://github.com/stride3d/stride
https://github.com/stride3d/stride
http://stride3d.net/download/
http://stride3d.net/download/
http://stride3d.net/download/

gﬁ SStﬁ%eride

Welcome to the Stride Setup Wizard

Click Next.
4. The Stride installation type window opens.

42 /1211

gﬁ SStﬁ%eride

Stride installation type
Install Stride for:

® Only for me

® Everybody (all users)

Select an installation type and click Next.
5. The Select installation folder window opens.

43 /1211

gﬁ SStﬁ%eride

Select installation folder

Folder:

C\Program Files\Stride

Total space required on drive: 166 MB
Space available on drive: 36 GB

Remaining free space on drive: 6 GB

Choose a folder where you want to install Stride, then click Next.
6. The Create application shortcuts window opens.

44 /1211

gﬁ SStﬁ%eride

Create application shortcuts

Create shortcuts for Stride in the following locations:

¥ Desktop
¥ Start Menu Programs folder
¥ Startup folder

¥ Quick Launch toolbar

Choose which shortcuts you want Stride to create, then click Next.
7. The Ready to Install window opens.

45/1211

gﬁ SStﬁ%eride

Ready to Install

The Setup Wizard is ready to begin the Stride installation

S INSTALL

Click Install to begin the installation.
8. Installation begins.

46 /1211

gﬁ SStﬁ%eride

Please wait while the Setup Wizard installs Stride. This may take
several minutes.

The installer will proceed with the installation. After it completes, Stride creates shortcuts in the
locations you selected, and the Stride Launcher starts automatically.
9. The first time you run the Stride Launcher, you will be asked to accept the privacy policy.

47 /1211

X

You must agree to the privacy policy to use Stride.

v | agree to the Privacy Policy

| Accept | Decline

Check I agree to the Privacy Policy, then click | Accept.
10. The Stride Launcher window opens.

Install latest version 3 Projects e tel o

Close the launcher after starting Stride)
No project created yet! Create a project
Create an empty project, or create one based on

£ Switch/update version atemplate or sample.

Stride 4.2 (not installed) H Game Studio

Understand th tral tool fo ducti
Stride 4.1 (not installed) ; innS;ir;e nd the central tool for game production

Xenko 3.1 (not installed) Introduction to assets

Create and manage images, models, sounds, and
other assets,

-
®

=

[5) stride 40 (not installed)
=

g

Visual Studio extension

Set up a scene

Visual Studio 2019 extension: Install Setup a graphics pipeine, 20EERESs, and
move around the scene.
Visual Studio 2022 extension: Reinstall

Launch a game

Run your game from Game Studio or Visual
G) Report an issue {Q Discuss about Stride Studio.

a Chat with us O Fork on GitHub

m Check the roadmap

Launcher v5.0.6+90522b7bcbd5161c4dbe5ea7df5d6b 133127549

The Stride Launcher prompts you to install the latest version of Stride.

48 /1211

It seems you do not have any version of Stride
currently installed. Would you like to install the

latest version?

Click Yes to install the latest version.

11. Installation of the latest version of Stride begins.

Install latest version
Close the launcher after starting Stride

< Switch/ update version

= FITISELLLTT Y

Stride 4.1 (not installed)
Stride 4.0 (not installed)

¥enko 2.1 [not installed)

>d Visual Studio extension

Visual Studio 2019 extension: Install

Visual Studio 2022 extension: Reinstall

@ Repo i {Q Discuss about Stride

B Chat with us O Fork on GitHub

m ck the roadmap

Release notes of version 4.2
Stride 4.2 Release notes

February b6th, 2024

Stride contributors are thrilled to announce the release of Stride 4.2, now fully compatible with NET
8 and leveraging the latest enhancements in CF 12. This release brings significant improvements in
performance, stability, and developer experience.

Read the full blog post here:

A massive thank you to the open-source Stride community for your dedicated contributions. This
release saw over 75 contributions from more than 22 amazing contributors, each playing a crudial
role in making Stride 4.2 a reality.

What's new in Stride 4.2

Stride 4.2 includes numercus enhancements and improvements. Here's what to expect

.MET 8 Integration: Stride 4.2 is now fully aligned with .NET 8, harnessing its perfarmance
imprevements and efficiency gains for game development. This means faster execution times,
reduced memory footprint, and access to the latest C# features, making your development
smoother and more efficient.

C# 12 Features: With C# 12, Stride users can write cleaner, more concise code thanks to new
language features. These improvements reduce boilerplate and enhance readability.

Changed Assimp Binding to Silk.Net.Assimp: This update transitions the asset compiler's
binding from C++/CLR to Silk.Net.Assimp, a move that not only simplifies the codebase but
also paves the way for asset compilation on non-Windows systems, broadening Stride’s
acces! ity.

Migration NET6+ and More gettextnet#2: Stride’s commitment to staying current

with .NET versions continues, ensuring compatibility and leveraging the stability and features
of the latest .MET environment across all aspects of the engine.

Enable Multiple Profiler Consumers and Add a Timeline/Tracing Profiler: This

Launcher v5.0.6+90522b7bcbd 5161 c4dbe5ealdf5d6b1331c275d9

While the installation is in progress, the release notes are displayed.

49 /1211

(D) WARNING

If the .NET SDK has never been installed on your machine, the .NET SDK installation window
might appear below the Stride installation window. Please check step 12 for details and be
prepared to manually continue the .NET SDK installation.

12. During the installation, you might be asked to install the .NET SDK if it's not already on your
machine.

-
ﬁ;l Microsoft NET SDK £.0.100 (x64) Installer — X

Microsoft .NET SDK 8.0.100

NET SDK

The .NET 5DK is used to build, run, and test .NET applications. You can choose from
multiple languages, editors, and developer tools, and take advantage of a large

ecosystem of libraries to build apps for web, mobile, desktop, gaming, and loT. We
hope you enjoy it!

If you plan to use .NET 8.0 with Visual Studio, Visual Studio 2022 17.7.0 or newer is
required. Learn more,

By clicking Install, you agree to the following terms:

Privacy Statement

Telemetry collection and opt-out

Licensing Information for NET

Close

L,

Click Install.

13. The Stride Launcher asks if you want to install the Visual Studio integration. This allows you to edit
shaders directly from Visual Studio, providing syntax highlighting, live code analysis with validation,
error-checking, and navigation. Installing the integration isn't mandatory, but we recommend it.

50/1211

Would you like to install the latest version of the
Visual Studio 2022 integration? This is highly
recommended for programmers!

Yes

Click Yes to install the integration, or No to skip.
14. Stride is now installed and ready to use.

Start 4.2.0.2232 X Projects SR

Close the launcher after starting Stride .
No project created yet! Create a project

Create an empty project, or create one based on

& Switch/update version atemplate or sample,

Stride 4.2 H Game Studio

Understand the central tool for game production

Stride 4.1 (not installed) in Stride

Stride 4.0 (not installed)

¥enko 3.1 [not installed) i Introduction to assets

Create and manage images, models, sounds, and
other assets,

>d Visual Studio extension

Set up a scene

Set up a graphics pipeline, add entities, and
mave around the scene,

Visual Studio 2019 extension: Install

Visual Studio 2022 extension: Reinstall

Launch a game

Run your game from Game Studio or Visual
G) Report an issue {Q Discuss about Stride Studio.

B Chat with us O Fork on GitHub

m Check the readmap

Launcher v5.0.6+90522b7bcbd 5161 c4ddbe5ealdf5dob1331c275d9

51/1211

(0 NOTE

Stride Launcher: If you click Start and see an error message such as Could not find a compatible
version of MSBuild. or Path to dotnet executable is not set., close the Stride Launcher and
restart it. This issue is caused by the Stride Launcher not detecting the .NET SDK installation.
Restarting the Stride Launcher should resolve the issue. Alternatively, restart your computer.

Example error:

Could not find a compatible version of MSBuild.

Check that you have a valid installation with the required workloads, or go to
to install a new one. Also make sure you have the latest

System.InvalidOperationException: Path to dotnet executable is not set. The probed vanables are:
DOTNETROOT, DOTNETHOSTPATH, DOTNETMSBUILDSDKRESOLVERCLIDIR and PATH. Make sure, that at least
one of the listed vanables points to the existing dotnet executable. at
Microsoft.Build.Locator.DotNetSdklocationHelper.ResolveDotnetPathCandidates() at

Microsoft.Build.Locator.DotNetSdklocationHelper.<>c.<.cctor>b_220() at System.Lazyl.ViaFactory
{LazyThreadSafetyMode mode)

at System.Lazyl.ExecutionAndPublication(LazyHelper executionAndPublication, Boolean
useDefaultConstructor) at System.Lazyl.CreateValue ()

at Microsoft.Build.Locator.DotNetSdkLocationHelper.GetSdkFromGlobalSettings
{(String workingDirectory)

at Microsoft.Build.Locator.DotNetSdkLocationHelper.GetDotNetBasePaths (String
workingDirectory) +MoveNext ()

at Microsoft.Build.Locator.DotNetSdklocationHelper.GetInstances (String
workingDirectory) +MoveNext ()

at Microsoft.Build.Locator.MSBuildLocator.GetInstances
(VisualStudioInstanceQuery0Options options) +MoveNext ()

at System.Ling.Enumerable.WhereEnumerableIteratorl.MoveNext() at

System.Ling.Enumerable.TryGetFirst{TSource](lEnumerablel source, Func?2 predicate, Boolean& found) at
System.Ling.Enumerable. FirstOrDefault[TSource](lEnumerablel source, Func? predicate) at
Stride.Core.Assets.PackageSessionPublicHelper.FindAndSetMSBuildVersion{) in C:\BuildAgent\work
\b5f46e3c4829a09¢e\sources\assets\Stride.Core Assets\PackaaeSessionPublicHelper.cs:line 46 at

(0 NOTE

If you don't install the prerequisites, Stride won't run. In this case, you can download and install the
prerequisites separately. For instructions, see Troubleshooting — Stride doesn't run.

Alternatively, uninstall Stride, restart the Stride installer, and install the prerequisites when
prompted.

What's next?

52 /1211

e launch Stride

53 /1211

Visual Studio extension

The Stride Visual Studio extension lets you edit shaders directly from Visual Studio.

You don't need to install the extension to use Stride, but we recommend it, especially for programmers.

Install the Stride Visual Studio Extension

When you install Stride, Stride asks if you want to install the Visual Studio extension.

Would you like to install the latest version of the
Visual Studio 2022 integration? This is highly

recommended for programmers!

Alternatively, you can install or reinstall the extension at any time in the Stride Launcher under Plug-in.

pd Visual Studio extension

Visual Studio 2019 extension: Install

Yisual Studio 2022 extension: Reinstall

See also

e Custom shaders

54 /1211

Update Stride

Updating Stride is a straightforward process, but it's important to follow the steps carefully to ensure a
seamless transition. Below are the guidelines for updating both the Stride engine and your existing
projects.

(i) NOTE

The instructions provided here can be used as a general guide for updating to any new version of
Stride.

Updating Stride

1. Update Visual Studio 2022: Ensure that you have the latest version of Visual Studio 2022. This is
crucial for compatibility with the latest Stride version. After updating Visual Studio, restart your
computer to apply the changes fully.

2. Stride Launcher Instructions: Open the Stride Launcher. Follow the instructions provided to update
or install the Visual Studio plugin for Stride. This step is essential for integrating the latest version of
Stride with your development environment.

3. Restart Again: After completing the installation or update of the Visual Studio plugin, restart your
computer once more. This helps to ensure that all components are correctly loaded and ready for
use.

Updating Your Project

1. Version Control: Before proceeding with the update, confirm that your project is under version
control with all current changes committed. This provides a safety net, allowing you to revert to the
previous state if needed. If you're not using version control, ensure you have a backup of your
project.

2. Opening the Project: When you open a project created with an older version of Stride, a dialogue
will appear, prompting you to update the project. Make sure to check the option to apply the
update to all packages in the solution. Additionally, you can verify later whether all packages have
been updated by checking your project files, specifically the .csproj files.

5571211

Loading..

Filters: | % | & The following dependencies in the MyGame package need to be

Verbose: Proces: upgraded:
Verbose: Proces:

Ez{geuggg;?lﬁ » Dependency to Stride.Engine must be upgraded from

version 4.1.0.1838 to 4.2.0.2067

Upgrading assets might break them. We recommend you make a
manual backup of your project before you upgrade.

v' Do this for every package in the solution

Upgrade

Dialog prompting for project update in Stride.
3. Saving the Project: After Stride updates the project, it's crucial to save it immediately. This step
prevents the project from being in an undefined state and solidifies the changes made during the
e
]

~

File Edit Project View
vyl O

+

¥ {7} MainScene

4. Rebuild and Reload: Finally, rebuild the project and reload assemblies. This ensures that all
components are up-to-date and properly synchronized with the new version of Stride.

By following these steps, you can smoothly transition to the latest version of Stride, taking full advantage
of the new features and improvements it offers. Remember, these procedures are designed to provide a

56 /1211

hassle-free update experience and safeguard your project against potential issues.

57 /11211

Launch Stride

Start 4.2.0.2232
Close the launcher after starting Stride

< Switch/update version

Stride 4.2
Stride 4.1 {not installed)
Stride 4.0 (not installed)

KXenko 3.1 (not installed)

:‘E* Projects

MyGame

CAUsers\... \MyGame\MyGame.sin

TopDownRPG 4.2

CAUsers\...\TopDownRPG\TopDownRPG.sin

With the Stride launcher, you can install, manage and run different versions of Stride.

Getting started

Create a project

Create an empty project, or create one based on
a template or sample,

Game Studio

Understand the central tool for game production
in Stride

Introduction to assets

Create and manage images, models, sounds, and
other assets.

Visual Studio extension

Set up a scene

Visual Studio 2019 extension: Install Setup a graphics pipefine 2ERigEes and
mowve around the scene.
Visual Studio 2022 extension: Reinstall

Launch a game

4 Run your game from Game Studio or Visual

@ Report an issue ';-_J Discuss about Stride Studio.

E Chat with us O Fork on GitHub

m Check the roadmap

f =m»Q)

Launcher v5.0.6+90522b7bcbd5161c4dbeSealdf5dob1331c275d9

fl Start Stride Game Studio P]Stride Different Versions [l Visual Studio Plugins
Elinteract with Community [ElOpen Recent Projects [Documentation and News

Install the latest version of Stride

If you don't have Stride installed, the Stride Launcher prompts you to install the latest version.

58 /1211

It seems you do not have any version of Stride
currently installed. Would you like to install the

latest version?

If you choose to install the latest version, the Stride Launcher asks if you want to install the Stride Visual
Studio extension.

Would you like to install the latest version of the
Visual Studio 2022 integration? This is highly

recommended for programmers!

The Stride Visual Studio extension lets you you edit shaders directly from Visual Studio. You don't need
to install the extension to use Stride, but we recommend it, especially for programmers.

Manage different versions of Stride

You can install multiple versions of Stride and launch them from the Stride Launcher.

59/1211

Switch/update version

2

Stride 4.2

Stride 4.1 (not installed)

Stride 4.0 (not installed)

¥enko 3.1 (not installed)

ElRelease Notes

P] Version

E]Uninstall
Fl1Download and Install
B Install Minor Versions

You might need to use an older version of Stride to work with old projects. Newer versions of Stride
might contain changes that require old projects to be upgraded.

For minor versions, only the last number of the version number changes (1.9.0, 1.9.1, 1.9.2, etc). Minor
versions don't contain breaking changes, so they're safe to install and use with your existing projects.

(0 NOTE

You can't revert to earlier minor versions. For example, you can install both Stride 1.9 and 1.8 side by
side, but you can't revert from Stride 1.9.2 to Stride 1.9.1.

e To see the release notes for a particular version, click the note icon next to the version name.
e To install a particular version, click the Download and install icon next to the version name.
Start Game Studio
Now you've installed Stride, it's time to start Game Studio and build a project.
1. Under Switch/update version, select the version of Stride you want to use.

The version number is updated on the Start button.

60 /1211

Start 4.1.0.1948

Close the launcher after starting Stnide

2. Click Start to launch Game Studio.

What's next?

e Create your first project in Game Studio

See also

For more details about the Stride launcher, see the Stride launcher page.

61/1211

Create a project

This page explains how to:

e create a new empty project
e create a project based on a template or sample

Templates are projects that contain just the necessary elements to start working on a game.
Samples are complete games, which you can learn from or base a new game on.

Create an empty project

An empty project is project that contains only the bare minimum to make a game: a simple scene with a
light, camera, and script to move the camera, plus a preconfigured rendering pipeline. This is good when
you want to start your game from scratch without elements you don't need.

To create an empty project:
1. In the Stride Launcher, click Start to start Game Studio.

The New/open project dialog opens.

62 /1211

Recent projects
¥ New project
General
¥ Samples
Audio
Games
Graphics
Input
Particles
Physics
Ul
Templates

Tutorials

Browse for existing project

New game
Create a game for the platforms you select

Code library

Create a new library that can target multiple platforms and add it to the solution

Template: first-person shooter
A first-person shooter game template

Template: third-person platformer
A third-person platformer game template

Template: top-down RPG
A top-down RPG template

Template: virtual reality

Avirtual reality game template

C# Beginner
Tutorial project which teaches you the basics about C# with Stride

C# Intermediate
Tutorial project which teaches you about intermediate C# topics with Stride

Sample: simple audio
Demonstrates how to make simple calls to the low-level audio API

Reload last session automatically at startup

You can also open a new project in Game Studio from File > New.

2. Select New Game.

3. In the Name and Location fields, specify a name for the project and the folder to save it in.

4. Click Select.

The Create a new game dialog opens.

63 /1211

MNamespace:

MyGame

Platforms Asset packs

Animated Models

Lwp Building Blocks
This machine doesn't meet I Darl
the requirements to build for Materials Pack
this platform. Particles Pack
Linuz .

Samples Assets
mac05

" .
. Android
This machine doesn't mest

‘ the requirements to build for
this platform.

05

This machine doesn't meet
the requirements to build for
this platform.

Rendering Orientation

Direct3D 10.0 / OpenGLES 3.0 Landscapeleft

: : e % |andscapeRight
* High dynamic range (HDR)

) Partrait
Low dynamic range (LDR)

5. In the Namespace field, specify the namespace you want to use. If you don't know what your
namespace should be, leave it as default.

6. Under Platforms, select the platforms you want your game to support.

64 /1211

(0 NOTE

To support iOS and Android, you need to install Xamarin® (free if you have Visual Studio). If
your development system is missing prerequisites for any of the platforms you select, Stride
displays a warning.

7. Under Asset Packs, you can select additional assets to include in your project. These include assets
such as animations and materials. The asset packs are fun to play with when you're learning how to
use Stride, but they're not necessary.

8. Under Rendering, select the options you want.

Graphics API: The graphics features you can use in your project depend on the API you select. For
advanced graphics features, select the latest version of the graphics APIs.

() WARNING

Some graphics cards don't support the latest APIs. For some mobile devices, only Direct3D 9.3 /
OpenGL ES 2.0 and Direct3D 10.0 / OpenGL ES 3.0 are available.

High or Low Dynamic Range (HDR / LDR): This defines how color is computed in your project. In
LDR mode, colors range from 0 to 1. In HDR mode colors can take any float value. HDR provides
more advanced and realistic rendering but requires more processing power and profile Direct3D
10.0 / OpenGL ES 3.0 or later.

9. Under Orientation, choose the orientation for your project. For PC games, use landscape. Portrait
should usually only be used for mobile games.

10. Click OK.
Stride creates the project and opens it in Game Studio. For more information, see Game Studio.

Create a project from a sample or template

Stride includes several sample projects demonstrating each part of the engine (2D, 3D, sprites, fonts, Ul,
audio, input, etc). It also includes template games to help you make your own game.

To create a project from a sample or template:
1. Open the New Project dialog.
2. On the left, navigate to New project > Samples.

65/1211

https://www.xamarin.com/studio
https://www.xamarin.com/studio
https://www.xamarin.com/studio

3. Select the sample you want to create a project from.

Recent projects Sample: simple audio
¥ New project Demonstrates how to make simple calls to the low-level audic AP
General
¥ Samples
Audio

Sample game: Jumpylet
A simple 2Dt action game
Canes Sample game: Space Escape

Graphics A simple 30 runner game

Input

Particles 4 Sample: animation

i] Demonstrates how to animate a model
Physics
ul
Sample: custom effect

Templates = Demonstrates how to use a custom effect

Tutorals

Sample: custom material shader
Demonstrates how to use matenals with custom shaders

Sample: sprite fonts
Demonstrates how to use sprite fonts

Sample: SpriteStudio
Demonstrates how to use SpriteStudio integration

Sample: gravity sensor
Demonstrates how to use the gravity sensor

Browse for existi jec Reload last session automatically at startup Cancel

4. Click Select.

The Select Platforms window opens.

66 /1211

Platforms

Uwp

‘. This machine doesn't meet the requirernents to build for this platform.
Linwx
mac0s

" Android

‘. This machine doesn't meet the requirements to build for this platform.

i0s

‘. This machine doesn't meet the requirernents to build for this platform.

Cancel

5. Select the platforms you want your game to support and click OK.

Stride creates the project and opens it in Game Studio.

What's next?

e Get familiar with Game Studio

67 /1211

Game Studio

Game Studio is the central tool for game and application production in Stride. In Game Studio, you can:

create and arrange scenes

import assets, modify their parameters and see changes in real time in the preview window
e organize assets by folder, attach tags and get notifications from modified assets on the disk

build a game executable and run it directly

Game Studio is also integrated with your Visual Studio projects, so you can seamlessly sync and switch
between them.

Interface

File Edit Project View Help Debug
=N~ =])~ & b

Mainscene X = | Property grid

+ o, g 25 RO N i) o & T3] & Editor Procedural model Sphere

¥ (i) MainScene

lainScene. Groun: Ground Material Sphere Material Skybox texture

rors(0) Outpu 4 nsset preview Edithistory References

HElproperty Grid Elsolution Explorer E1 Asset View H Asset Preview

i Asset Editor

The asset editor (1) is used to edit assets and scenes. Some asset types, such as scenes, have dedicated
editors where you can make complex changes to the asset. To open a dedicated editor (when available),
double-click the asset or right-click it and select Edit asset.

The Property Grid (2) displays the properties of the asset or entity you select. You can edit the
properties here.

The Solution Explorer (3) displays the hierarchy of the elements of your project, such as assets, code
files, packages and dependencies. You can create folders and objects, rename them, and move them.

68 /1211

The Asset View (4) displays the project assets. You can create new assets using the New Asset button or
by dragging and dropping resource files into the Asset View. You can also drag and drop assets from the
Asset View to the different editors or the Property Grid to Create an instance of the asset or add a
reference to it. By default, the Asset View is in the bottom center.

The Asset Preview tab (5) displays a preview of the selected asset. The preview changes based on the
type of the asset you have selected. For example, you can play animations and sounds. This is a quick
way to check changes to an asset when editing it in the Property Grid. By default, the Asset Preview is in
the bottom right.

You can show and hide different parts of the Game Studio in the View menu. You can also resize and
move parts of the Ul.

In this section

e Scenes
o Create a scene

o Navigate in the Scene Editor

o Manage scenes

o Load scenes
Add entities
o Manage entities

(e}

Assets
o Create assets
o Use assets
o Archetypes
o Game settings

Prefabs
o Create a prefab

o Use prefabs
o Edit prefabs
o Nested prefabs

o Override prefab properties
World units

69 /1211

Assets

An asset is a representation of an element of your game inside Game Studio, such as a texture,
animation, or model.

Some assets require resource files. For example, texture assets need image files and audio assets need
audio files. Other types of assets (such as scenes, physics colliders, and game settings) don't use resource
files, and can be created entirely in Game Studio.

You can compile and optimize assets with a special compiler provided by Stride. Compiled assets are
packed together as reusable bundles.

knight hel0_normal_idle hel3_run knight Skeleton
Scene Model Animation Amimation Skeleton
Animation Animation

PESERENN Asset errors () Output

You can:

e create and browse assets in the Asset View

70/1211

e edit assets in the property editor

Radius

Amount

Sigma Ratio

Distortion

Asset preview

@0 W Leelo

In this section

o (Create assets
e Manage assets
e Use assets

7171211

Create assets

There are two ways to create assets:

e Use the Add asset button in the Asset View
e Drag and drop resource files (such as image or audio files) to the Asset View tab

Use the Add asset button

1. In the Asset View, click [T EETa

2. Select the type of asset you want to create.

Asszet view

+ Add asset L0 J

materials and textures it references
Audio)
Prefab model

Fonts . ;
A static 30 model generated from a prefab

| [« 3D model
. “ A 30 model asset imported from a source file, You can also import
Amimation

Matenals
Miscellaneous

Capsule
Models

A procedurally-generated capsule
Physics
Scenes

Cone
Scripts ‘ A procedurally-generated cone

Sprites
Textures Cube
LI A procedurally-generated cube

Game Studio displays a list of asset templates. These are assets configured for a specific use.

3. Select the right template for your asset.

Game Studio adds the asset to the Asset View:

MamSceana” Ground ProceduralModel™ Sphere Ground Matenal Sphere Matenal
SCene Procedural Mo.... Procedural Mo... Procedural Mo... Material Material

7211211

(0 NOTE

Some assets, such as textures, require a resource file. When you add these assets, Game Studio
prompts you for a resource file.

Drag and drop resource files

You can drag compatible resource files directly into Game Studio to create assets from them. Game
Studio is compatible with common file formats.

(0 NOTE
e You can't use this method to create assets that don't use resource files (eg prefabs, materials, or
scenes).
Asset type Compatible resource file formats
Models, animations, skeletons .dae, .3ds, obj, .blend, .x, . md2, .md3, .dxf, .fbx
Sprites, textures, skyboxes .dds, jpg, jpeg, .png, .gif, .bmp, .tga, .psd, .tif, .tiff
Audio .wav, .mp3, .0gg, .aac, .aiff, .flac, . m4a, .wma, .mpc

To create an asset by dragging and dropping a resource file:

1. (Optional) If it isn't there already, move the resource file you want to use in the Resources folder of
your project. You don't have to do this, but it's good practice to keep resource files organized and
makes projects easier to share. For more information, see Project structure.

2. Drag the resource file from Explorer to the Asset View:

7371211

2= MyGameS.sin - Xenko GameStudic 1.7.9-beta

File Edit

Es-7

+

*
& Ground
B Sphere

Solution explorer

Picure Tools Resources

Home | Share View Manage

, 2 ° - ™ B
IJ oh Cut < =] x @ @N:wwt:m \ﬂ ™ Open EH setectan
wsi Copy path £ easy access - [eat Select none
Move Copy Delete Rename Properties
e 5 s L History | 28 invert setection

Open Select

Fin to Quick Col Paste
e " [7] Paste shortcut

Clipboard Organize
« © 4 || « Documents » Xenko Projects » Raycasting » Raycasting » Resources v @] | Search Resources 2
media
@ OneDrive
O This PC
[Desktop
= terure;
[£ Documents 9
& Downloads
b Music
=] Pictures
B videos
‘i Windows (C)

= Recovery Image (D:)

e Network

M| titem 1item sclected 63.5KB

2 X Assetview

o Add asset

MainScene
Scene

(©) Output

6 items (0 selected)

Ul sprites

A sprite sheet built from a set of images, used to display Ul components

Color

A color texture asset imported from a source file. Can be in sRGE or linear
space. Assumes three (RGB} or four (RGBA) channels

Grayscale

A grayscale texture asset imported from a source file. Assumes linear color
space and a single channel

Normal map

A normal map texture asset imported from a source file. Assumes

space and two (RG) or three (RGB) channels

Raw asset

An asset containing binary or text data directly imported from a file

Game Studio adds the asset to the Asset View:

» X Property grid

oF 2

|

-

© © Noselection

References

FEfeienceesl| Referencers

Asset preview Action

(o]

7471211

Asset view

+ Add asset

MainScene® Ground Sphere Ground Material Sphere Material = GameSettings
Scene Procedural M... Procedural M... Material Material Game Settings

Game Studio automatically imports all dependencies in the resource files and creates corresponding
assets. For example, you can add a model or animation resource file and Game Studio handles
everything else.

@ TIP

You can drag multiple files simultaneously. If you drop multiple files of different types at the same
time, Game Studio only adds only files that match your template selection. For example, if you add
an image file and a sound file, then select the audio asset template, only the sound file is added.

See also

e Manage assets

e Use assets

7571211

Use assets

There are four ways to use assets:

e reference them in entity components

o reference them in other assets

e |oad them from code as content

¢ |oad them from code as content using UrlReference

Reference assets in components

Many kinds of component use assets. For example, model components use model assets.

Components that use assets have asset docks in the property grid.

(Mo asset selected)

LI 4 W

To add an asset to an entity component, drag the asset to the asset dock in the component properties
(in the property grid). You can drop assets in the text field or the empty thumbnail.

¥ Shading
¥ Diffuse " Diffuse Map

P Diffuse Map i (Mo asset selected,

ase Model

Specular

* " X Asset preview

— -
- f==1

S

=

c100_body nm c100_weapon_cm c¢100_weapon_nm
Texture Texture Texture

76 /1211

Alternatively, click u (Select an asset).

x Asset picker

¥ Solution 'AnimatediModel’ + Add ascet
¥ 8 AnimatedModel*

=—nnnn

B Levels Effects Environment Levels Props
l Props Folder Folder Folder Folder
b B Sounds
hd E AnimatedModel.Game
B Properties
@ AnimatedModel Windows

b EE Dependencies

P External Packages Sounds c100_body_cm c100_body_nm
Folder Texture Texture

The Select an asset window opens.

(i NOTE

The Select an asset window only displays assets of types expected by the component. For example,
if the component is an audio listener, the window only displays audio assets.

After you add an asset to a component, the asset dock displays its name and a thumbnail image.

ModelsWallOx

Reference assets in other assets

Assets can reference other assets. For example, a model asset might use material assets.

You can add asset references to assets the same way you add them to entity components (see above).

7771211

Clear a reference

To clear a reference to an asset, in the asset dock, click (Clear reference).

ModelsWallOx2x5

L 4

Examine references

You can see the references in a selected asset in the References tab. By default, this is in the bottom
right of Game Studio.

References

BEferencesy Referenced by L O]

c100_ c100_
WE3pOom_Cm WEAP.
Texture Texture

2 Textures

Asset preview Action history BRSISIEREES

e The References tab displays the assets referenced by the selected asset.
e The Referenced by tab displays the assets that reference the selected asset.

@ TIP

If you can't see the References tab, make sure it's displayed under View > References.

Load assets from code

When loading in assets at runtime we speak of "Content" rather than assets. The loaded content refers to
the asset and can then be used in your script.

// Load a model (replace URL with valid URL)
var model = Content.Load<Model>("AssetFolder/MyModel");

7871211

// Create a new entity to add to the scene

Entity entity = new Entity(position, "Entity Added by Script") { new ModelComponent { Model
= model } };

// Add a new entity to the scene
SceneSystem.SceneInstance.RootScene.Entities.Add(entity);

@ TIP

To find the asset URL, in Game Studio, move the mouse over the asset. Game Studio displays the
asset URL in a tooltip. URLs typically have the format AssetFolder/AssetName.

() WARNING

When loading assets from scripts, make sure you:

e include the asset in the build as described in Manage assets
e make sure you add the script as a component to an entity in the scene

Unload unneeded assets

When loading content from code, you should unload content when you don't need them any more. If
you don't, content stays in memory, wasting GPU.

To unload an asset, use Content.Unload(myAsset).

Load assets from code using UrlReference

UrlReference allows you to reference assets in your scripts the same way you would with normal assets
but they are loaded dynamically in code. Referencing an asset with a UrlReference causes the asset to be
included in the build.

You can reference assets in your scripts using properties/fields of type UrlReference or UrlReference<T>:

e UrlReference can be used to reference any asset. This is most useful for the "Raw asset".
e UrlReference<T> can be used to specify the desired type. i.e. UrlReference<Scenes. This gives Game
Studio a hint about what type of asset this UrlReference can be used for.

Examples
Loading a Scene

7971211

Using UrlReference<Scene> to load the next scene.

using System.Threading.Tasks;

//Include the Stride.Core.Serialization namespace to use UrlReference
using Stride.Core.Serialization;

using Stride.Engine;

namespace Examples

{

public class UrlReferenceExample : AsyncScript

{

public UrlReference<Scene> NextSceneUrl { get; set; }

public override async Task Execute()

{
/...

private async Task LoadNextScene()

{

//Dynamically load next scene asynchronously
var nextScene = await Content.LoadAsync(NextSceneUrl);
SceneSystem.SceneIlnstance.RootScene = nextScene;

Load data from a Raw asset JSON file

Use a Raw asset to store data in a JSON file and load using Newtonsoft.Json@. To use Newtonsoft.Json

you also need to add the Newtonsoft.Json NuGet package to the project.

//Include the Newtonsoft.Json namespace.

using Newtonsoft.Json;

using System.IO;

using System.Threading.Tasks;

//Include the Stride.Core.Serialization namespace to use UrlReference
using Stride.Core.Serialization;

using Stride.Engine;

namespace Examples

{

public class UrlReferenceExample : AsyncScript

{
public UrlReference RawAssetUrl { get; set; }

80/1211

https://www.newtonsoft.com/json
https://www.newtonsoft.com/json
https://www.newtonsoft.com/json

public override async Task Execute()

{
//...
}
private async Task<MyDataClass> LoadMyData()
{
//0Open a StreamReader to read the content
using (var stream = Content.OpenAsStream(RawAssetUrl))
using (var streamReader = new StreamReader(stream))
{
//read the raw asset content
string json = await streamReader.ReadToEndAsync();
//Deserialize the JSON to your custom MyDataClass Type.
return JsonConvert.DeserializeObject<MyDataClass>(json);
}
}
}
}
See also

e (Create assets
e Manage assets

81/1211

Scenes

Scenes are the levels in your game. A scene is composed of entities, the objects in your project.

The screenshot below shows a scene with a knight, a light, a background, and a camera entity:

Scenes are a type of asset. As they are complex assets, they have a dedicated editor, the Scene Editor.

In this section

Create and open a scene

Navigate in the Scene Editor

Manage scenes

Load scenes
Add entities
Manage entities

82/1211

Create and open a scene

When you create a new project, Game Studio creates an initial scene and populates it with basic entities
such as a light, a camera, and a skybox.

You can create scenes like any other asset. As they are complex assets, they have a dedicated editor, the
Scene Editor.

Create a scene

1. In the Asset View (by default in the bottom pane), click Add asset and select Scenes.

Scene with HDR pipeline

R An empty scene asset with a graphics compositor preconfigured for high
Animations dyna mFi:: range rendering. o i i ’

Audio

Scene with LDR pipeline

An empty scene asset with a graphics compositor preconfigured for low
Miscellanecus dynamic range rendering.

Models

Materials

Empty scene

Navigation An empty scene asset without preconfigured graphics compositor.
Physics

Prefabs

Scenes

Scripts

Sprite Studio

Spnites

Textures

1]

2. Select the appropriate scene template.

Template Result
Empty scene An empty scene with no entities or preconfigured rendering pipeline
Scene with HDR pipeline A scene containing basic entities and preconfigured for HDR rendering

Scene with LDR pipeline A scene containing basic entities and preconfigured for LDR rendering

83 /1211

Open a scene in the Scene Editor

In the Asset View:

Asset view

+ Add asset

- Effect Library ’;L‘Z'ular

efD0_1 EffectCompilelog Font GameSethings LevelBlocks mali_1
Material Effect Library Sprite Font Game Settings Scene Animation

e double-click the scene asset, or
e right-click the asset and select Edit asset, or
e select the asset and type Ctrl + Enter

@ TIP

You can have several scenes open simultaneously.

Use the Scene Editor

£ x
<% Ground
'\'} Sphere

n Selected scene n Entity tree n Scene Editor toolbar n Scene Editor main view H 2D gizmos

The Scene Editor tabs (A) display the open scenes. You can switch between open scenes using the tabs.
84 /1211

The Entity Tree (B) shows the hierarchy of the entities included in the scene. The same entity hierarchy is
applied at runtime. You can use the Entity Tree to browse, select, rename, and reorganize your entities.

You can use the tool bar (C) to modify entities and change the Scene Editor display.

The main window (D) shows a simplified representation of your scene, with your entities positioned
inside it. For entities that have no shape (E), Game Studio represents them with 2D gizmos; for example,
cameras are represented with camera icons.

See also

e Navigate in the Scene Editor

e Manage scenes

e |oad scenes
e Add entities
e Manage entities

85/1211

Add entities

After you create a scene, you need to add entities to your scene to build your level.

Create an entity from the Scene Editor
1. Above the Entity Tree, click the icon.

The Create menu opens:

+

Create
Mew folder
Empty entity
Models
Light
Camera

20

Particle System

Audio

Alternatively, right-click the Entity Tree or anywhere in the scene. If you create an entity in the
scene, Game Studio adds an entity in the location you click.

86 /1211

Create

Models
Light

Camera

20

Particle System
Audio

Action

2. Select Empty entity, or select an entity template.
Game Studio adds an entity to the active scene and displays it in the Entity Tree:

MainScene
+

Scene settings

'q} Sphere

'q} Ground

W Camera

.f Directional light

4§ Skybox

| B Entity s

@ TIP

The active scene is the scene entities are added to. To set the active scene, Entity Tree (left by
default), right-click the scene and select active scene.

87 /1211

o Scene Create

'& Cone MNew folder
Empty entity
Models

Particle System
Audio
Mavigation

Action

Duplicate selected entities

Create prefab from selection

Cut
W Copy

The active scene has no effect on runtime.

Create an entity from an asset

You can add an entity by dragging and dropping an asset from the Asset View to the scene.

8871211

Game Studio automatically creates an entity and adds the required component and reference based on
the asset you used. For example, if you drag a model asset to the scene, Game Studio creates an entity
with a model component with the model asset as its reference.

(i) NOTE

You can only create entities by dragging assets with corresponding components. For example,
model components use model assets, so can be dragged; animations have no corresponding
component, so can't be dragged.

Set up a component

Components add special properties to entities that define their purpose in your project. For example,
you add lights to your scene by adding Light components to entities, add models by adding model
components, and so on. An entity with no component has no purpose.

To add a component to an entity:
1. Select the entity.

2. In the Property Grid, click Add component, and add component you want.

89/1211

Animation
Audio

Lights
Miscellanecus
Model

My Script Category
Mavigation
Particles
Physics
Scripts

Sprites

]

Video

-+ Add component

1 Background

m« Camera

Game Studio adds the component.

¥ [Transform
Position
Rotation

Scale

¥ v W Camera

Mame

Projection

Field Of View

Mear Clip Plane

Far Clip Plane
Custom Aspect Ratio

Slot

Add component

MainCameral

Perspective

0.1

1000

GraphicsCompositor > Main

3. Set the properties of your new component.

Duplicate an entity

You can duplicate an entity along with all its properties. Duplicating an entity and then modifying the

properties of the new entity is often faster than creating an entity from scratch.

1. Select the entity you want to duplicate.

90/1211

2. Hold Ctrl and move the entity with the mouse.

The entity and all its properties are duplicated.

Alternatively, right-click the entity and select Duplicate selected entities.

91/1211

i

| Create

Empty entity
Models
Light
Camera
2D
Particle System

Audio

Create prefab from selection

% Cut

Rename an entity

1. Select the entity and press F2.
2. Type a name for the entity, and then press Enter.

Scene settings

W Camera

-§- Ambient light
<% knight

[=} Background
< Entity
P Knight

See also

e Manage scenes

92 /1211

Manage entities

Beginner Level designer

To build the levels of your game, you need to translate (move), rotate, and resize entities in your scene.

These are known as transformations.

Transformation gizmos

You can select the transformation gizmos from Scene Editor toolbar.

Alternatively, press Space to switch between gizmos.

There are three types of transformation gizmo:

93 /1211

Translation gizmo

To select the translation gizmo, click the icon in the Scene Editor toolbar or press W.

The translation gizmo moves (translates) entities in the scene along the axis you select.

e To move an entity along the X axis, drag it by the red arrow.
e To move an entity along the Y axis (up and down), drag it by the green arrow.

To move the entity along the Z axis, drag it by the blue arrow.

To move the entity in free 3D, drag it by the central sphere.

Rotation gizmo

To select the rotation gizmo, click the icon in the Scene Editor toolbar or press E.

The rotation gizmo rotates entities in the scene along the axis you select.

e To rotate an entity along the X axis (pitch), drag it by the red ring.
e To rotate an entity along the Y axis (yaw), drag it by the green ring.
e To rotate the entity along the Z axis (roll), drag it by the blue ring.

94 /1211

Scale gizmo

To select the scale gizmo, click the il icon in the Scene Editor toolbar or press R.

The scale gizmo resizes entities along a single axis ("stretching" or "squashing” them) or all axes (making
them larger or smaller without changing their proportions).

e To resize an entity along the X axis, drag it by the red ring.
e To resize an entity along the Y axis, drag it by the green ring.
To resize the entity along the Z axis, drag it by the blue ring.
To resize the entity in all axes, drag it by the central sphere.

95/1211

(i) NOTE

The scale gizmo only works with the local coordinate system (see below). When you select the scale
gizmo, Game Studio switches to local coordinates.

Change gizmo coordinate system

You can change how the gizmo coordinates work.

1. Select the entity whose gizmo coordinates you want to change.
2. In the Scene Editor toolbar, select the coordinate system you want.

Coordinate
system Function

Uses world coordinates for transformations. The X, Y, and Z axes are the same for

every entity.
World

coordinates

Uses local coordinates for transformations. The axes are oriented in the same

direction as the selected entity.
Local

coordinates

96 /1211

Coordinate

system Function
T Uses the current camera coordinates for transformations. The axes are oriented in

the same direction as the editor camera.
Camera

coordinates

Snap transformations to grid

You can "snap" transformations to the grid. This means that the degree of transformation you apply to
entities is rounded to the closest multiple of the number you specify. For example, if you set the rotation
snap value to 10, entities rotate in multiples of 10 (0, 10, 20, 30, etc).

You can change the snap values for each gizmo in the scene view toolbar. Snap values apply to all
entities in the scene. For example:

Icon Function

Snap translation to multiple of 1

% 225 Snap rotation to multiple of 22.5
CHRR Snap scale to multiple of 1.1
See also

Create and open a scene
Navigate in the Scene Editor

e [oad scenes
Add entities

97 /1211

Navigate in the Scene Editor

You can move around the scene and change the perspective of the editor camera. The XYZ axes in the
bottom left show your orientation in 3D space.

Move around in the scene

There are several ways to move the editor camera around the Scene Editor.

@ TIP

Holding the Shift key speeds up movement.

Fly

Hold the right mouse button and move the mouse to change the camera direction. Hold the right
mouse button and use the WASD keys to move. This is similar to the controls of many action games.

Pan

Hold the right mouse button and the center mouse button and move the mouse.

Dolly

98 /1211

To dolly (move the camera forward and backward), use the mouse wheel.

Orbit

Hold Alt and the left mouse button and move the mouse.

The point of rotation is always the center of the screen. To adjust the distance to the center, use the
mouse wheel.

99/1211

0:00

Focus on an entity

100 /1211

After you select an entity, press the F key. This zooms in on the entity and centers it in the camera editor.

You can also focus by clicking the magnifying glass icon next to the entity in the Entity Tree.

b 7 CoinGold (2)

@ TIP

Focusing and then orbiting with Alt + left mouse button is useful for inspecting entities.

Controls
Action Control
Move Arrow keys + right mouse button
WASDQE keys + right mouse button
Look around Hold right mouse button + move mouse
Dolly Middle mouse button + right mouse button + move mouse
Orbit Alt key + left mouse button
Zoom Mouse wheel

Alt + Right mouse button + move mouse

101 /1211

Action Control
Pan Middle mouse button + move mouse

Focus F (with entity selected)

@ TIP

You can change the scene navigator controls in Edit > Settings under Scene Editor > Key
bindings.

X Settings

Environment - .)
: Center view on selection

External tools . .
Invert mouse panning axis
Interface
Move camera backward
Remaote

—a dit Move camera down
Scene editor

e e Move camera forward

Viewport settings Move camera left
Script editor Move camera right

W Test Move camera up
bt Snap selection to the grid

Values o :
Switch to next gizmeo mode

Tools
Switch to rotation mode
Switch to scale mode

Switch to translation mode

Save and close

Change camera editor perspective

You can change the camera editor perspective using the view camera gizmo in the top-right of the
Scene Editor.

102 /1211

Snap camera to position

To change the angle of the editor camera, click the corresponding face, edge, or corner of the view
camera gizmo.

Click Camera position

Face Faces the selected face

Edge Faces the two adjacent faces at a 45° angle
Corner Faces the three adjacent faces at a 45° angle

Camera options

(0 NOTE

This page explains how to use the Scene Editor camera. For information about how to use cameras
in your game, see Graphics — Cameras.

To display the Scene Editor camera options, click the camera icon in the top-right of the Scene Editor.

103 /1211

m« Editor

Projection

Perspective
* Orthographic
Mear plane:
Far plane:

Orthographic size:

Movement

Speed:

Orientation
Front
Top

| eft

Perspective and orthographic views

Perspective view is a "real-world" perspective of the objects in your scene. In this view, objects close to
the camera appear larger, and lines of identical lengths appear different due to foreshortening, as in
reality.

In orthographic view, objects are always the same size, no matter how far their distance from the
camera. Parallel lines never touch, and there's no vanishing point. It's easy to tell if objects are lined up
exactly in orthographic view.

Perspective Orthographic

104 /1211

Perspective Orthographic

You can also switch between perspective and orthographic views by clicking the view camera gizmo as
it faces you.

0:00

Field of view

You can change the camera field of view. This changes the camera frustum, and has the effect of
zooming in and out of the scene. At high settings (90 and above), the field of view creates stretched
“fish-eye lens" views. The default setting is 45.

Near and far planes

The near and far planes determine where the camera's view begins and ends.

e The near plane is the closest point the camera can see. The default setting is 0.1. Objects before this
point aren't drawn.

e The far plane, also known as the draw distance, is the furthest point the camera can see. Objects
beyond this point aren't drawn. The default setting is 1000.

Game Studio renders the area between the near and far planes.

105/ 1211

near plane

camera
position

Camera speed

The camera speed setting changes how quickly the camera moves in the editor.

See also

e Create and open a scene
e Load scenes

e Add entities

e Manage entities

far plane

106 /1211

Launch a game

This page explains how to launch your game using Game Studio or Visual Studio.
Launch a game from Game Studio

(0 NOTE

Game Studio can't launch games for the Windows Store or UWP (Universal Windows Platform)
platforms. To launch a game for those platforms, use Visual Studio (see below).

1. In the Solution Explorer, right-click in your target platform, then choice Set as current project.

Folder
= Create folder
Package
¢ Update package
= Add dependency...
7 Set as current project
¥ Package properties
Solution
= New project...
* Add existing project...
4 Open in IDE
Actions
Solution explorer . {::Ut
Copy

T F &

— SIS

» =B Dependencies Delete
¥ .& MyGame.Linux Rename

|1-q,l Assets gomet
+ Add asset... Cirl+|
|1-q,. Code
Explore
k B Dependencies

¥ .5 MyGame Windows
|1-q,. Assets

= Show in Explorer

M Code
k B Dependencies

P External packages

107 /1211

(0 NOTE

You can only select platforms you selected in the Create a new game dialog when you created
the project. To add additional platforms to the project, see Add or remove a platform.

2. To run the game, click u in the toolbar or press F5.

File Edit Project View Help Debug

D =~H O L B Lzl | P

The Output window shows the build progress.
Output*

-1 Search:
-
(1 items) was successful.

ded, 839 up-to-date, @ failed, @ not triggered due to failure.

" bundle but it was invalid. Deleting it...

Asset view Asset errors (0) Output®

When the build is complete, your game starts on the selected platform.

Launch a game from Visual Studio
1. In Game Studio, in the toolbar, click] (Open in IDE) to launch Visual Studio.

2. In the Visual Studio toolbar, set the appropriate project as the startup project.

Debug -~ Any CPU - & MyGame Windows -

The startup project configuration is updated automatically.

@ TIP

You can see your projects in the Solution Explorer on the right. The project filename extensions
identify the platform (eg .Android, .iOS, etc).

3. Check that the configuration and platform properly matches what you are expected.

4. o To start the game without debugging, press Ctrl + F5.

108 /1211

o To start the game with debugging, click Start or press F5.

File Edit View Git Project Build Debug Test Analyze xtensions Window Help L Search ~ MyGame

bl Debug ~ AnyCPU bt MyGameWindows ~ P MyGameWindows ~ [> [~ G

Remove borders

By default, the game runs with window borders.

With borders Without borders

To run the game without borders, use:

Game.Window.IsBorderLess = true;

For example:

using Stride.Engine;

namespace MyGame

{
public class MyScript : StartupScript
{
public override void Start()
{
base.Start();
Game.Window.IsBorderLess = true;
}
}
}

109 /1211

Animation

3D models are animated by adding three kinds of asset:

e a skeleton
e a skinned model
e an animation clip

(i) NOTE

For information about 2D animation, see Sprites.

Skeletons

Skeletons are digital structures that describe deformation patterns of 3D models. Skeletons are made of
bones that form a hierarchy. When parent bones change their position, they also affect the positions of
child bones. For example, a hand bone might have five child bones (the fingers and thumb); when the
hand moves up and down, the fingers and thumb move with it.

Skeletons don't have to resemble the skeletons of real humans or animals. You can make skeletons to
animate any 3D model.

(0 NOTE

There's currently no way to visualize skeletons in Game Studio.

Skinned models

Skinning is the process of assigning weights to vertices and bones they depend on. Each vertex usually
depends on one to four bones.

Skinned models are models that have been skinned to match a skeleton. The skin describes how
vertices of the mesh transform when bones move.

110 /1211

(0 NOTE

In Game Studio, you can only create simple 3D models such as spheres and cubes. For information
about how to do this, see Create assets. To create more complex models, use dedicated software
like 3DS Max, Maya, or Blender, then import the model into Game Studio.

Animation clips

Animation clips describe the pose of a skeleton at a particular moment. The skeleton moves according
to the animation. The mesh vertices transform (skin) to match the current pose.

Animation samples

For an example of how animations work in Stride, load the Sample: animation sample project.

Sample game: Space Escape Sample: animation
A simple 3D runner game

3 3 This sample demonstrates to create a model, assign
Samp|E: animation animations to it, and play different animations based on user
Demonstrates how to animate a model input. It also features two cameras, demonstrating how to

render the scene to an offscreen texture.

Sample: custom effect
Demonstrates how to use a custom effect

Sample: custom material shader
Demonstrates how to use materials with custom shaders

Sample: sprite fonts
Demonstrates how to use sprite fonts

Sample: SpriteStudio
Cemonstrates how to use SprteStudico integration

Sample: gravity sensor
A sample project demonstrating how to use the gravity sensor

Sample: touch inputs
A sample project demonstrating how to use Touch and Gesture events

Sample: particles
Demanstrates different parts of the particle engine

The templates First-person shooter, Third-person platformer and Top-down RPG also include some
advanced animation techniques.

In this section

e |mport animations

e Animation properties

e Set up animations

111/1211

Preview animations

Animation scripts

Additive animation

Procedural animation

Custom blend trees
Model node links
Custom attributes

112 /1211

Import animations

Beginner Designer
To animate a model, you need to use three kinds of assets together:

e models
e skeletons
e animations

Stride supports the following model file types: .3ds, .blend, .dae,dxf, .fbx, .glb, .gltf, .md2, .md3, .obj,
.ply, .stl,.stp, .x

Import a model, skeleton, or animation from a model file
1. Drag the model file from Explorer to the Asset View (in the bottom pane by default).

= | leght
Hame Share Wiew

- i « Templates » Samples » Geaphict » AnimatedModel + Retources » Imight

» o Quick acoess
b g Crestree Cloud Fies
» i Onelrive

c100_body cm <100 body_em <100_body nm <100 weapon_cm r'l'-’.lﬂ | weapan_n
» O This PC - -

o DO

hl:m nemmal_idle helld_runfba

Biterns 1item selected 1,13 MB

Ground Sphene Gro Sphere Materia
Procedural M. Procedural M. a Material

Alternatively, in the Asset View:

113 /1211

Ta. Click [Y¥EPER® and select Import directly from files.

Azzet view
o= Add asset ®
| [« .

'

’

Animations Import directly from files

I

Audio
M atenals

Miscellaneous
seefaneou sdelLeft HandModelRight
Models del Model

Mavigation

2b. Browse to the file and click Open.
2. Specify whether you want to import the 3D model, animation, or skeleton from the model file.

30 model
A 30 model asset imported from a source file. Matenals and textures
referenced by this model can be imporbed as well.

Animation

An animation asset imported from a source file to animate a 3D model.

Skeleton

A skeleton asset imported from a source file, used to animate 30 models.

Raw asset

An asset that contains binary or text data directly imported from a file to

the game,

o If you choose 3D model, Stride can import any additional materials, textures and skeletons it
finds in the model file. You can also import the skeleton from the model (Import new
skeleton), import no skeleton (Don't use skeleton), or specify a different skeleton (Use
existing skeleton) in the lower field.

114 /1211

= Model import parameters

Materials and textures

+ Import materiaks

¥ Import textures

Skeleton

v Import new skaleton

(Mo aszat selacted)

o If you choose Skeleton, Stride imports only the skeleton from the model file. You might want to
do this, for example, if you want to use it for a new skeleton that uses a subset of its nodes.

o If you choose Animation, Stride imports only the animation from the model file. This is
sufficient for regular animations; for additive information, there are some extra steps. For
details, see Additive animation.

After you import the assets, Game Studio adds them to the Asset View.

Solution explorer 0 x Assetwview
SRk 5w Y +.-'1'a.|:||:| asset
¥ Solution 'AnimatedModel!
v & AnimatedModel3*
* B Assets*
l Animations®
l Materials
B Models
l Textures
b B AnimatedModel2.Game

2 AnimatedModel3.Windows

b B2 Dependencies

Assetwiew | Asset errors (0) Output

You can view and edit their properties in the Property Grid (on the right by default). For more
information, see Animation properties.

115/1211

Property grid

0 Animation Animations/ldle

Source ChUsersh.. \Mnimationildle.flbx
Clip duration " Clip duration
Start frame
End frame
Repeat mode hint Loop
Type Animation Clip
Skeleton Models/mannequinModel Skel: 4 &0
Root Motion
Import Custom Attributes

Preview Model

Use an animation asset

To use an animation asset, add an AnimationComponent to an entity, then add the animation asset to

the animation component. For more information, see Set up animations.

(0 NOTE

Make sure you correctly skin your mesh to the skeleton. If you don't, you won't be able to animate
your model correctly.

See also

e Animation index

e Animation properties

e Set up animations

e Preview animations

e Animation scripts

e Additive animation

e Procedural animation

e Custom blend trees

e Model node links

e Custom attributes

116 /1211

Animation properties

After you import an animation, you can select it in the Asset View (in the bottom pane by default) and

view and edit its properties in the Property Grid (on the right by default).

Solution explorer 0 x Assetview
¥ Solution 'AnimatedModel3’
v & AnimatedModel3*
* B Assets*
l Animations™
l Matenals
B Models
l Textures
b B AnimatedModel3.Game
2 AnimatedModel2.Windows

(% | Dependencies .
Assetwview | Asset errors (0) Output

Property grid

0 Animation Animations/ldle

Source ChUsers\.. \Mnimationildle.fbx
Clip duration " Clip duration
Start frame
End frame
Repeat made hint Loop
Type Animation Clip
Skeleton Models/manneguinMadel Skel:
Root Motion
Import Custom Attributes

Preview Model ModelsymanneguinMeodel

Source

The source file used by the animation asset. If you change this, Game Studio re-imports the animation.

117 /1211

Clip duration

By default, clip duration is disabled. This means the animation starts at frame 0 and runs to the last
written keyframe in the file.

However, single animation tracks sometimes include several animations. In this case, you have to split
the track. To do this, enable Clip duration and adjust the start and end frames to match the duration of
each animation.

The start and end frames are still limited by the keyframes exported in the file. For example, if you
originally exported frames 20 to 40 from the animation tool, the start frame cannot be lower than 20 and
the end frame cannot be higher than 40.

By default, Game Studio assumes the frame rate is 30. You can change this in the Game settings asset
properties under Editor settings > Animation frame rate.

Pivot position

Game Studio assumes the pivot is the origin of the coordinate system local to the animation. It should be
setto (0, @, 0). If your animation was shifted from the origin when exported, you can use this property
to re-adjust it.

Scale import

The scale import should be set to 1. Stride detects the units in which your data was exported and adjusts
it automatically. If there are no export settings in your animation file and the scale appears incorrect, you
can use the scale import property to re-adjust it.

Repeat mode

You can choose PlayOnce, Looplnfinite or PlayOnce&Hold. This is just a hint for the engine. When you
assign an animation asset to the model, you can specify differently. If you don't specify the mode later,
Stride uses the attribute you set here by default.

Type
Stride supports two types of animation clip. Regular animations default to Animation clip and are used

with linear blending if mixed. For Difference clip, there are few more settings. For more information, see
Additive animation.

Skeleton

If you want to animate bones/joints, the animation needs a skeleton.

118 /1211

Skeletons are made of bones that form a hierarchy. When parent bones change their position, they also
affect the positions of child bones. For example, a hand bone might have five child bones (the fingers
and thumb); when the hand moves up and down, the fingers and thumb move with it.

Make sure you reference the same skeleton used by the model you want to animate. If there are missing
bones or other differences between the bone/joint hierarchy of the skeleton in your animation file and
the target skeleton, Stride retargets the animation as closely as possible.

(0 NOTE

There's currently no way to visualize skeletons in Game Studio.

Root motion

When root motion is enabled, Stride applies the root node animation to the TransformComponent of
the entity you add the animation to, instead of applying it to the skeleton.

This is useful, for example, to animate entities that don't require skeletons, such as a spot light moving
back and forth.

(i NOTE

If the animation has no skeleton specified in Skeleton, Stride always applies the animation to
TransformComponent, even if root motion is disabled.

(0 NOTE

The TransformComponent applies an offset to the model node position. If you don't want to add an
offset, make sure the TransformComponent is set to 9,9, .

Import custom attributes

If you have custom attribute in the animation file...

See also

e Animation index

e |Import animations

e Set up animations

119/1211

Preview animations

Animation scripts

Additive animation

Procedural animation

Custom blend trees

Model node links

120 /1211

Set up animations

After you import animation assets, you need add them to an entity and play them with a script.

1. Add animation assets to an entity

1. In the Scene Editor, select the entity you want to animate.

Scene settings

- Ambient light

'i‘ Front light
4§ Back light

W Camera front
W Camera back
&P CharacterModel
% RenderToTexture
[=} Background

3 ue

u RenderToTextureTilted

(0 NOTE

To animate an entity, the entity must have a model component.

2. In the Property Grid, click Add component and choose Animations.

12171211

Property grid

Entity CharacterModel

B

Mame CharacterfModel

Group Groupd

Add component

I Animations

{‘é} AnimationScript
WD Audic Emitter
'-E.' Audio Listener
=} Background

W Camera

:-ﬂ Character

™} Child scene

Game Studio adds an animation component to the entity.
3. In the animation component properties, next to Animations, click B (Add) to add a new animation
to the library.

4. Type a name for the animation and press Enter.

w HB Animations

Animations Dictionary - 0 item(s)

Key name: Run

@ TIP

When you play animations using scripts later, you use this name, not the name of the
animation asset. To make identification easy, we recommend you give your animation the same
name as the animation asset.

5. Click ™ (Select an asset).

122 /1211

w HB Animations

* Animations Dictionary - 1 item(s)

Run (Mo asset selected)

LK 4

The Select an asset window opens.
6. Browse to the animation asset you want to add and click OK.

x Asset picker

¥ Solution 'AmimatedModeld’ + Add asset
v B AnimatedModeld*

v B Assets” .
l Animations
' Maternals
B Models
B Textures

+ B AnimatedModeld.Game
] Properties

@ AnimatedModeldWindows
P EZ Dependencies

P External Packages

Game Studio adds the animation asset to the entity.

123 /1211

w HB Animations

* Animations Dictionary - 1 itemi(s)

Run Animations/Run

Playing Animations List - O item(s)

You can add as many animations to the animation component as you need. The Property Grid lists them
in alphabetical order.

v I Animations

¥ Amimations Dictionary - 2 item(s)

Idle Ammations/Idle

K 4

Animations/Run

Playing Animaticns List - 0 item(s)

2. Create a script to play the animations

After you add animations to an entity, you need to play them with a script.

Example script

public class SimpleAnimationScript : StartupScript

{
public override void Start()
{
Entity.Get<AnimationComponent>().Play("Walk");
}
}

This script looks for an animation with the name Walk under the animation component on the entity.

For more information about creating animation scripts, see animation scripts.

3. Add the script to the entity

1. In the Scene Editor, select the entity you want to animate.

124 /1211

Scene settings

“#- Ambient light
9" Front light

4§ Back light

W Camera front
W Camera back
& CharacterModel
u RenderToTexture
[=} Background

3 ue

u RenderToTextureTilted

Property grid

0 Mo selection

B

Mame Characterfodel

Group Group0

Add component

{8} AnimationScript
W3 Audio Emitter
"E.' Audio Listener
[=} Background

W Camera

| Character

™ Child scene

+~ Model Node Link

7] Navigation

6 Particle System

7| Rigidbody

{5} RotateEntity

@' SetSpriteSource
Skybox

W Sprite

N Sprite Studio

~* Snrita Shidin Mada link

12571211

Game Studio adds the script as a component. You can adjust public variables you define in the script in

the Property Grid under the script component properties.

w @' AnimationStart

* Animations List - 2 item(s)
¥ ltem O PlayAnimation
Clip Animation/BASE idle gun air

4

Blend Operation LinearBlend
Start Time 0

* [tem 1 Playfnimation
Clip Animation/ReloadAdditive

X 4

Blend Operation
Start Time
Add to Animations

Target

Pricrity

See also

e Animation index

e |mport animations
e Animation properties

e Preview animations

e Animation scripts

e Additive animation

e Procedural animation

e Custom blend trees

¢ Model node links

e Custom attributes

126 /1211

Preview animations

After you import an animation, you can preview it in the Asset Preview.

Asset preview

" 0470 f 1.067 Time scale: 0.5

Asset view + 1 X Asset preview

o Add asset I 0061/1067 Timescale: 0.5

T
.
stand_gun_goes_ stand_walk_shot walk_bckwrds_ walk_bwds_aim walk_fwd_aim walk_left_aim

-
up Animation aims Animation Animation Animation Y-
=t
A

Animation Animation 4
b

A

walk_right_aim
Animation

Asset view | Asset errors (0) Output Asset preview| Action history References

@ TIP

To rotate the animation, click and drag the mouse.

The animation preview uses the model selected in the preview model in the animation asset
properties.

127 /1211

Set the preview model

1. In the Asset View (at the bottom by default), select the animation asset.

Idle
Animation

Property grid

0 Animation Animations/Run

B

Source CAlUsersh,. AMAnimationyRun.fbx

Pivot Position X 0 ¥ 1] i

Scale Import 1

Repeat Mode Loop!nfinite

Skeleton Models/mannequinMaodel Sk R
Root Motion

Preview Model Models/manneguinModel

W @

The Select an asset window opens.

3. Select the model you want to use to preview the animation.

(i) NOTE

Make sure the model and the animation share identical skeletons.

See also

e Animation index

128 /1211

Import animations
Animation properties

Set up animations

Animation scripts

Additive animation

Procedural animation

Custom blend trees
Model node links
Custom attributes

129 /1211

Animation scripts

Animations are controlled using scripts.

You can add an AnimationComponent to an entity and set up its parameters in Game Studio. The
AnimationComponent class is designed to be used mainly from a script.

The more useful properties include:

Property Description

Animations Gets the animation clips associated with this AnimationComponent

BlendTree Gets or sets animation blend tree builder. Note you can create custom blend trees; for
Builder more information, see Custom blend tree
Playing Gets the list of active animations. Use it to customize your startup animations. The

Animations playing animations are updated automatically by the animation processor, so be careful
when changing the list or keeping a reference to a playing animation

(i) NOTE

Animation clips you reference in scripts must be added to the same entity under the Animation
Component.

v I Animations

* Animations Dictionary - 3 items)

Idle Ammations/ldle

L 4

Animations/Run

4

AmmationsWalk

L 4

For more information, see Set up animations.

130/ 1211

Use the pre-built AnimationStart script

Stride includes a pre-built AnimationStart script. You can use this script as a template to write your own

animation scripts.
To use the AnimationStart script:
1. In the Asset View (bottom pane by default), click Add asset.

2. Choose Add asset > Scripts > Animation start.

Startup script

A startup script with a Start method invoked when the script is loaded

Animations

Audio))
Animation blend

M atenals . :
neE Blends two ammahons

Miscellaneous

Models . .
Animation start

Mawvigation
Physics
Prefabs
Scenes
Scripts

Sprite Studio

Loads an animation sequence in an animation component and plays it

Camera: basic controller
Mowes and rotates an entity using keyboard, mouse or touch input

Camera: FPS

Sprites A basic first-person shooter camera script
Textures
ul Camera: side-scrolling

o= Add asset
3. Specify a name for the script and click Create script.

K Mew script

Class: MyAnimationScnpt

MNamespace: MyGame

Create script

3a. If Game Studio asks if you want to save your script, click Save script.

3b. If Game Studio asks if you want to reload the assemblies, click Reload assemblies.

13171211

4. Edit the script as necessary and save it.

Example animation script

This sample script assigns a simple animation to a character based on its walking speed.
using Stride.Engine;
namespace AdditiveAnimation

{

public class AnimationClipExample : SyncScript
{
public float MovementSpeed { get; set; } = of;

private float walkingSpeedLimit = 1.0f;

// Assuming the script is attached to an entity which has an animation component
private AnimationComponent animationComponent;

public override void Start()

{
// Cache some variables we'll need later
animationComponent = Entity.Get<AnimationComponent>();
animationComponent.Play("Idle");
}
protected void PlayAnimation(string name)
{
if ('animationComponent.IsPlaying(name))
animationComponent.Play(name);
}
public override void Update()
{
if (MovementSpeed <= 0)
{
PlayAnimation("Idle");
}
else if (MovementSpeed <= walkingSpeedLimit)
{
PlayAnimation("Walk");
}
else
{
PlayAnimation("Run");
}

132 /1211

Override the animation blend tree

You can also override the animation blend tree and do all animation blending in the script. The

templates First-person shooter, Third-person platformer and Top-down RPG, which use some advanced

techniques, are examples of how to do this. For more information, see custom blend trees.

See also

Scripts
Animation index

Import animations

Animation properties
Set up animations

Preview animations

Additive animation

Procedural animation

Custom blend trees
Model node links

Custom attributes

133 /1211

Additive animation

Intermediate = Designer

Additive animation is the process of combining animations using difference clips (also known as
additive animation clips).

In the example above, the leftmost animation is the Walk animation. The rightmost animation is the /dle

animation. The two animations in the center are the Walk and Idle animations respectively, but have the
Reload animation added to them.

This means we only had to create three animations: Walk, Idle, and Reload. Additionally, we can add the
Reload animation to other suitable animations (eg Crouch, Strafe or Run). This helps keep the memory
budget and number of animations low.

Difference clips

A difference clip describes the difference between two animation clips: a source and a reference.

Take the Reload animation above, which we want to add to other animation clips. This is our source clip
(S). Because the Reload animation mainly involves the arms, it will blend well with animations that don't
involve the arms (such as idling and crouching). We can use one of these animations — let's say the /dle
animation — as our reference clip (R).

Stride calculates the difference between the source and reference clips to create the difference clip (D).
The difference clip encodes the difference between the source and reference clips. We can express it as
D=S-R

134 /1211

We can use use the difference clip to blend the source and reference animations. We can also use the
same difference clip to blend the source animation with other animations. If the animation you add it to
is sufficiently similar to the original reference clip, then the animations blend effectively. For example,
you could use it to add the reload animation to any animation that doesn't use the arms, such as
crouching.

(0 NOTE

Additive animations should use the same skinned mesh and skeleton.

Create a difference clip

1. In the Asset View (at the bottom by default), click Add asset and select Animations > Animation.
A browser dialog opens.

2. As we don't need a source for this animation, click Cancel.

Game Studio asks if you want to create an animation without a source file.

e Do you want to create a Animation without source

file?

3. Click Yes. Game Studio adds a new empty animation asset to the Asset View.

4. Give the asset a name that makes it easy to identify. For example, if you want to make a reload
animation that can be used with other animations, you could name the asset ReloadAdditive.

5. In the Asset View (bottom pane by default), select the animation asset you created.

6. In the Property Grid (on the right by default), add the Source animation clip. This is the animation
you want to apply to other animations.

Clsersh,..\Resources'Reload FEX _!

(0 NOTE

Make sure you add the file that contains the animation itself (eg a model file such as .fbx), not
the animation asset that references it. Animation files are usually saved in the Resources folder.

13571211

7. Under Type, choose Difference Clip.

8. Under Reference, specify the animation you want to use as your reference clip. This is the
animation Stride references to create a difference clip.

¥ Type Difference Clip

Reference CAlUsersy,. \Resources'Idle.FEX

Mode Animation

9. Choose the Mode from the drop-down menu.

o Animation creates a difference clip from the entire source animation, referencing it frame by
frame.

o FirstFrame creates a difference clip from only the first frame of the source animation, as a still
pose.

10. Next to Skeleton, specify a skeleton for the difference clip.

Skeleton

Animation/Skeleton

This should be a skeleton that works for all the animations you want to blend with the difference

clip. In most cases, you should use the same skeleton you used for the source and reference
animations.

11. If you want to Preview the animation in the Asset Preview, specify a Preview model suitable for the
animation.

Preview Model Animation/AnimatedModel

4

(0 NOTE

The Asset Preview shows only the source animation you specify in the difference clip.

Use an additive animation

You can use additive animations with animations that use the same skeleton and skinned mesh.
1. In the Asset View (in the bottom pane by default), click Add asset.

2. Select Scripts > Animation Start.

136/ 1211

Animations
Audio
Matenals
Miscellanecus
Models

Mavigation

(&

Startup script

A startup scnpt with a Start method invoked when the script is loaded

Animation blend
Blends two animatons

Animation start
Loads an animation sequence in an animation component and plays it

Physics

Prefabs Camera: basic controller

Scenes Mowes and rotates an entity using keyboard, mouse or touch input
Scripts

Sprite Studio Camera: FPS
Sprites A basic first-person shooter camera script
Textures

ul Camera: side-scrolling

il =l=)

o= Add asset

AnimationStart is a startup script you can use to load animations into your model, including additive
animations. For more information, see Animation scripts.

3. Recompile your project to apply the changes.

4. In the scene view, select the entity you want to animate.
MainScene* X
Scene settings

W Camera

-4~ Directional light
-4~ Skybox
'@ Mannequin

(0 NOTE

To animate an entity, the entity must have a model component.

5. In the Property Grid (on the right by default), click Add component and choose Animations.

137 /1211

Property gnd

0 Entity Mannequin

B

Mame Mannequin
Group Group(
Add component

I Animations
) Audio Emitter

Game Studio adds an animation component to the entity.
6. Click Add component and choose the Animation Start script.

Property grid
0 No selection
Mannegquin

Group

Add component

! Animations

{Eﬁ' AnimationScript
{3} AnimationStart
o) Audio Emitter

The script lets you customize a list of animations to be loaded into your entity.

7. In the Animation Start properties, next to Animations, click B (Add).

v '@' AnimationStart

Animations List - 0 itemis)

Pricrity 0 Add a new item to the list

8. Next to Clip, specify the source animation you set in the difference clip.

138 /1211

* Animations List - 1 itemi(s)

¥ [tem O PlayAnimation

Clip Animations/ldle

9. Next to Add to Animations, click Bf (Add).

10. Expand the animation properties. Next to Clip, specify the reference animation you set in the

difference clip.

Playfnimation

Animation/ReloadAdditive

11. Under Blend Operation, select Additive.

Blend Operation Add

12. Repeat the steps to add as many animations as you need.

13971211

w HH Animations

Animations

v {@} AnimationStart

* Animations
* |tem O

Clip

Blend Operation
Start Time
¥ ltem 1

Clip

Blend Operaticn
Start Time
Add to Amimations

Target

Priority

See also

e Animation index

e |Import animations

e Animation properties

e Set up animations

e Preview animations

e Animation scripts

e Procedural animation

e Custom blend trees

e Custom attributes

Dictionary - 0 item(s)

List - 2 itemi(s)
PlayAnimation

Animation/Walk

LinearBlend
0
Playfnimation

Animation/ReloadAdditive

X 4

140 /1211

Procedural animation

Procedural animation is an alternative method of animation. Instead of creating animations yourself,
you can use engine components to animate 3D models at runtime.

In some cases, this creates more effective and efficient animations. For example, imagine a shrink effect
that happens when the player shoots a monster with a shrink weapon. Instead of creating a complex
shrinking animation, you can access the entity TransformComponent and simply scale the enemy down
to the required size.

The animation can animate a wide variety of components besides Skeleton bones, including:

e TransformComponent

e LightComponent

e RigidBodyComponent

e Custom components

Stride's animation system works just like Blender or Maya's curve animation editor. Each bone/value is
assigned a curve composed of several points that are interpolated either in linear, cubic or constant
fashion.

Code samples
Transform component

public class AnimationScript : StartupScript

{

public override void Start()

{

// Create an AnimationClip. Make sure you set its duration properly.
var animationClip = new AnimationClip { Duration = TimeSpan.FromSeconds(1l) };

// Add a curves specifying the path to the transformation property.

// - You can index components using a special syntax to their key.

// - Properties can be qualified with a type name in parenthesis.

// - If a type isn't serializable, its fully qualified name must be used.

animationClip.AddCurve("[TransformComponent.Key].Rotation", CreateRotationCurve());

// Optional: pack all animation channels into an optimized interleaved format.
animationClip.Optimize();

// Add an AnimationComponent to the current entity and register our custom clip.

14171211

const string animationName = "MyCustomAnimation";
var animationComponent = Entity.GetOrCreate<AnimationComponent>();
animationComponent.Animations.Add(animationName, animationClip);

// Play the animation right away and loop it.

var playingAnimation = animationComponent.Play(animationName);
playingAnimation.RepeatMode = AnimationRepeatMode.LoopInfinite;
playingAnimation.TimeFactor = 0.1f; // slow down
playingAnimation.CurrentTime = TimeSpan.FromSeconds(0.6f); // start at

different time

value);

}

// Set custom linear rotation curve.

private AnimationCurve CreateRotationCurve()

{

return new AnimationCurve<Quaternion>

{
InterpolationType = AnimationCurvelnterpolationType.Linear,
KeyFrames =
{
CreateKeyFrame(0.00f, Quaternion.RotationX(®)),
CreateKeyFrame(0.25f, Quaternion.RotationX(MathuUtil.PiOverTwo)),
CreateKeyFrame(0.50f, Quaternion.RotationX(MathUtil.Pi)),
CreateKeyFrame(0.75f, Quaternion.RotationX(-MathUtil.PiOverTwo)),
CreateKeyFrame(1.00f, Quaternion.RotationX(MathUtil.TwoPi))
}
¥

private static KeyFrameData<T> CreateKeyFrame<T>(float keyTime, T value)

{

}

return new KeyFrameData<T>((CompressedTimeSpan)TimeSpan.FromSeconds(keyTime),

Light component's color

public class AnimationLight : StartupScript

{

public override void Start()

{

// Our entity should have a light component
var lightC = Entity.Get<LightComponent>();

142 /1211

// Create an AnimationClip and store unserializable types. Make sure you set its
duration properly.

var clip = new AnimationClip { Duration = TimeSpan.FromSeconds(1) };

var colorLightBaseName = typeof(ColorLightBase).AssemblyQualifiedName;

var colorRgbProviderName = typeof(ColorRgbProvider).AssemblyQualifiedName;

// Point to the path of the color property of the light component
clip.AddCurve(
$"[LightComponent.Key].Type. ({colorLightBaseName})Color.
({colorRgbProviderName})Value",
CreatelLightColorCurve()

)5

// Play the animation right away and loop it.
clip.RepeatMode = AnimationRepeatMode.LoopInfinite;
var animC = Entity.GetOrCreate<AnimationComponent>();
animC.Animations.Add("LightCurve",clip);
animC.Play("LightCurve");

}
private AnimationCurve CreatelLightColorCurve()
{
return new AnimationCurve<Vector3>
{
InterpolationType = AnimationCurvelnterpolationType.Linear,
KeyFrames =
{
CreateKeyFrame(0.00f, Vector3.UnitX), // Make the first keyframe a red color
CreateKeyFrame(0.50f, Vector3.Unitz), // then blue
CreateKeyFrame(1.00f, Vector3.UnitX), // then red again
}
}s
}

private static KeyFrameData<T> CreateKeyFrame<T>(float keyTime, T value)

{

return new KeyFrameData<T>((CompressedTimeSpan)TimeSpan.FromSeconds(keyTime),

value);

}

143 /1211

(0 NOTE

If you need to animate a bone procedurally you must use the NodeTransformations field of the
Skeleton.

See also

e Animation index

e |Import animations

e Animation properties
e Set up animations

e Preview animations

e Animation scripts

e Additive animation

e Custom blend trees

e Model node links

e Custom attributes

144 /1211

Custom blend trees

The AnimationComponent has the property AnimationComponent.BlendTreeBuilder. If you want

absolute control over which animations are played, how are they blended and what weights they have,
you can create a script which implements from IBlendTreeBuilder and assign it to the BlendTreeBuilder
under your animation component.

When the animation component is updated, it calls void BuildBlendTree(FastList<AnimationOperation>
animationList) on your script instead of updating the animations itself. This allows you to choose any
combination of animation clips, speeds and blends, but is also more difficult, as all the heavy lifting is
now on the script side.

The templates First-person shooter, Third-person platformer and Top-down RPG, included with Stride, are
examples of how to use custom blend trees.

Code sample

public class AnimationBlendTree : SyncScript, IBlendTreeBuilder

{

/// <summary>

/// The animation component is required

/// </summary>

[Display("Animation Component™)]

public AnimationComponent AnimationComponent { get; set; }

[Display("Walk")]
public AnimationClip AnimationWalk { get; set; }

[Display("Run")]
public AnimationClip AnimationRun { get; set; }

[Display("Lerp Factor")]
public float LerpFactor = 0.5f;

private AnimationClipEvaluator animEvaluatorWalk;
private AnimationClipEvaluator animEvaluatorRun;
private double currentTime = 0;

public override void Start()

{
base.Start();

// IMPORTANT STEP
14571211

// By setting a custom blend tree builder we can override the default behavior of

the animation system.
// Instead, BuildBlendTree(FastList<AnimationOperation> blendStack) will be called

each frame.
// We need to update the animation state in Update() and then
// pass the new animation state (stack = blend tree) to the animation system.

AnimationComponent.BlendTreeBuilder = this;

// As we override the animation system, we need to create an AnimationClipEvaluator

for each clip we want to use.
animEvaluatorWalk = AnimationComponent.Blender.CreateEvaluator(AnimationWalk);

animEvaluatorRun = AnimationComponent.Blender.CreateEvaluator(AnimationRun);

public override void Cancel()

{

// When the script is cancelled, don't forget to release all animation resources
created in Start() - AnimationClipEvaluators

AnimationComponent.Blender.ReleaseEvaluator(animEvaluatorWalk);

AnimationComponent.Blender.ReleaseEvaluator(animEvaluatorRun);

public override void Update()

{

// Use DrawTime rather than UpdateTime because the animations are updated only when

they are drawn.
var time = Game.DrawTime;

// This update function accounts for animation with different durations,
// keeping a current time relative to the blended maximum duration.
long blendedMaxDuration = (long)MathUtil.Lerp(AnimationWalk.Duration.Ticks,

AnimationRun.Duration.Ticks, LerpFactor);

var currentTicks = TimeSpan.FromTicks((long)(currentTime * blendedMaxDuration));

currentTicks = blendedMaxDuration ==
? TimeSpan.Zero
: TimeSpan.FromTicks((currentTicks.Ticks + (long)(time.Elapsed.Ticks))

% blendedMaxDuration);

currentTime = ((double)currentTicks.Ticks / (double)blendedMaxDuration);

/// BuildBlendTree is called every frame from the animation system when the

AnimationComponent needs to be evaluated.
/// It overrides the default behavior of the AnimationComponent by setting a custom

146 /1211

blend tree.
public void BuildBlendTree(FastList<AnimationOperation> blendStack)
{
var timeWalk = TimeSpan.FromTicks((long) (currentTime *
AnimationWalk.Duration.Ticks));
var timeRun = TimeSpan.FromTicks((long) (currentTime
* AnimationRun.Duration.Ticks));

// Build the animation blend tree (stack)

blendStack.Add(AnimationOperation.NewPush(animEvaluatorWalk, timeWalk)); // Will
PUSH animation state to be evaluated at the specified Time.

blendStack.Add(AnimationOperation.NewPush(animEvaluatorRun, timeRun)); // Will
PUSH another animation state to be evaluated at the specified Time.

blendStack.Add(AnimationOperation.NewBlend(CoreAnimationOperation.Blend,
LerpFactor)); // Will POP the last two states, blend them with the factor and PUSH back
the result.

// NOTE

// Because the blending operations are laid out in a stack you have to pack the
operations in this manner.

// In general, traversing a binary tree depth-first and adding operations as you
leave precessed nodes should be sufficient.

// For non-binary trees, you have to properly weight the blending factors as well

// DONE
// The top of the stack now contains the final state used for the animated model
}
}
See also

e Animation index

e |mport animations

e Animation properties

e Set up animations

e Preview animations

e Animation scripts

e Additive animation

e Procedural animation

e Model node links

e Custom attributes

147 /1211

Model node links

Beginner Artist

(0 NOTE

In some versions of Stride, Model node links are called Bone links.

The model node link component attaches an entity to a node of a skeleton on another entity.

For example, imagine you have two models: a knight, and a sword. The character has a sword swinging
animation. You can use a model link node to place the sword in the knight's hand and attach it to the
correct node in the knight skeleton, so the sword swings with the knight animation.

Set up a model node link component

1. In the Scene Editor, select the entity you want to link to a node in another entity.

2. In the Property Grid, click Add component and select Model node link.

148 /1211

Property grid

O © Entity SwordModel

B

Mame SwordModel

Group Groupd

Add component

! Animations
o) Audio Emitter

'-E-' Audio Listener
[= Background
{E','} BasicCameraController

W Camera
:-ﬂ Character

™ Child scene

& Model Node Link
Eff] Mavigation

6 Particle System
#¥| Rigidbody

2 Skybox

@' Spawnlrail

W Spnte

b ¢ Sprite Studio

A4 Snrita Shidin Mada link

Game Studio adds a model node link component to the entity.

¥ < Model node link

Mode Mame

Target (Parent if not set)

The component only has two properties: Node name and Target.

3. Next to Target, click .

The Select an entity window opens.

149 /1211

o -
. Select an entity

Select an entity that has a Model compenent.

» I Ground ModelComponent (Index: 1)
v - ShootTheCubes

'c} BoxE

<% BoxF

'@ Boxh

'c} BoxE_S

't} BoxE L

\-\-} BoxF 5

hd ;ﬂ PlayerCharacter
v W Camera
b ‘Q} Hands
@ Gun

'& MagazineModel

4. Select the model you want to link the entity to and click OK.

(0 NOTE

The entity you link to must have a model with a skeleton, even if the model isn't visible at
runtime.

@ TIP

If you don't specify a model, Stride links the entity to the model on the parent entity.

5. In Node name, select the node in the model you want to attach this entity to.

150/ 1211

¥ < Model node link

MNode Name

Target (Parent if not set) Roothode
mannequinModel
upper
lower
arm

hand

After you link the node, the Entity Tree shows the link in blue next to the entity name.

-+

v MainScene
W Camera
f‘i" Directional light
“9- Skybox
'Q} Ground
v & Knight
& Sword (Link: hand)

Offset

To add an offset to the linked entity, use the entity's TransformComponent.

¥ 51 Transform
Position

Rotation

Scale

(0 NOTE

If you don't want to add an offset, make sure the values are all set to 9,9, e.

Example script

This script demonstrates how to link one entity (such as a SwordModel) to a specific bone (weapon_bone_R)
in another entity's skeleton hierarchy (in this case, the mannequinModel) using Stride's
ModelNodelLinkComponent.

15171211

public class BonelLink : StartupScript
{
// This example assumes you've created a project with the default Stride models
// "mannequinModel" and "SwordModel." Add them from the "Assets/Models" folder to
your scene,
// and then attach this script to the "SwordModel" entity

ModelNodeLinkComponent bonelink;

public override void Start()
{
// Initialize the script
// Here we locate the entity named "mannequinModel" by searching the root
scene's entities
Entity owner = SceneSystem.SceneInstance.RootScene.Entities.Where(e => e.Name
== "mannequinModel").Single();

boneLink = new ModelNodelLinkComponent

{
// This is the ModelComponent on the target entity (mannequinModel)
Target = owner.Get<ModelComponent>(),
// We set a "hard 1link" to Nodes[7@], which corresponds to "weapon_bone R"
// in the target's skeleton hierarchy
NodeName = owner.Get<ModelComponent>().Model.Skeleton.Nodes[70].Name
}s5

// Finally, add this link component to our current (SwordModel) entity
base.Entity.Components.Add(bonelLink);

See also

e |Import animations

e Animation properties

e Set up animations
e Preview animations

e Animation scripts
e Additive animation

e Procedural animation

e Custom blend trees

e Custom attributes

152 /1211

For examples of how model node links are used, see:

e Particles — Create a trail

e Cameras — Animate a camera with a model file

153 /1211

Custom attributes

You can import custom attributes created in modeling tools such as Maya.

Currently, you can only import custom animated attributes. Attributes that aren't animated can't be

imported.

o . o

===

testFBX_matenalfmmdnt

—
-
bl
=
=
|
X
S
3
ﬁ-
tj‘
iy
>

1. Import custom attributes

1. Import the animation. For instructions, see Import animations.

2. In the Asset View, select the animation asset.

154 /1211

Solution explorer
* Solution ‘AnimatedModel3*
v B AnimatedModeli3*
¥ B Assets*
l Animations™
l Matenals
B Models
l Textures

b B AnimatedModel3.Game

Dependencies

Property grid

] E E
o O P IIl

= 0 » Assetwview

% AnimatedModel3 Windows

+ Add asset

Assetwview | Asset errors (0) Output

0 Animation Animations/Run

Source

Clip duration

Repeat made hint

Type

Skeleton

Root Motion

Import Custom Attributes

Preview Model

CAlUsers\,.AMnimationyRun.fbx
Clip duration
Loop

Animation Clip

Maodels/manneguinModel Ske W &S

v
Models/mannequiniodel

X 4

2
{5
Al

When the assets are built, Stride imports the custom attributes from the FBX file.

2. Control custom attributes with a script

Add a script to read the custom attributes and copy their value to another property. This can be a
separate script, or part of another animation script.

To look up an attribute, use NodeName_AttributeName. For example, if you have the node myNode with the

custom attribute myAttribute, use myNode myAttribute.

Example script

155 /1211

using Stride.Animations;

using Stride.Engine;

using Stride.Rendering;

using Stride.Audio;

using Stride.Rendering.Materials;
using System.ling;

namespace Sample

{
public class HologramScript : SyncScript

{
public Material MyMaterial;

private AnimationComponent animationComponent;
private AnimationProcessor animationProcessor;

public override void Start()

{
base.Start();

animationComponent = Entity.GetOrCreate<AnimationComponent>();
animationProcessor =

SceneSystem.SceneIlnstance.Processors.0fType<AnimationProcessor>().FirstOrDefault();

}
public override void Update()
{
if (animationProcessor == null || MyMaterial == null)
return;

// Animation result may be Null if animation hasn't been played yet.
var animResult = animationProcessor.GetAnimationClipResult(animationComponent);
if (animResult == null)

return;

// Read the value of the animated custom attribute:
float emissiveIntensity = 0;
unsafe

{

fixed (byte* structures = animResult.Data)

{

foreach (var channel in animResult.Channels)

{

if (!channel.IsUserCustomProperty)
continue;

156 /1211

var structureData = (float*)(structures + channel.Offset);
var factor = *structureData++;
if (factor == 0.0f)

continue;

var value = *structureData;
if (channel.PropertyName == "myNode_myProperty")
emissiveIntensity = value;

// Bind the material parameter:

MyMaterial.Passes[@].Parameters.Set(MaterialKeys.EmissiveIntensity,
emissiveIntensity);

}

157 /1211

Audio

You can import sound files and use them in your games. Stride supports audio features including 3D
spatialized audio, streaming, and low-latency playback.

((«)

In this section

e |mport audio
e Audio asset properties

e Non-spatialized audio

e Spatialized audio

o Audio emitters

o Audio listeners
o HRTF
e Stream audio

e Global audio settings

e Play a range within an audio file

e Custom audio data

e Set an audio device

158 /1211

Import audio

You can import audio files to use as audio assets in your project. You can import file types including
.wav, .mp3, .0gg, .aac, .aiff, .flac, . m4a, .wma, and .mpc.

1. Drag and drop the audio file from Windows Explorer to the Asset View:

EeT wew

+ Add asset

St) (") A 'llllllll

Fank Ambierithdusic Saoiand Effect di W Henko GameSethe 3
Eprite Fomt Background Gamie Settingn
Texture

B8 This PC dy FrahLarnpByLile
k- BvensSahies

|'$ Metwork W

Alternatively, in the Asset View:
1. Click + Add asset
2. Click (Import audio directly from file) and select the audio file.

2. To give the audio asset some default properties, choose a preset. (You can always change the
properties in the Property Grid later.)

Sound effect
A non-spatialized sound asset imported from a source file and played
directly from memonry.

Spatialized sound
A mono, spatialized sound asset imported from a source file, played from
memory and to be used with Sound Emitters

Music
A high quality sterec asset imported from a source file and streamed at
runtime from disk to save memory.

Raw asset

An asset that contains binary or text data directly imported from a file to

the game.

159 /1211

o Sound effect: Recommended for smaller files that you want to play directly from memory.

o *Spatialized audio: Process the audio asset as spatialized audio. Note that Stride processes
audio files as mono (single-channel) audio. The source file is unaffected.

o Music: Recommended for larger files that you want to stream from disk to save memory.

After you import an audio file, you can select it as an asset in the Asset View.

Import audio from a video file

You can also import a video file and choose to import only the audio tracks from it.

1. In the Asset View, click Add asset and select Media > Video.

Video

. A video imported from a source file and played from memory

Amimation .

Font
Sound effect

. A non-spatialized sound imported from a source file and played from
Media memony

Material

Miscellaneous

Model

Spatialized sound
A mono spatialized sound imported from a source file, played from

Physics memory for use with sound emitters

Ly - -
SCENE Music

Seript A high-quality stereo sound impaorted from a source file and streamed
Sprite from dizk

Texture
LI

2. Browse to the video you want to import audio from and click Open.
Alternatively, drag the file from Explorer into the Asset View.

3. Clear Import video and click OK.

160/ 1211

Import from video

Video

Import video

Audio

¥ Import audio tracks

Cancel

Stride adds the audio tracks from the video to the Asset View.

See also

e Spatialized audio

e Non-spatialized audio

e Global audio settings

e Video

161 /1211

Audio asset properties

After you select an audio asset in the Asset View, you can configure its properties in the Property Grid.

Property grid

0 Sound SoundEffect

B

Source CAUsersh,..\Resources\wave.wav -!

Sample Rate 44700
Compression Ratic
Stream From Disk

Spatialized

Property Description
Source The source audio file (note that Stride never alters source files)

Compression Set the compression rate from 1 (no compression) to 40 (maximum). Greater
ratio compression optimizes memory use, but decreases audio quality. Stride compresses
audio files with the open-source Opus/Celt® codec.

Sample rate The rate at which Stride resamples the source file. The higher the sample rate, the
higher the audio quality. Typical sample rates are 44.1 kHz (44,100 Hz), 48 kHz, 88.2
kHz, and 96 kHz. Note that high sampling rates doesn't improve the quality of low-

quality audio files.

Spatialized Simulate 3D audio (see spatialized audio)

Stream from Streaming is useful for larger audio files, as it saves memory. For more information,
disk see Stream audio.

See also

e |Import audio
e Global audio settings

e Spatialized audio

e Non-spatialized audio

162 /1211

https://en.wikipedia.org/wiki/CELT
https://en.wikipedia.org/wiki/CELT
https://en.wikipedia.org/wiki/CELT
https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate
https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate
https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate

Non-spatialized audio

Non-spatialized audio sounds the same throughout the scene, regardless of the position of entities
(such as the player camera). It's stereo and moves along a single axis (usually the X-axis). Unlike
spatialized audio, the volume, pitch (frequency), and other parameters of spatialized audio don't change.
This is useful, for example, for background music and menu sound effects.

Stereo sound moves along single Ox Axis. Simulates accurate sounds In Front

/ / and from both Sides of the listener.
B\ < N (@

Lower accuracy for sounds
simulated Above, Below and Behind.

Non-spatialized audio requires no audio emitters or audio listeners.

1. Import audio and include it in the build

1. Import the audio as a audio asset.

2. Make sure the audio asset is a root asset. Root assets are assets that Stride includes in the build so
they can be used at runtime.

In the Asset View, right-click the asset and select Include in build as root asset:

Asset
ﬁ’? Edit asset... Ctrl+Enter

=

Set as default

I%]
L

If the menu option reads Do not include in build as root asset, the option is already selected and
you don't need to change it.

2. Create a script to play audio

163 /1211

To play non-spatialized audio at runtime, create an instance of it and define its behavior in the code.

The Soundlnstance controls audio at runtime with the following properties:

Property Function

IsLooping Gets or sets looping of the audio.

Pan Sets the balance between left and right speakers. By default, each speaker a value of 0.

Pitch Gets or sets the audio pitch (frequency).

PlayState Gets the state of the Soundinstance.

Position Gets the current play position of the audio.

Volume Sets the audio volume.

For more details, see the SoundInstance APl documentation.

(0 NOTE

If the sound is already playing, Stride ignores all additional calls to Soundinstance.Play. The same goes
for SoundInstance.Pause (when a sound is already paused) and SoundlInstance.Stop (when a sound is

already stopped).
For example, the following code:

e instantiates non-spatialized audio
e sets the audio to loop

e sets the volume

e plays the audio

public override async Task Execute()

{
// Load the sound

Sound musicSound = Content.Load<Sound>("MySound");

// Create a sound instance
SoundInstance music = musicSound.CreateInstance();

// Loop
music.IslLooping = true;

164 /1211

// Set the volume
music.Volume = 0.25f;

// Play the music
music.Play();

Alternative: create a script with public variables

Create a public variable for each audio asset you want to use. You can use the same properties listed
above.

For example:

public class MySoundScript : SyncScript

{

public Sound MyMusic;

private SoundInstance musicInstance;

public bool PlayMusic;

public override void Start()

{
musicInstance = MyMusic.CreatelInstance();

}

public override void Update()

{
// If music isn't playing but should be, play the music.
if (PlayMusic & musicInstance.PlayState != PlayState.Playing)
{

musicInstance.Play();
}
// If music is playing but shouldn't be, stop the music.
else if (!PlayMusic)
{
musicInstance.Stop();

}

}

}

Add the script to the entity

165/ 1211

1. In the Scene view, select the entity you want to add the script to:

-+ of of

Scene settings

',i Ambient light

b -§- Directional light
(3 @ Character
@' Background
@' GameSaript

3 ue

2. In the Property Grid, click Add component and select your script:

Add component

WD Audio Emitter

*E-' Audioc Listener

[=} Background

@' Backgroundinfo

{@} BackgroundScnpt

W Camera

:-ﬂ Character

@' CharacterScript
Child scene

{“}} GameScript
@' LevelGenerator

~ Model Node Link
&% MySoundScript

The script is added to the entity.

3. If you added public variables to the script, you need to tie them to audio assets.

Drag and drop an asset from the Asset View to each variable:

166 /1211

v & MySoundScript

My Music (No asset selected)

Play Music
Priority

Azzet view

+ Add asset

<)

MySound BG_Lane_01a
Sound Material

Alternatively, click (Select an asset):

v & WhySoundScript

Wy Music (Mo asset selected) W s o

Play Music Pick an asset up

Pricrity
Then choose the audio asset you want to use:

K Asset picker

¥ Solution 'SpaceEscape?’
v B SpaceEscape2*
P9 Assets*
B SpaceEscape2.Game
[] Background
B Effects

[] Properties
[] Rendering
SpaceFscape2 Windows
P B2 Dependencies

P External Packages

MySound
Sound
Url: MySound

Type: Sound
@ Included to build as root

167 /1211

See also

e |Import audio
e Global audio settings

e Spatialized audio

168 /1211

Spatialized audio

Spatialized audio, also called 3D audio, simulates three-dimensional sound. This creates more realistic
audio than non-spatialized audio.

In real life, our experience of sound is affected by factors including its volume, the surrounding area
(such as a cave or small room), and the position and movement of the sound source. We can usually tell
approximately where a sound is coming from and whether it's moving.

» System tracks user's position and
uses it as reference point.

Simulates sounds in 3-dimentional
space around user.

For example, the frequency (pitch) of the sound coming from a moving object varies depending on the
observer's position (the Doppler effect). Sound from an approaching source has a higher frequency
than sound from a receding source:

APPROACHING SOUND
Higher Frequency

Gy 1}

RECEDING SOUND

Lower Frequency

- ——

169 /1211

https://en.wikipedia.org/wiki/Doppler_effect
https://en.wikipedia.org/wiki/Doppler_effect
https://en.wikipedia.org/wiki/Doppler_effect

To simulate realistic 3D audio, Stride tracks the positions of two entities in the scene:

e audio emitters, which emit audio

e audio listeners, which hear the sound emitted by audio emitters

You must have both audio emitters and audio listeners to hear spatialized sound in a scene.

Spatialized audio is widely used for sound effects in platform, desktop, and VR games. For example, a
gun might make a gunshot sound when fired, or a character might make a footstep sound when they
take a step.

(0 NOTE

Spatialized audio uses more CPU than non-spatialized audio.

Enable spatialized audio

When you import your audio, select Spatialized Sound as the asset type.

You can also set audio to spatialized in the asset's Property Grid:
1. In Asset View, select Audio Asset.
2. In the Property Grid, select the Spatialized checkbox:

Property gnid

Sound SoundEffect

1L

Source ChlUsers\,.\Resourcesiwave.way _!

Sample Rate 44700
Compression Ratio

Stream From Disk

Spatalized

(i NOTE

Stride processes spatialized audio as mono (single-channel) audio. It doesn't alter the source file.

See also

e Audio emitters

170/ 1211

e Audio listeners
e HRTF
e Global audio settings

17171211

Audio emitters

Audio emitter components emit audio used to create spatialized audio. You can add them to any entity.

The pitch and volume of the sound changes as the audio listener moves closer to and away from the
audio emitter.

(0 NOTE

You need at least one AudiolListenerComponent in the scene to hear audio from audio emitters.

1. Set up an audio emitter asset

1. In the Scene view, select an entity you want to be an audio emitter.

-+

Scene settings

“§- Ambient light
b -§- Directional light
b &P Character
{‘é} Background
{‘é} GameScript

3 ue

Property grid
Entity Entity
Mame Entity

Group Groupd

Add component

HE Animations
WD Audio Emitter
~E.- Audio Listener

[} Background

172 /1211

Now we need to add audio to the emitter.
3. Under Audio Emitter, click B® (Add) and specify a name for the audio.

w v o) Audio Emitter

Sounds Dictionary - 0 itemi(s)

Key name:

o W) Audio Emitter
* Sounds Diictionary = 1 ibemi(s)

Emitterl (Mo asset selected)

. References
4

Referencess | Referencers L O]

© i f| e

SoundEffect waave
Sound Urk SoundEffect Texture
Type: Sound
Induded to build 2= dependency

Alternatively, click (Select an asset).

w v ¥ Audio Emitter

¥ Sounds Dictionary - 1 item(s)

MySound (Mo asset selected) P

MySound1 Pick an asset up

Then choose an audio asset:

173 /1211

x Asset picker

¥ Solution 'SpaceEscape?’ + Add asset
v B SpaceEscape2*

B Assetc*

B SpaceEscape?.Game *,))
B Background

l Effects
B Properties MySound
Sound
B Rendering Url: MySound

Type: Sound
@ Included to build as root

e

¥ SpaceEscape2 Windows
» B# Dependencies

b External Packages

5. Repeat steps 3 and 4 to add as many audio assets as you need.
6. Configure the properties for this audio emitter.

v v W) Audio Emitter

F Sounds Dictionary - 1 items)

Use HRTF o

Directional Factor

Environment

Property Description

Use HRTF Enable head-related transfer function (HRTF). With this enabled, sounds appear to
come from a specific point in 3D space, synthesizing binaural audio. For more
information, see HRTF.

Directional How directional the audio is, from 0 (min) to 1 (max). If set to 0, the audio is emitted
factor from all directions. You can control this with a slider or number value.

Environment The reverb type for the audio, simulating reverberation of real environments (small,
medium, large, or outdoors).

2. Create a script to play the audio

174 /1211

Now we need to create a script to play and configure the audio asset.

1. In your script, instantiate AudioEmitterSoundController for each sound you want to use in the script.

For example, say we have two sounds, MySound1 and MySound2:

AudioEmitterComponent audioEmitterComponent = Entity.Get<AudioEmitterComponent>();
AudioEmitterSoundController mySoundlController = audioEmitterComponent["MySoundl"];
AudioEmitterSoundController mySound2Controller = audioEmitterComponent["MySound2"];

2. Use the following AudioEmitterSoundController properties and methods to play and configure the

audio:
Property /
method Description
IsLooping Loops audio. Has no effect if PlayAndForget() is set to true.
Pitch Gets or sets sound pitch (frequency). Use with caution for spatialized audio.
PlayState Gets the current state of the audio emitter sound controller.
Volume Volume of the audio.
Pause() Pauses audio.
Play(). Plays audio.

PlayAndForget() Plays audio once, then clears the memory. Useful for short sounds such as
gunshots. Overrides IsLooping.

Stop(), Stops audio.

For example:

mySoundlController.IslLooping = true;
mySoundlController.Pitch = 2.0f;
mySoundlController.Volume = 0.5f;
mySoundlController.Play();

This sound will loop at double the original pitch and half the original volume. For more information, see
the AudioEmitterSoundController Stride APl documentation.

17571211

3. Add the script to the audio emitter entity

Game Studio lists the script as a component under Add component. Add the script to the audio emitter
entity.

1. In the Scene view, select an entity you want to be an audio emitter.

-+ of of

Scene settings

',i Ambient light

} -§" Directional light
3 @ Character
@' Background
@' GameScript

3 ue

2. Click Add component and select the script.

176 /1211

Property grid

Entity Entity

B

Mame Character

Add component

[=} Background
W Camera

| Character
™ Child scene

Ly Light Shaft
r‘f] Light Shaft Bounding Volume

<P Model

< Model Node Link

[Navigation

[ﬁ Particle System
7| Rigidbady

2= Skybox

']é} SoundScript
W Sprite

' Sprite Studio

A2 Cruite Shudin Nada link

See also

e Spatialized audio

e Audio listeners

e Global audio settings

177 /11211

Audio listeners

An audio listener is an entity that listens for audio emitted by audio emitters to create spatialized audio.

There can be multiple audio listeners in a scene. This is common, for example, in multiplayer games,
where each player camera is an audio listener.

You don't need to configure audio listeners. All settings for sound effects, including Volume and Pitch
(Frequency), are configured on the audio emitter.

If there's no audio listener in the scene, you won't hear audio from audio emitters.

Add an audio listener component to an entity

To create an audio listener, attach an audio listener component to an entity. You can attach this
component to any entity.

1. In Scene view, select the entity you want to be an audio listener:

-+ of of

Scene settings

',i Ambient light

} -§" Directional light
3 @ Character
@' Background
@' GameScript

3 u

2. In the Property Grid, click Add Component and select Audio listener component:

178 /1211

Property grid
Entity MainCamera

B

Mame MainCamera

Group Groupd

Add component

I Anmimations
W} Audio Emitter
@ Audio Listener
[=} Background

The entity is now an audio listener.

() WARNING

On iOS, you can create multiple objects with Audio listener component in a scene, but only one is used

at runtime.

See also

e Spatialized audio

e Audio emitters

e Global audio settings

17971211

Head-related transfer function (HRTF) audio

Head-related transfer function (HRTF) is an advanced way of rendering audio so that sounds appear
to come from a specific point in 3D space, synthesizing binaural audio. It provides more realistic audio
than standard spatialized audio. For example, with HRTF, the player can hear whether a character is
above or below them. This is particularly useful for VR applications, as it increases immersion.

Players don't need special hardware to use HRTF. However, the effect works much better with

headphones than speakers.

This video demonstrates the effect of HRTF audio:

(0 NOTE

For now, you can only use HRTF on Windows 10.

Enable HRTF

To use HRTF, first enable it globally in the Game Settings asset, then enable HRTF on the entities you

want to use it with.

1. Enable HRTF globally

1. In Solution explorer (the bottom-left pane by default), select the Assets folder.

180/ 1211

Solution explorer
[] . | § E E
2 B =] Gn S Sk

¥ Solution 'FirstPersonShooter

b E FirstPersonShooter

P = Assets
4 ﬁ FirstPersonShooter.Game
'a' FirstPersonShooter.Android
2 FirstPersonShooterWindows

» BE Dependencies

P External Packages

2. In the Asset View (the bottom pane by default), select the GameSettings asset.

Asset view

+ Add asset

Effect Library 6 Skybox

Crosshair2 56 EffectCompilelLog 1 MainScene Skybox
Texture Effect Library i Skybox

3. In the Property Grid (the right-hand pane by default), under Audio settings, select HRTF support.

w Audio

HRTF (if available)

For more information about the Game Settings asset, see Game settings.

2. Enable HRTF on the entities
1. Select the entity with the audio emitter that contains the sound you want to enable for HRTF.
2. In the Property Grid (on the right by default), under Audio emitter, select Use HRTF.

v o) Audio Emitter

F Sounds Dictionary - 1 items)

Use HRTF

Directional Factor

Ervironment

Sounds emitted from this entity will use HRTF.

18171211

(0 NOTE

The HRTF option applies to every sound emitted from this audio emitter.

For more information about audio emitters, including the properties you can change, see Audio emitters.

See also

e Head-related transfer function (Wikipedia)&

e Spatialized audio

e Audio emitters

e Audio listeners

e Game settings

182 /1211

https://en.wikipedia.org/wiki/Head-related_transfer_function
https://en.wikipedia.org/wiki/Head-related_transfer_function
https://en.wikipedia.org/wiki/Head-related_transfer_function

Stream audio

Beginner Designer = Programmer

By default, Stride plays audio directly from memory. This is useful for short sound effects such as

gunshots or footsteps.

Alternatively, Stride can buffer audio and stream it in sequences. As soon as the first sequence is
buffered, Stride plays it while buffering the following sequences in parallel. This saves a lot of memory
when used for larger audio files such as background music and character dialogue.

(0 NOTE

Streaming audio increases latency unless you preload it with the ReadyToPlay task (see below).

183 /1211

I play position [buffered

To stream an audio asset:
1. In the Asset View, select the audio asset.
2. In the Property Grid, select Stream From Disk:

Property grid

o Mo selection

Source ChUsershUser\.. \Resources\Audic\MySudic.wav _!
Compression Ratio 10

Index 1

Sample Rate 48000

Spatialized v

Stream From Disk ¥

In the script for the asset, you can configure an audio file to play once the audio engine buffers enough
audio samples. To do this, use this task:

SoundInstance music = musicSound.CreateInstance();
await music.ReadyToPlay();
music.Play();

See also

184 /1211

Global audio settings
Audio asset properties
Spatialized audio
Non-spatialized audio

185/ 1211

Global audio settings

Global audio settings apply to all the audio in your project.

You can control the global audio settings by accessing the AudioEngine properties class:

Property Function
MasterVolume Sets the master volume.
PauseAudio Pauses all audio.
ResumeAudio Resumes all audio.

You can also control sounds individually using the SoundInstance API.

See also

e Spatialized audio

e Non-spatialized audio

e Soundlnstance APl documentation

186/ 1211

Play a range within an audio asset

Intermediate = Programmer

You can have Stride play only certain portions of an audio asset. This means, for example, that you can
create multiple samples from a single audio asset by specifying different ranges in different Sound
Instance objects.

WALNULLTATA I AW

You can use the following properties, methods, and structures:

Property, method, or structure Function
TotalLength The total length of the sound.
SoundlInstance.SetRange(Play, Sets the time range to play within the audio asset.
Range)
PlayRange Time information, including the range's starting point and
length.

SoundInstance.Position Gets the current play position as TimeSpan.

For example:

//Assume sample length is 4 seconds.

var length = mySound.TotallLength;

var begin = TimeSpan.FromSeconds(2);

var duration = TimeSpan.FromSeconds(2);
mySoundInstance.SetRange(new PlayRange(begin, duration));

See also

187 /1211

Global audio settings
Spatialized audio

Non-spatialized audio

188 /1211

Custom audio data

You can generate audio using your own mechanism. To do this, create a subclass of DynamicSound

Source. For an example of how to implement this, see the CompressedSoundSource” source coded.

Example code

To play a custom DynamicSoundSource at runtime, use:

int sampleRate = 48000;

bool mono = false;

bool spatialized = false;

DynamicSoundSource myCustomSource = new MyCustomSource(...);

AudiolListener listener = Audio.AudioEngine.DefaultListener;

AudioEngine audioEngine = Audio.AudioEngine;

SoundInstance myCustomInstance = new SoundInstance(audioEngine, listener, myCustomSource,
sampleRate, mono, spatialized);

await myCustomInstance.ReadyToPlay();

myCustomInstance.Play();

See also

e Global audio settings

189 /1211

https://github.com/Stride3d/stride/blob/master/sources/engine/Stride.Audio/CompressedSoundSource.cs
https://github.com/Stride3d/stride/blob/master/sources/engine/Stride.Audio/CompressedSoundSource.cs
https://github.com/Stride3d/stride/blob/master/sources/engine/Stride.Audio/CompressedSoundSource.cs

Set an audio device

You can set which audio device Stride uses. For example, you can access the Oculus Rift audio device

from your custom game constructor.

If you don't specify a device, Stride uses the default audio advice.

Example code

This code sets the Oculus Rift device at runtime:

namespace OculusRenderer

{
public class OculusGame : Game
{
public OculusGame()
{
var deviceName = OculusOvr.GetAudioDeviceFullName();
var deviceUuid = new AudioDevice { Name = deviceName };
Audio.RequestedAudioDevice = deviceUuid;
}
}
}
See also

e Global audio settings

190/ 1211

Engine

(D) WARNING

This section is out of date. For now, you should only use it for reference.

e Asset

e Entity-component system
e File system

e Build pipeline
e Asset introspection

See also

e |ntroduction to assets

e Scripts

191 /1211

Asset manager

(D) WARNING

This section is out of date. For now, you should only use it for reference.

Assets

After creating your assets in Game Studio, @'Stride.Core.Serialization.Assets.AssetManager' is the class
responsible for loading, unloading and saving assets.

Creating

You usually create assets directly in Game Studio.

Their URL will match the name (including folder) in Game Studio.
Examples of URLs:

e knight (user imports knight.fbx directly in main asset folder)
e levell/room1 (user creates level1 and import room1.fbx inside)

For more information, see Assets for more details.

Loading

Loading an asset should be done with the help of @'Stride.Core.Serialization.Assets.AssetManager' class:

// Load an asset directly from a file:
var texture = Content.Load<Texture>("texturel");

// Load a Scene asset
var scene = Content.Load<Scene>("scenes/scenel");

// Load an Entity asset
var entity = Content.Load<Entity>("entityl");

Note that loading an asset that has already been loaded only increment the reference counter and do
not reload the asset.

Unloading
Unloading is also done using the AssetManager class:

192 /1211

Asset.Unload(asset);

Asset life time

Asset load and unload are working in pairs. For each call to 'load’, a corresponding call to ‘'unload' is
expected.

An asset is actually loaded only during the first call to 'load'. All subsequent calls only result to an asset
reference increment.

An asset is actually unload only when the number of call to unload match the number of call the load.

The @'Stride.Core.Serialization.Assets.AssetManager.Get' method returns the reference to a loaded asset
but does not increment the asset reference counter.

var firstReference = Content.LlLoad<Texture>("MyTexture"); // load the asset and increase the
reference counter (ref count = 1)

// the texture can be used here

var secondReference = Content.LlLoad<Texture>("MyTexture"); // only increase the reference
counter (ref count = 2)

// the texture can still be used here
Asset.Unload(firstReference); // decrease the reference counter (ref count = 1)
// the texture can still be used here

Asset.Get<Texture>("MyTexture"); // return the loaded asset without increasing the reference
counter (ref count = 1)

// the texture can still be used here
Asset.Unload(secondReference); // decrease the reference counter and unload the asset (ref

count = 9)

// The texture has been unloaded, it cannot be used here any more.

193 /1211

Asset bundles

(D) WARNING

This section is out of date. For now, you should only use it for reference.

A bundle of assets allows to package assets into a single archive that can be downloaded into the game
at a specific time.

It allows creation of Downloadable Content (DLC).
Basic rules:

e A project can generate several bundle.

e A bundle is created from several assets selectors (Currently, only the PathSelector and TagSelector
are supported)

¢ A bundle can have dependencies to others bundles

e Every bundle implicitly references default bundle, where every asset which shouldn't go in a specific
bundle will be packaged

e Once a bundle is deployed into the game, all assets from this bundle and all its dependencies are
accessible

e Bundle resolution is done through an asynchronous callback that allows you to download bundle,
and will be called once per dependency (similar to AssemblyResolve event).

Create a bundle

(0 NOTE

Creating currently requires some manual steps (i.e. editing sdpkg by hand).

Open the sdprj file of the game executable and add the following configuration:

Example:

e A bundle named MyBundleName will embed assets with tags MyTagl and MyTag2
e A bundle named MyBundleName2 will embed assets with tags MyTag3 and MyTag4. This bundle has a
dependency to MyBundleName

e There is also a PathSelector which follow the .gitignore filtering convention.

194 /1211

Bundles:
- Name: MyBundleName
Selectors:
- ITagSelector
Tags:
- MyTagl
- MyTag2
- Name: MyBundleName2
Dependencies:
- MyBundleName
Selectors:
- ITagSelector
Tags:
- MyTag3
- MyTag4d
- IPathSelector
Paths:
folderl/
/folder2/
- *.bin

folder3/*.xml

(i NOTE

Asset dependencies are automatically placed in the most appropriate bundle.

Current process works that way:

e Find assets that matches specific Tag Selectors ("roots" of bundle assets).
e Enumerate assets that are dependent on those "roots" bundle assets and put them in the same
bundle than their "roots" asset.
o Except if already accessible through one of package dependencies (i.e. a shared dependent
package or default package).
e Place everything else in default bundle.

Note that:

e Shared assets might be duplicated if not specifically placed in common or default package, but
that is intended (i.e. if user wishes to distribute 2 separate DLC that need common assets but
need to be self-contained).

e Every bundle implicitly depends on default bundle.

195/ 1211

Load a bundle at runtime

Loading bundle is done through ObjectDatabase.LoadBundle(string bundleName) (ref:
{Stride.Core.Storage.ObjectDatabase.LoadBundle}):

// Load bundle
Assets.DatabaseFileProvider.ObjectDatabase.LoadBundle("MyBundleName2");

// Load specified asset
var texture = Assets.Load<Texture2D>("AssetContainedInMyBundleName2");

Selectors

Selectors help deciding which assets are stored in a specific bundle.
Tag selector
Select assets based on a list of tag attached on each asset.
Properties:
e Tags: List of Tags. Any asset that contains at least one of the tag will be included.

Path selector

Select assets based on their path.

Standard .gitignore patterns are supported (except ! (negate), # (comments) and [0-9] (groups)).

Properties:

e Paths: List of filters. Any asset whose URL matches one of the filter will be included.

196 /1211

Asset control

(D) WARNING

This section is out of date. For now, you should only use it for reference.

Until now, all assets of a game package, and its dependencies, were compiled as part of your game.
Starting with 1.3, we compile only the assets required by your game.

Don't worry, most of it is done automatically for you! We do that by starting to collect dependencies
from the new Game Setting asset: it references the Default Scene, and we can easily detect all the
required asset references (Models, Materials, Asset referenced by your scripts and so on).

In case you were loading anything in your script using Content.Load, you can still tag those assets
specifically with “Mark as Root” in the editor.

However, we now recommend to instead create a field in your script and fill it directly in the editor. All
the samples have been updated to this new practice, so please check them out.

Which assets are compiled?

Assets that will be compiled and packaged in your project are:

e Root assets (blue)
o Automatic for a few asset types (i.e. Game Settings, Shaders)
o Explicit (using "Mark as Root" on the asset)

e Dependencies of root assets (green)

o Since Game Settings is collected, that means that Default Scene and all its dependencies will be
compiled as well (includes Model, Script field members pointing to other assets, etc...)

o Also, we encourage our users to switch your script from Content.Load (which require "Mark as
Root") to a field member that you can set within the editor using drag and drop. That will create
an implicit dependency that will force that asset to be compiled as well.

e Everything else (white) (objects not marked as root and not referenced directly or indirectly by a
root) won't be packaged

197 /1211

MyGame SharedPackage | |me

DDependenmes
GameSettings —3 MainScene P Gold Material I:ant compiled
ModelA ModelB Silver Material

"Mark as root"

One important thing to understand is that "Mark as root" is not part of the asset, it is stored in the
"current” package (the one that is in bold in the Solution Explorer).

It means that if "MyGame" is current package, if you check "Mark as Root" on Silver Material (part of
SharedPackage), this information will be stored in MyGame.sdpkg as part of the reference to
SharedPackage.

As a result, you can use a shared package from multiple games even if you have different explicit roots.

See also

For additional information about asset management, see Manage Assets

198 /1211

ECS (Entity Component System) Introduction
Problem

Dog is a subclass of Animal.

This example is often used as an example of inheritance in introductions to programming. However,
when things get more complex, we get problems:

e Dog and Fish can swim, so we create SwimmingAnimal as a class in between
e Bee and Bird can fly, so we create FlyingAnimal
e What do we now do with the buck, who can do both?

We have the exact same problem in video games. Enemies can walk, shoot, fly - but not all of them can
do everything. Even something basic like hitpoints is not universal, as some enemies are indestructible.

Solution

Entity component system (ECS) is a software architectural pattern mostly used in video game
development for the representation of game world objects. An ECS comprises entities composed
from components of data, with systems which operate on entities' components.

-Wikipedia

The general idea of an ECS is that an entity - an "object" in your virtual world - does not really do
anything. It is mostly just a "bag of components".

The selection of components on an entity decides what it does. An entity with a collider component can
collide, an entity with a sound component can make a noise, etc.

Differing opinions
For the "System" part of the term, there are two interpretations:

1. Entity-and-Component System: In this setup, the components contain both the data they need
and the functionality that works with that data.

2. Entity, Component, System: In this arrangement, a component only contains data, while a third
part - the system - contains the functionality.

Stride allows for working in both ways. 1) can be achieved by using scripts while the usage of 2) is
described in this section of the manual.

199 /1211

https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system

Which one to choose?

Are you still finding your way
around development?

s

Mo

¥

Will this project take
ves] thousands of hours to
develop?

Mo
h J

Do you need thousands of

—yes——jacting/moving entities on the
screen at the same time?

No
¥ ¥ v

Entities,
Components and Either will be fine
Systems

Entities and
Components

200/1211

ECS Usage

Classes

The three parts of Entity Component System map to the following classes:

e Entity - Stride.Engine.Entity

e Component - Stride.Engine.EntityComponent

e System - Stride.Engine.EntityProcessor

Minimal Setup

A component can be defined by deriving a class from EntityComponent. By adding the attribute
DefaultEntityComponentProcessor to an EntityComponent, an EntityProcessor can be ass@ywed to it. This
will automatically set up and run the EntityProcessor if the EntityComponent is in the scene. An
EntityComponent also needs to indicate that it can be serialized by adding the attribute DataContract to
it. A system can be defined by deriving a class from EntityProcessor.

Code
Component

[DataContract(nameof(MyComponent))]
[DefaultEntityComponentProcessor(typeof(MyProcessor))]
public class MyComponent : EntityComponent

{
public int MyValue { get; set; }
}
System

public class MyProcessor : EntityProcessor<MyComponent>

{

public override void Update(GameTime time)

{

foreach (var myComponent in ComponentDatas.Values)

{

Console.WriteLine($"myComponent with value {myComponent.MyValue}
at {time.Total.TotalSeconds}");

}

Additional Note

201 /1211

An EntityComponent can currently not be drag-dropped onto an entity in Game Studio. It has to be
added by selecting an entity, and then clicking the Add component button
in the Property grid. Alternatively, this can also be done in code via entity.Add(entityComponent) .

Advanced Features
More Component Attributes
Display

By adding the Display attribute, a nicer name can be shown in Game Studio.

[Display("My better name")]

ComponentCategory

By default, your components will be listed in the category "Miscellaneous". By adding the
ComponentCategory attribute, a different category can be chosen. If the chosen name does not exist yet, it
will be added to the list in Game Studio.

[ComponentCategory("My own components")]

ComponentOrder

By adding the Componentorder attribute, the order in which components are listed in Game Studio can be
changed.

[ComponentOrder(2001)]

Component Combinations

By passing the types of other components to the EntityProcessor constructor, it will only include entities
that also have those other components. For example, the following EntityProcessor is for MyComponent,
but will skip any entity that does not also have both TransformComponent and AnimationComponent on it.

public class MyProcessor : EntityProcessor<MyComponent>

{
public MyProcessor() : base(typeof(TransformComponent), typeof(AnimationComponent))
{
}

}

202 /1211

https://doc.stride3d.net/latest/en/api/Stride.Engine.Entity.html#Stride_Engine_Entity_Add_Stride_Engine_EntityComponent_
https://doc.stride3d.net/latest/en/api/Stride.Engine.Entity.html#Stride_Engine_Entity_Add_Stride_Engine_EntityComponent_
https://doc.stride3d.net/latest/en/api/Stride.Engine.Entity.html#Stride_Engine_Entity_Add_Stride_Engine_EntityComponent_

Non-default Processors

Adding processors for a type of component via the attribute DefaultEntityComponentProcessor has been
explained above. However, as the name implies, this is for the default processor. Non-default processors
can also be added via

SceneSystem.Scenelnstance.Processors.Add(entityProcessor);

Separation of EntityComponent and Data

EntityProcessor<TComponent> is a shortcut for EntityProcessor<TComponent, TComponent>. By explicitly
using EntityProcessor<TComponent, TData> instead, a different type can be chosen for the actual data.
This way, the EntityComponent can e.g. have "heavier" startup data and references, while the data object
that needs to be processed every frame can be kept small. This will require overriding a method
GenerateComponentData, which produces a TData instance from a TComponent instance.

Overrides

EntityProcessor also provides several methods which can be overridden in order to react to certain
events. They are not overly complicated, so that their usage should be clear from their doc comments.

203 /1211

Manage entities

(D) WARNING

This documentation is under construction.

Overview

User usually want to manipulate Component contained in a specific entity, while engine wants to access
component by types (i.e. all Mesh Component while drawing, all animation components while updating

animations, etc...):

User manipulates entities

Entity A Entity B Entity C Entity D
Mesh Mesh Mesh Mesh
L UL R Component Component Component Component

i

(=]

;]

7]

3

e Animation Animation Animation

E; Processor Component Component

=

m

Physic Physic Physic
Processaor Component Component

User will add component-based entities into an entity manager.

Engine or user registers entity processors that can process specific entities and/or components.

Entity Processor

To solve this problem, the concept of Entity Processor has been added. An Entity Processor will access
Entities that matches specific requirements (i.e. process all entities with MeshComponent) and process all
of them in a single update function. This allows for greater efficiency and cache-friendliness, as there is
no need to check every entity/components many times per frame.

204 /1211

This approach also solves many update order dependencies issues (just need to order the entity
processors updates properly).

Here is some examples of entity processors:

e TransformProcessor: Compute transformation matrices from hierarchy and local transformation
stored in TransformComponent.

o As a result, EntityManager can be used as a hierarchical scenegraph instead of a simple entity
list.
e ModelTransformProcessor: Add Model to rendering.
e LightProcessor: Collects and update lights, and transfer it to rendering system. It can hides
implementation details (deferred or forward rendering, etc...)

Entity System

Entity are grouped together in an EntityManager. It will also contains the list of entity processors. When
an entity is added or an entity components changes, it will ask entity processors if they should be
included.

// Add an entity:
var myEntity = new Entity();
engine.EntityManager.AddEntity(myEntity);

// Iterate through added entities:
foreach (var entity in engine.EntityManager.Entities)

{

Console.WriteLine(entity.Name);

EntityManager can be used to enumerate its Entities (ref:{Stride.Engine.Entity}). Note that children
of a given entities will also be in this list.

To manipulate entities as a scenegraph, refer to TransformComponent class.

205/1211

Flexible Processing

This document expects the reader to be familiar with ECS, please take a look at usage first.

Handling components through EntityProcessor may be too rigid in some cases, when the components
you're trying to process cannot share the same base implementation for example.

Stride.Engine.FlexibleProcessing.IComponent<TProcessor, TThis> provides similar features to
EntityProcessor while being more flexible on the component type, this document covers some of the

usage of this particular interface.
The Icomponent interface requires to type parameters,

e TProcessor which is your processor's type.
e And TThis which is your component's type.

While that last type may seem redundant, it is required to ensure your processor and your implemented
type are compatible.

A summarised example satisfying those type constraint would look like so:

public class MyComponent : StartupScript, IComponent<MyComponent.MyProcessor, MyComponent>

{

public class MyProcessor : IProcessor

{
public List<MyComponent> Components = new();
public void SystemAdded(IServiceRegistry registryParam) { }
public void SystemRemoved() { }
public void OnComponentAdded(MyComponent item) => Components.Add(item);
public void OnComponentRemoved(MyComponent item) => Components.Remove(item);
}

The main difference compared to EntityProcessor is that IComponent is not limited to concrete types,

your processor may operate on interfaces as well;

// Here, declaring the interface, which will be the type received by the processor
public interface IInteractable : IComponent<IInteractable.InteractableProcessor,
IInteractable>

{
void Interact();
public class InteractableProcessor : IProcessor

206 /1211

// Process each IInteractable here
// Omitted method implementation for brievety

// Now any component implementing IInteractable will be processed by
the InteractableProcessor
public class Button : StartupScript, IInteractable

{
public void Interact(){}
}
public class Character : SyncScript, IInteractable
{
public void Interact(){}
public override void Update(){}
}

Updating Processors

Processors do not receive any updates by default, you have to implement the IupdateProcessor or

IDrawProcessor interface to receive them:

public interface ISpecialTick : IComponent<ISpecialTick.Processor, ISpecialTick>

{
void Tick();

public class Processor : IProcessor, IUpdateProcessor

{

public List<ISpecialTick> Components = new();

public void SystemAdded(IServiceRegistry registryParam) { }
public void SystemRemoved() { }

public void OnComponentAdded(ISpecialTick item) => Components.Add(item);
public void OnComponentRemoved(ISpecialTick item) => Components.Remove(item);

// The execution order of this Update, smaller values execute first compared to
other IComponent Processors
public int Order => 0;

public void Update(GameTime gameTime)

{

foreach (var comp in Components)
comp.Tick();

207 /1211

Performance

While it is more flexible, processing components as interfaces instead of concrete class may introduce
some overhead. If the system you're writing is performance critical you should look into strategies to

elide or reduce virtual calls in your hot path.

208 /1211

File system

(D) WARNING

This documentation is under construction.

We recommend you use the static class VirtualFileSystem to access files across platforms. It offers all
basic operations such as reading, writing, copying, checking existence and deleting files.

(0 NOTE

The path separator is / (Unix/Linux convention).

Code example

// Open a file through VirtualFileSystem
var gamesavel = VirtualFileSystem.OpenStream("/roaming/gamesave@0l.dat",
VirtualFileMode.Open, VirtualFileAccess.Read);

// Alternatively, directly access the same file through its file system provider
(mount point)

var gamesave2 = VirtualFileSystem.ApplicationRoaming.OpenStream("gamesave@0l.dat",
VirtualFileMode.Open, VirtualFileAccess.Read);

Default mount points

Mount
point Description Writable Cloud Notes PC Android
data Application X X Output directory/data APK itself
data,
deployed
by package
binary Application X X Usually Assembly directory Assembly directory
binaries, the
deployed same as
by package app_data

(except

209 /1211

Mount
point

roaming

local

cache

tmp

Description Writable Cloud Notes PC

User v v
specific

data

(roaming)

User v v
application
data

Application VvV X
cache

Application Vv X
temporary
data

on

Android)

Backup Output
directory/roaming,
%APPDATA%

Backup Output directory/local

DLC, etc. Output directory/cache,

Might with do-not-back-up

be flags

deleted

manually

by user

(restore,

clear

data,

etc...)

Might Output directory/temp,

be % TEMP%/%APPNAME%

deleted

without

notice

by OS

Android

$(Context.getFilesDir

$(Context.getFilesDi

$(Context.getFilesDir

$(Context.getCachel

210/1211

Build pipeline
This document describes the Build pipeline in Stride, its current implementation (and legacy), and the
work that should be done to improve it.

Terminology

e An Asset is a design-time object containing information to generate Content that can be loaded at
runtime. For example, a Model asset contains the path to a source FBX file, and additional
information such as an offset for the pivot point of the model, a scale factor, a list of materials to
use for this model. A Sprite font asset contains a path to a source font, multiple parameters such as
the size, kerning, etc. and information describing in which form it should be compiled (such as pre-
rasterized, or using distance field...). Asset are serialized on disk using the YAML format, and are part
of the data that a team developing a game should be sharing on a source control system.

e Content is the name given to compiled data (usually generated from Assets) that can be loaded at
runtime. This means that in term of format, Content is optimized for performance and size (using
binary serialization, and data structured in a way so that the runtime can consume it without re-
transforming it). Therefore Content is the platform-specific optimized version of your game data.

Design

Stride uses Content-addressable storage to store the data generated by the compilation. The main
concept is that the actual name of each generated file is the hash of the file. So if, after a change, the
resulting content built from the asset is different, then the file name will be different. An index map file
contains the mapping between the content URL and the actual hash of the corresponding file.
Parameters of each compilation commands are also hashed and stored in this database, so if a command
is ran again with the same parameters, the build engine can easily recover the hashes of the
corresponding generated files.

Build Engine

The build engine is the part of the infrastructure that transforms data from the assets into actual
content and save it to the database. It was originally designed to build content from input similar to a
makefile. (eg. "compile all files in MyModels/*.fbx into Stride models). It has then been changed to work
with individual assets when the asset layer has been implemented. Due to this legacy, this library is still
not perfectly suited or optimal to build assets in an efficient way (dependencies of build steps,
management of a queue for live-compiling in the Game Studio, etc.).

Builder

The Builder class is the entry point of the build engine. A Builder will spawn a given number of threads,
each one running a Microthread scheduler (see RununtilEnd method).

21171211

Build Steps

The Builder takes a root BuildStep as input. We currently have two types of BuildSteps:

e A ListBuildStep contains a sequence of BuildStep (Formerly we had an additional parent class
called EnumerableBuildStep, but it has been merged into ListBuildStep). A ListBuildStep will
schedule all the build steps it contains at the same time, to be run in parallel. Formerly we had a
synchronization mechanism using a special WaitBuildStep but it has been removed. We now use
PrerequisiteSteps with LinkBuildSteps to manage dependencies.

e A CommandBuildStep contains a single Command to run, which does actual work to compile asset.

TODO: Currently, when compiling a graph of build steps, we need to have all steps to compile in the
root ListBuildStep. More especially, if we have a ListBuildStep container in which we want to put a
step A that depends on a step B and C, we need to put A, B, C in the ListBuildStep container. This is
cumbersome and error-prone. What we would like to do is to rely only on the PrerequisiteSteps of
a given step to find what we have to compile. If we do so, we wouldn't need to return a
ListBuildStep in AssetCompilerResult, but just the final build step for the asset, the graph of
dependent build steps being described by recursive PrerequisiteSteps. The ListBuildStep container
could be removed. We would still need to have lists of build steps when we compile multiple asset
(eg. when compiling the full game), but it would be nothing that the build engine should be aware
of.

Commands

Most command inherits from IndexFileCommand, which automatically register the output of the command
into the command context.

Basically, at the beginning of the command (in the PreCommand method), a BuildTransaction object is
created. This transaction contains a subset of the database of objects that have been already compiled,
provided by the ICommandContext.GetOutputObjectsGroups(). In term of implementation, this method
returns all the objects that where written by prerequisite build steps, and all the objects that are already
written in any of the parent ListBuildSteps, recursively. The objects coming from the parent
ListBuildStep are a legacy of when we were using WaitBuildStep to synchronize the build steps. This
hopefully should be implemented differently, relying only on prerequisite (since no synchronization can
happen in the "ListBuildStep itself, everything is run in parallel).

TODO: Rewrite how OutputObjects are transfered from BuildSteps to other BuildSteps. Only the
output from prerequisite BuildStep should be transfered. A lot of legacy makes this code very
convoluted and hard to maintain.

The BuildTransaction created during this step is mounted as a Microthread-local database, which is
accessible only from the current microthread (which is basically the current command).

212/121

At the end of the command (in the PostCommand method), every object that has been written in the
database by the command are extracted from the BuildTransaction and registered to the current
ICommandContext (which is how the ICommandContext can "flow" objects from one command to the other.

It's important to keep in mind that objects accessible in a given command (in the DoCommandoverride)
using a ContentManager are those provided during the PreCommand step, and therefore it is important that
dependencies between commands (what other commmands a command needs to be completed to
start) are properly set.

Compilers

Compilers are classes that generate a set of BuildSteps to compile a given Asset in a specific context.
This list could grow in the future if we have other needs, but the current different contexts are:

e compiling the asset for the game

e compiling the asset for the scene editor

e compiling the asset to display in the preview
e compiling the asset to generate a thumbnail

IAssetCompiler

This is the base interface for compiler. The entry point is the Prepare method, which takes an AssetItem
and returns a AssetCompilerResult, which is a mix of a LoggerResult and a ListBuildStep. Usually there
are two implementations per asset types, one to compile asset for the game and one to compile asset
for its thumbnails. Some asset types such as animations might have an additional implementation for the
preview.

Each implementation of IAssetCompiler must have the AssetCompilerAttribute attached to the class, in
order to be registered (compilers are registered via the AssetCompilerRegistry.

TODO: The AssetCompilerRegistry could be merged into the AssetRegistry to have a single location
where asset-related types and meta-information are registered.

Each compiler provides a set of methods to help discover the dependencies between assets and
compilers. They will be covered later in this document.

ICompilationContext

Not to be mistaken with CompilerContext and AssetCompilerContext.

Contexts of compilation are defined by types, which allow to use inheritance mechanism to fallback on a
default compiler when there is no specific compiler for a given context. Each compilation context type
must implement ICompilationContext. Currently we have:

213 /121

e AssetCompilationContext is the context used when we compile an asset for the runtime (ie. the
game).

e EditorGameCompilationContext is the context used when we compile an asset for the scene editor,
which is a specific runtime. Therefore, it inherits from AssetCompilationContext.

e PreviewCompilationContext is the context used when we compile an asset for the preview, which is a
specific runtime. Therefore, it inherits from AssetCompilationContext.

e ThumbnailCompilationContext is the context used when we compile an asset to generate a
thumbnail. Generally, for thumbnails, we compile one or several assets for the runtime, and use
additional steps to generate the thumbnail with the ThumbnailCompilationContext (see below).

TODO: Currently thumbnail compilation is in a poor state. In ThumbnaillListCompiler.Compile, we first
generate the steps to compile the asset in PreviewCompilationContext, then generate the steps to
compile the asset in ThumbnailCompilationContext, and finally we like the first with the latter.
Dependencies from thumbnail compilers (which load a scene and take screenshots) to the runtime
compiler (which compile the asset) is not expressed at all. It just works now because in all current
cases, the PreviewCompilationContext does what we need for thumbnails (for example, the
AnimationAssetPreviewCompiler adds the preview model to the normal compilation of the animation,
which is needed for both preview and thumbnail).

Dependency managers

We currently have two mechanisms that handle dependencies.

TODO: Merge the AssetDependencyManager and the BuildDependencyManager together into a single
dependency manager object. There is a lot of redundancy between both, one rely on the other,
some code is duplicated. See xk-4862

AssetDependencyManager

The AssetDependencyManager was the first implementation of an mechanism to manage dependencies
between assets. It works independently of the build, which is one of the main issue it had and the reason
why we started to develop a new infrastructure.

It is based essentially on visiting assets with a DatavisitorBase to find references to other assets. There
are two ways of referencing an asset:

e Having a property whose type is an implementation of IReference. More explicitely the only case we
have currently is AssetReference. This type contains an AssetId and a Location corresponding to the
referenced asset.

e Having a property whose type correspond to a Content type, ie. a type registered as being the
compiled version of an asset type (for example, Texture is the Content type of TextureAsset).

214 /1211

The problem of that design was that once all the references are collected, there is no way to know of the
referenced assets are actually consumed, which could be one of the three following way:

o the referenced asset is not needed to compile this asset, but it's needed at runtime to use the
compiled content (eg. Models need Materials, who need Textures. But you can compile Models,
Materials and Textures independently).

e the referenced asset needs to be compiled before this asset, and the compiler of this asset needs to
load the corresponding content generated from the referenced asset (eg. A prefab model, which
aggregates multiple models together, needs the compiled version of each model it's referencing to
be able to merge them).

e the referenced asset is read when compiling this asset because it depends on some of its parameter,
but the referenced asset itself doesn't need to be compiled first (eg. Navigation Meshes need to
read the scene asset they are related to in order to gather static colliders it contains, but they don't
need to compile the scene itself).

BuildDependencyManager

The BuildDependencyManager has been introduced recently to solve the problems of the
AssetDependencyManager. It is currently not complete, and the ultimate goal is to merge it totally with the

AssetDependencyManager.

The approach is a bit different. Rather than extracting dependencies from the asset itself, we extract
them from the compilers of the assets, which are better suited to know what they exactly need to
compile the asset and what will be needed to load the asset at runtime.

But one asset type can have multiple compilers associated to it (for the game, for the thumbnail, for the
preview...). So the BuildDependencyManager works in the context of a specific compiler.

Currently there is one BuildDependencyManager for each type of compiler.

TODO: Have a single global instance of BuildDependencyManager that contains all types of
dependencies for all context of compilers. For example, we have thumbnail compilers that requires
game version of assets, which means that the BuildDependencyManager for thumbnails will also
contain a large part of the BuildDependencyManager to build the game. Merging everything into a
single graph would reduce redundancy and risk to trigger the same operation multiple times
simultaneously.

AssetDependenciesCompiler

The AssetDependenciesCompiler is the object that computes the dependencies with the
BuildDependencyManager, and then generates the build steps for a given asset, including the runtime
dependencies. It's the main entry point of compilation for the CompilerApp, the scene editor, and the
preview. Thumbnails also use it, via the ThumbnaillListCompiler class.

215/1211

TODO: This class should be removed, and its content moved into the BuildDependencyManager class.
By doing so, it should be possible to make BuildAssetNode and BuildAssetLink internal - those
classes are just the data of the dependency graph, they should not be exposed publicly. To do that, a
method to retrieve the dependencies in a given context must be implemented in
BuildDependencyManager in order to fix the usage of BuildAssetNode in EditorContentLoader.

In the Game Studio

The Game Studio compiles assets in various versions all the time. It has some specific way of managing
database and content depending on the context.

Remark: the Game Studio never saves index file on the disk, it keeps the url -> hash mapping in memory,
always.

Databases

Before accessing content to load, a Microthread-local database must be mounted. Depending on the
context, it can be a database containing a scene and its dependencies (scene editor), the assets needed
to create a thumbnail, an asset to display in the preview...

For the scene editor, this is handled by the GameStudioDatabase class. Thumbnails and preview also
handle database mounting internally (in ThumbnailGenerator for example).

TODO: See if it could be possible/useful to wrap all database-mounting in the Game Studio into the
GameStudioDatabase class.

Builder service

All compilations that occur in the Game Studio is done through the GameStudioBuilderService. This class
creates an instance of Builder, a DynamicBuilder which allows to feed the Builder with build steps at any
time. Having a single builder for the whole Game Studio allows to control the number of threads and
concurrent tasks more easily.

The DynamicBuilder class simply creates a thread to run the Builder on, and set a special build step,
DynamicBuildStep, as root step of this builder. This step is permanently waiting for other child build step
to be posted, and execute them.

TODO: Currently the dynamic build step waits arbitratly with the CompleteoneBuildStep method
when more than 8 assets compiling. This is a poor design because if the 8 assets are for example
prefabs who contains a lot of models, materials, textures, it will block until all are done, although we
could complete the thumbnails of these models/materials/textures individually. Ideally, this await
should be removed, and a way to make sure thumbnails of assets which are compiled are created as
soon as possible should be implemented.

216 /1211

The builder service uses AssetBuilduUnits as unit of compilation. A build unit corresponds to a single
asset, and encapsulates the compiler and the generated build step of this asset.

EditorContentLoader

The scene editor needs a special behavior in term of asset loading. The main issue is that any type of
asset can be modified by the user (for example a texture), and then need to be reloaded. Stride use the
ContentManager to handle reference counting of loaded assets. With a few exception (Materials, maybe
Textures), it does not support hot-swapping an asset. Therefore, when an asset needs to be reloaded, we
actually need to unload and reload the first-referencer of this asset.

The first-referencer is the first asset referenced by an entity, that contains a way (in term of reference) to
the asset to reload. For example, in case of a texture, we will have to reload all models that use materials
that use the texture to reload.

This is done by the EditorContentLoader class. At initialization, this class collects all first-referencer assets
and build them. Each time an asset is built, it is then loaded into the scene editor game, and the
references (from the entity to the asset) are updated. This means that this class needs to track all first-
referencers on its own and update them. This is done specifically by the LoaderReferenceManager object.
The reference are collected from the GameEditorChangePropagator, an object that takes the responsibility
to push synchronization of changes between the assets and the game (for all properties, including non-
references). There is one instance of it per entity. When a property of an entity that contains a reference
to an asset (a first-referencer) is modified, the propagator will trigger the work to compile and update the
entity. In case of a referenced asset modified by the user, EditorContentLoader.AssetPropertiesChanged
takes the responsibility to gather, build, unload and reload what needs to be reloaded.

Additional Todos

TODO: GetInputFiles exists both in Command and in IAssetCompiler. It has the same signature in both
case, so it's returning information using objecturl and UrlType in the compiler, where we are trying
to describe dependency. That signature should be changed, so it returns information using
BuildDependencyType and AssetCompilationContext, just like the GetlnputTypes method. Also, the
method is passed to the command via the InputFilesGetter which is not very nice and has to be
done manually (super error-prone, we had multiple commands that were missing it!). An automated
way should be provided.

TODO: The current design of the build steps and list build steps is a tree. For this reason, same build
steps are often generated multiple times and appears in multiple trees. It could be possible to cache
and share the build step if the structure was a graph rather than a tree. Do to that, the Parent
property of build steps should be removed. The main difficulty is that the way output objects of
build steps flow between steps has to be rewritten.

217 /1211

218/1211

Asset, introspection and prefab

NOTE: Please read the Terminology section of the Build Pipeline documentation first

Design notes

Assets contains various properties describing how a given Content should be generated. Some
constraints are defined by design:

o All types that can be referenced directly or indirectly by an asset must be serializable. This means
that it should have the [DataContract] attribute, and the type of all its members must have it too.

e Members that cannot or should not be serialized can have the [DataMemberIgnore] attributes

e Other members can have additional metadata regarding serialization by using the [DataMember]
attributes. There is also a large list of other attributes that can be used to customize serialization and
presentation of those members.

e Arrays are not properly supported

e Any type of ordered collection is supported, but unordered collection (sets, bags) are not.

e Dictionaries are supported as long as the type of the key is a primitive type (see below for the
definition of primitive type)

e When an asset references another asset, the member or item shouldn't use the type of the target
asset, but the corresponding Content. For example, the MaterialAsset needs to reference a texture,
it will have a Texture member and not a TextureAsset.

e |tis possible to use the AssetReference type to represent a reference to any type of asset.

e Nullable value types are not properly supported

e An asset can reference multiple times the same objects through various members/items, but one of
the member/item must be the "real instance”, and the others must be defined as "object
references”, see below for more details.

Yaml metadata

When assets are serialized to/deserialized from Yaml files, dictionaries of metadata is created or
consumed in the process. There is one dictionary per type of metadata. The dictionary maps a property
path (using YamlAssetPath) to a value, and is stored in a instance of YamlAssetMetadata. These dictionary
are exchanged between the low-level Yaml serialization layer and the asset-aware layer via the
AssetItem.Metadata property. This property is not synchronized all the time, it is just consumed after
deserialization, to apply metadata to the asset, and generated just before serialization, to allow the
metadata to be consumed during serialization.

Overrides

The prefab and archetype system introduces the possibility to override properties of an asset. Some
nodes of the property tree of an asset might have a base. (usually all of them in case of archetype, and
some specific entities that are prefab instances in case of scene). How nodes are connected together is

219/121

explained later on this documentation, but from a serialization point of view, any property that is
overridden will have associated yam|l metadata. Then we usa a custom serializer backend,
AssetObjectSerializerBackend, that will append a star symbol * at the end of the property name in Yaml.

Collections

Collections need special handling to properly support override. An item of a collection that is inherited
from a base can be either modified (have another value) or deleted. Also, new items that are not present
in the base can have been added. This is problematic in the case of ordered collection such as List
because adding/deleting items changes the indices of item.

To solve all these issues, we introduce an object called CollectionItemIdentifiers. There is one instance
of this object per collection that supports override. This instance is created or retrieved using the
CollectionItemIdHelper. They are stored using ShadowObject, which maintain weak references from the
collection to the CollectionItemIdentifiers. This means that it is currently not possible to have
overridable items in collection that are struct.

A collection that can't or shouldn't have overridable items should have the
NonIdentifiableCollectionItemsAttribute.

The CollectionItemIdentifiers associates an item of the collection to a unique id. It also keep track of
deleted items, to be able to tell, when an item in an instance collection is missing comparing to the base
collection, if it's because it has been removed purposely from the instance collection, or if it's because it
has been added after the instance collection creation to the base collection.

Items, in the CollectionItemIdentifiers, are represented by their key (for dictionaries) or index (list).
This means that any collection operation (add, remove...) must call the proper method of this class to
properly update this collection. This is automatically done as long as the collection is updated through
Quantum (see below).

In term of inheritance and override, the item id is what connect a given item of the base to a given item
of the instance. This means that items can be re-ordered, and other items can be inserted, without
loosing or messing the connection between base and instances. Also, for dictionary, keys can be
renamed in the instance.

At serialization, the item id is written in front of each item (so collections are transformed to dictionaries
of [ItemId, Tvalue] and dictionary are transformed to dictionaries of [KeyWithId<TKey>, TValue], with
KeyWithId being equivalent to a Tuple). Here is an example of Yaml for a base collection and an instance
collection:

Base collection, with one id per item:

220 /1211

Strings:
309e0b5643c5a94caa799a5eal1480617: Hello
€09ec493d05e0446b75358f0elcOfbdd: World
9550f04dceeld24fa8a30edleea71a94: Example
1ldaB8adce3f0ce9449a9ed0e48cd32f20: BaseClass

Derived collection. The first item is overridden, the 4th is a new item (added), and the last one express
that the BaseClass entry has been deleted in the derived instance.

Strings:
309e0b5643c5a94caa799a5ea1480617*: Hi
€09ec493d05e0446b75358f0elcofbdd: World
9550f04dceeld24fa8a30edleea7la94: Example
cfce75d38d66e24fae426d1f40aadf8a*: Override
1da8adce3f0ce9449a9ed0e48cd32f20: ~(Deleted)

When two assets that are connected with a base relationship are loaded, it is then possible to reconcile
them:

e any item missing in the derived collection is re-added (so the ~(Deleted) is need to purposely delete
items)

e any item existing in the derived collection that doesn't exist in the base collection and doesn't have
the star * is removed

e any item that exists in both collection but have a different value is overwritten with the value of the
base collection

e overridden items (with the star *) are untouched

Quantum

In Stride, we use an introspection framework called Quantum.

Type descriptors

The first layer used to introspect object is in Stride.Core.Reflection. This assembly contains type
descriptors, which are basically objects abstracting the reflection infrastructure. It is currently using .NET
reflection (System.Reflection) but could later be implemented in a more efficient way (using Expression,
or IL code).

The TypeDescriptorFactory allows to retrieve introspection information on any type. objectDescriptors
contains descriptor for members which allow to access them. Collections, dictionaries and arrays are also
handled (NOTE: arrays are not fully supported in Quantum itself).

221 /1211

This assembly also provides an AttributeRegistry which allows to attach Attributes to any class or
member externally.

TODO: make sure all locations where we read Attributes are using the AttributeRegistry and not
the default .NET methods, so we properly support externally attached attributes.

Node graphs

In order to introspect object, we build graphs on top of each object, representing their members, and
referencing the graphs of other objects they reference through members or collection. The classes
handling theses graphs are in the Stride.Core.Quantum assembly.

Node containers

Nodes of the graphs are created into an instance of NodeContainer. Usually a single instance of
NodeContainer is enough, but we have some scenarios where we use multiple ones: for example each
instance of scene editor contains its own NodeContainer instance to build graphs of game-side objects,
which are different from asset-side (ie. Ul-side) objects, have a different lifespan, and require different
metadata.

In the GameStudio, the NodeContainer class has two derivations: the AssetNodeContainer class, which
expands the primitive types to add Stride-specific types (such as Vector3, Matrix, Guid...). This class is
inherited to a SessionNodeContainer, which additionally allows plugin to register their own primitive
types and metadata.

Node builders

The NodeContainer contains an INodeBuilder member and provides a default implementation for it. So
far we didn't had the need to make a custom implementation, since the structure of the graphs
themselves is pretty stable.

However, the INodeBuilder interface presents an INodeFactory member which we override. This factory
allows to customize the nodes to be constructed.

The INodeBuilder also contains a list of types to be considered as primitive types, which means that even
if the type contains members or is a reference type, it will be, in term of graph, considered as a primitive
value and won't be expanded.

Nodes

There are 3 types of nodes in Quantum:

e ObjectNode are node corresponding to an object that is a reference type. They can contain members
(properties, fields...), and items (collection).

222 /1211

e BoxedNode are a special case of objectNode that handles struct. They are able to write back the value
of the struct in other nodes that reference them

e MemberNode are node corresponding to the members of an object. If the value of the member is a
class or a struct, the member will also contain a reference to the corresponding objectNode.

e ObjectNode that are representing a collection of class/struct items will also have a collection of
reference to target nodes via the ItemReferences property.

Each node has some methods that allow to manipulate the value it's wrapping. Retrieve returns the
current value, Update changes it. Collections can be manipulated with the Add and Remove methods (and a
single item can be modified also with update).

Events

Each node presents events that can be registered to:

e PrepareChange and FinalizeChange are raised at the very beginning and the very end of a change of
the node value. These events are internal to Quantum.

e MemberNodes have the valueChanging and ValueChanged events that are raised when the value is being
modified.

e ObjectNode have ItemChanging and ItemChanged events that are raised when the wrapped object is a
collection, and this collection is modified.

The arguments of these events all inherits from INodeChangeEventArgs, which allows to share the
handlers between collection changes and member changes.

Finally, Quantum nodes are specialized for assets, where the implementation of the support of override
and base is. These specialized classes also present OverrideChanging and OverrideChanged event to
handle changes in the override state.

AssetPropertyGraph
Concept

We use Quantum nodes mainly to represent and save the properties of an asset. The
AssetPropertyGraph is a container of all the nodes related to an asset, and describes certain rules such as
which node is an object reference, etc.

Asset references

When an asset needs to reference another asset, it should never contains a member that is of the type of
the referenced asset. Rather, the type of the member should be the type of the Content corresponding
to the referenced asset.

Node listener

223 /1211

A node listener is an object that can listen to changes in a graph of node (rather than an individual
nodes). The base class is GraphNodeChangeListener, and this class must define a visitor that can visit the
graph of nodes to register, and stop at the boundaries of that graph.

Object references

In many scenarios of serialization (in YAML, but also in the property grid where objects are represented
by a tree rather than a graph), we need a way to represent multiple referencers of the same object such a
way that the object is actually expanded at one unique location, and shown/serialized as a reference to
all other locations. We introduce the concept of Object references to solve this issue.

By design, only objects implementing the I1dentifiable interface can be referenced from multiple
locations from the same root object. But right now they can only be referenced from the same unique
root object (usually an Asset). Later on we might support cross-asset references but this would require to
change how we serialize them.

There are two methods to implement to define if a node must be considered as an object reference or
not:

e one for members of an object: IsMemberTargetObjectReference
e one for items of a collection: IsTargetItemObjectReference

Node presenters

Node presenters are objects used to present the properties of an object to a view system, such as a
property grid. They transform a graph of nodes to a tree of nodes, and contains metadata to be
consumed by the view. The resulting tree is slightly different from the graph. When an object A contains
a member that is an object B that contains a property C, the graph will look like this:

ObjectNode A --(members)--> MemberNode B --(target)--> ObjectNode B --(members)--> MemberNode C
the corresponding tree of node presenters will be:
RootNodePresenter A --> MemberNodePresenter B --> MemberNodePresenter C

There is also a ItemNodePresenter for collection. On the example above, if B is instead a collection that
contains a single item C, the graph would be:

ObjectNode A --(members)--> MemberNode B --(target)--> ObjectNode B --(items)--> ObjectNode C
the corresponding tree of node presenters will be:

RootNodePresenter A --> ItemNodePresenter B --> MemberNodePresenter C

224 /1211

Node presenter are constructed by a INodePresenterFactory in which INodePresenterUpdater can be
registered. A INodePresenterUpdater allows to attach metadata to nodes, and re-organize the hierarchy
in case it want to be presented differently from the actual structures (by inserting nodes to create
category, bypassing a class object to inline its members, etc.). INodePresenterUpdater have two methods
to update node:

® void UpdateNode(INodePresenter node) is called on each node, after its children have been created.
But it's not guaranteed that its siblings, or the siblings of its parents, will be constructed.

® void FinalizeTree(INodePresenter root) is called once, at the end of the creation of the tree, and
only on the root. Here it's guaranteed that every node is constructed, but you have to visit manually
the tree to find the node that you want to customize.

Node presenters listens to changes in the graph node they are wrapping. In case of an update, the
children of the modified node are discarded and reconstructed. UpdateNode is called again on all new
children, and FinalizeTree is also called again at the end on the root of the tree. Therefore, you have to
be aware that an updater can run multiple time on the same nodes/trees.

Metadata can be attached to node presenters via the NodePresenterBase.AttachedProperties property
containers. These metadata are exposed to the view models as described in the section below.

Commands can also be attached to node presenters. A command does special actions on a node, in
order to update it. Node presenter commands implements the INodePresenterCommand interface. A
command is divided in three steps, in order to handle multi-selection:

e PreExecute and PostExecute are run only once, for a selection of similar node presenters, before and
after Execute respectively.
e Execute is run once per selected node presenter.

Node view models

The view models are created on top of node presenters. Each node presenter has a corresponding
NodeViewModel. In case of multi-selection, a NodeViewModel can actually wrap a collection of node
presenters, rather than a single one.

Metadata (ie. attached properties) are also exposed from the node presenter to the view via the view
model, assuming they are common to all wrapped node presenter, if not, it is possible to add a
PropertyCombinerMetadata to the property key to define the rule to combine the metadata. The default
behavior for combining is to set the value to Differentvalues (a special object representing different
values) if the values are not equals.

Commands are also exposed. They are added to the view model, combined depending on their
CombineMode property. They are transformed into WPF commands by being wrapped into a

NodePresenterCommandWrapper.

225/1211

All members, attached properties, and commands of node view models are exposed as dynamic
properties, and can therefore be used in databinding.

All node view models are contained in an instance of GraphviewModel. A GraphViewModelService is passed
in this object that acts as a registry for the node presenter commands and updaters that are available
during the construction of the tree.

Template selector

In order to be presented to the property grid, a proper template must be selected for each
NodeViewModel. The TemplateProviderSelector object picks the proper template by finding the first
registered one that accept the given node. Templates are defined in various XAML resource dictionaries,
the base one being DefaultPropertyTemplateProviders.xaml. There is a priority mechanism that uses an
OverrideRule enum with four values: A11, Most, Some, None. One template can also explicitly override the
other with the overriddenProviderNames collection. The algorithm that picks the best match is in the
CompareTo method of TemplateProviderBase.

There is actually 3 levels of templates for each property. PropertyHeader and PropertyFooter represent
the section above and the section below the expander that contains the children properties. In the
default implementation (DefaultPropertyHeaderTemplate and most of its specializations), the header
presents the left part of the property (the name, sometimes a checkbox...), and use the third template
category, PropertyEditor, for the right side of the property grid.

Bases

The base-derived concept and the override are stored in specialized Quantum nodes that implements
IAssetNode. Properties (as well are items of collections) are automatically overridden when
Update/Add/Remove methods are called. Some methods are also provided to manually interact with
overrides, but it should not be used directly by users of Quantum.

Node linker

GraphNodeLinker is an object that link a given node to another node. It has two main usages: it links
objects that are game-side in the scene editor to their counterpart asset-side, and they also link a node
to its base if it has one.

The AssetToBaseNodeLinker is used to do that. It is invoked at initialization, as well as each time a
property changes. It has a FindTarget method and FindTargetReference, which basically resolve, when
visiting the derived graph, which equivalent node of the base graph corresponds to it.

This linker is run from the AssetPropertyGraph that can then call setBaseNode to actually link the nodes
together.

Reconciliation with base

226 /1211

Each time a change occurs in an asset, all nodes that have the modified nodes as base will call
ReconcileWithBase. This method visits the graph, starting from the modified properties, and "reconcile"
the change. The method is a bit long but well commented. The principle is, for each node, to detect first
if something should be reconciled, and if yes, find the proper value (either cloning the value from the
base, or find a corresponding existing object in the derived) and set it.

ReconcileWithBase is also called at initialization to make sure that any desynchronization that could
happen offline is fixed.

Future
Undo/redo

The undo/redo system currently records only the change on the modified object, and rely on
ReconcileWithBase to undo/redo the changes on the derived object. This is not an ideal design because
there are a lot of consideration to take, and a lot of special cases.

What we would like to do is:

e record everything that changes, both in derived and in base nodes
e disbranch totally automatic propagation during an undo/redo

This design was not possible initially, and I'm not sure it is possible to do now - it's possible to hit a
blocker when implementing it, or that it requires a lot of refactoring here and there before being doable.

Dynamic nodes

Currently we still expose the real asset object in AssetViewModel, which it should never, in the editor, be
modified out of Quantum node. Also, manipulating Quantum node is quite difficult sometimes due to
indirection with target nodes, and access to members.

var partsNode = RootNode[nameof(AssetCompositeHierarchy<TAssetPartDesign,
TAssetPart>.Hierarchy)].Target[nameof (AssetCompositeHierarchyData<IAssetPartDesign<IIdentifi
able>, IIdentifiable>.Parts)].Target;

partsNode.Add(newPart);

Ideally, we would like to use the DynamicNode objects (currently broken) to manipulate quantum nodes:

dynamic root = DynamicNode.Get(RootNode);
root.Hierarchy.Parts.Add(newPart)

If this is done properly, AssetViewModel.Asset could be turned private, and AssetViewModel could just
expose the root dynamic node, which would allow to seemlessly manipulate the asset through a dynamic

227 /1211

object.

228 /1211

Files and folders

This section explains Stride's files and folders and the best way to organize them in development.

In this section

e Project structure
e Cached files
e Version control

e Distribute a game

229 /1211

Project structure

Stride saves your projects as Visual Studio solution files#. You can open the projects with Stride Game

Studio or any IDE such as Visual Studio.

Stride organizes project files into packages. Each package comprises several folders and an *.sdpkg file
which describes the package.

A project can contain one package or several. You can share packages between projects.

Package folder structure

W MyGame
Assets
EBin
MyGame. Game
MyGame.Platform
chj

Resources

e Assets contains the asset files which represent elements in your game.

¢ Bin contains the compiled binaries and data. Stride creates the folder when you build the project,
with a subdirectory for each platform.

e MyGame.Game contains the source code of your game as a cross-platform Visual Studio project
(.csproj). You can add multiple projects to the same game.

e MyGame.Platform contains additional code for the platforms your project supports. Game Studio
creates folders for each platform (eg MyPackage. Windows, MyPackage.Linux, etc). These folders are
usually small, and only contain the entry point of the program.

e obj contains cached files. Game Studio creates this folder when you build your project.
e Resources is a suggested location for files such as images and audio files used by your assets.

Recommended project structure

For advice about the best way to organize your project, see the Version control page.

See also

e \ersion control

e Distribute a game

230/1211

https://msdn.microsoft.com/en-us/library/bb165951.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/bb165951.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/bb165951.aspx?f=255&MSPPError=-2147217396

231 /1211

Cached files

When you build your project, Stride caches the assets and code in folders inside the project.
You might want to clean the cache if:

e the cache is taking up too much space on disk

e assets don't update in-game after you edit or delete them

Clean the cache from Visual Studio

1. To clean the code cache, under Build, select Clean Solution.

File Edit View Project Build Debug Teamn Tools Test Xenko ReSharper Analyze Window

Help

G - #9 - 2 Wl o ¥ Build Solution Cirl+Shift+B - P Start -

Rebuild Sclution

Deploy Solution

Clean Solution

Run Code Analysis on Solution Alt+F11
Build MyGame Windows

Rebuild MyGame Windows

Clean MyGame. Windows

Publish MyGame Windows

Run Code Analysis on MyGame. Windows
Batch Build...

Configuration Manager...

2. If you have the Stride Visual Studio extension installed, you can also clean the asset cache. Using VS

2022: To do this, under Extensions > Stride, select Clean intermediate assets for Solution.

File Edit View Project juild Debug Team Tools Test Xenko ReSharper Analyze Window Help

Q- =l - W Debug - Windows A Open with Game Studio

Clean intermediate assets for Solution

Clean intermediate assets for MyGame Windows

3. Rebuild the project to rebuild the cache from scratch.

Clean the cache manually

If cleaning the cache from Visual Studio doesn't work, try deleting the files manually.

1. Delete the following folders:

232 /1211

o the binary cache: ~/MyGame/MyGame/Bin
o the asset cache: ~/MyGame/MyGame/Cache

o the obj folders in the platform folders for your game (eg ~/MyGame.iOS/obj)
2. If you're developing for iOS, on your Mac, also delete:
~/Library/Caches/Xamarin/mtbs/builds/MyGame

3. Rebuild the project to rebuild the cache from scratch.

Clear the Game Studio caches

In addition to the caches Stride creates for your project, Game Studio keeps caches for the editor.

Asset cache

To speed up asset loading in the editor, Game Studio saves a cache of asset references. It contains data
about every asset ever loaded in every project. This means it can grow very large over time.

By default, the folder is in: %temp%/Stride

@ TIP

To check or change where Game Studio saves the cache, see Edit > Settings > Environment >

Build cache directory.

X Settings

Environment Build cache directary \AppData\Local\Temp\Silicon Studic\Xenke\BuildCache
External tools
Interface
Remote
¥ Scene editor
Key bindings
Viewport settings
Script editor

Tools

Save and close

To clean the cache, delete the folder and run Game Studio again.

Settings cache

233 /1211

Game Studio saves editor information (such as window positions and recently-opened projects) in:

%AppData%,/Stride

Game Studio also saves information about open tabs and the editor camera position in the .sdpkg.user
file in the project folder (eg ~/MyGame/MyGame/MyGame.sdpkg.user).

These files are small, but you might want to delete them if you get Game Studio into a bad state.

Deleting them doesn't affect anything in your project.

After you delete cache files, when you start Game Studio, it builds a new cache using the default settings.

@ TIP

You can also reset the Game Studio layout without clearing the cache in Edit > Settings >

Interface > Reset Game Studio layout.

x Settings

Environment
External tools
Interface
Remate
W Scene editor
Key bindings
Viewport settings
Script editor

Tools

See also

e Project structure

e \ersion control

Ask before deleting assets

Ask before reloading assemblies

Ask before saving new scripts

Automatically reload assemblies

Automatically reload last session at startup

Crash report e-mail

Default session to load

Language MachineDefault

Reset Game Studio layout

Save and close

234 /1211

Organize your files in version control

We recommend you use a version control system such as Git, SVN, or Perforce Helix to save a history of
changes to your project.

How you organize and share your files is up to you, but there are some things to keep in mind.

Files you shouldn't add to version control
Bin and obj folders

We don't recommend you add the Bin or obj folders to version control. This is because:

e Game Studio builds these folders every time you run the game, so you don't need to keep a history
of them.

e You can't see if they match the source files they were generated from in a given commit.

e They take up space and slow down version control synchronization.

Visual Studio also puts .obj folders inside each code folder. For the same reasons, we don't recommend
you add these to version control.

Resource files

Resource files are files imported into Game Studio and used by assets. They include image files (eg .png,
.jpg), audio files (eg .mp3, .wav), and models (eg .fbx). We recommend you save these files in the
Resources folder in your project folder.

We don't recommend you save resource files in the Assets folder. You might be used to organizing files
this way if you use Unity®, as Unity® requires resource files and asset files to be in the same folder.
Stride doesn't require this, and doing so has downsides.

For example, imagine an artist has edited 10GB of textures and committed them to source control. At the
same time, a designer needs to edit an asset quickly. To do this, the designer gets the latest version of
the asset from source control. However, because the assets and resource files are in the same folder, the
designer is forced to get the 10gb of files at the same time. If the files are in a separate folder, however,
the designer only has to get the folder they need. Additionally, as asset files are much smaller than
resource files, it's much faster to navigate the asset history in a dedicated asset folder.

Content creation files

Content creation files are created with external content creation tools, such as .psd files (Photoshop) or
.max files (3D Studio Max).

We don't recommend you save content creation files in your project folder. This is because the files are
often large and aren't used in the project directly. Instead, we recommend you save the files in a

235/1211

different version control repository - or, if your version control system supports partial checkouts (such
as SVN or Perforce), a different root folder. This means team members only get the files they need.

Suggested directory structure

Following these suggestions, an example folder structure might look like this:

- MyGame
- Assets
- texture.sdtex
- Bin
- MyGame.Game
- MyGame.Platform
- obj
- Resources
- texture.png
- ContentCreationFiles
- texture.psd

You could even create separate folders for different kinds of content creation file:

- MyGame
- Assets
- texture.sdtex
- model.sdtex
- Bin
- MyGame.Game
- MyGame.Platform
- obj
- Resources
- texture.png
- model.fbx
- PhotoshopProjects
- texture.psd
- MayaProjects
- model.mb

Example

Imagine a team with two programmers, two 2D artists, and two 3D artists.

e The programmers check out the MyGame project folder containing code, assets, and resources.
e The 2D artists check out the game project and the PhotoshopProjects folder containing .psd files.

236 /1211

e The 3D artists check out the game project and the MayaProjects folder containing .mb (Maya project)
files.

Now imagine one of the 2D artists changes several .psd files and commits 2GB of changes to version
control. Because only the 2D artists have the PhotoshopProjects folder checked out, only the other 2D
artist gets this change. The other team members don't need it. This is an efficient way to share files

across projects.

See also

e Project structure
e Distribute a game

237 /1211

Distribute a game

When you're ready to publish your game, create a release build from Visual Studio, then distribute it.

1. Create a release build

1. If you've built your game in Release mode before, in your project folder (eg
MyGame/Bin/MyPlatform/Release/), delete the Data folder. This folder might contain unnecessary
files, such as old versions of assets, so it's simplest to build it again from scratch.

2. Open your project in Game Studio.

3. In the toolbar, click the drop-down menu and select Visual Studio.

File Edit Project View
= B

RootScene

Your project opens in Visual Studio.

4. In Visual Studio, from the Solution Explorer right click your Windows project and select Publish

Solution Explorer
?o-00 |- K=
Search Solution Explorer (Ctrl+;)
= Solution 'PublishExample’ (2 of 2 projects)
B PublishBxample
P PublishExample.Windows
) Build
Rebuild
Clean
Analyze and Code Cleanup
Pack
Publish...
Upgrade
Scope to This

lution Explorer View

File Mesting

Edit Project File

Build Dependencies

238 /1211

5. Select the Target Folder in the publish window.

6. Select the Specified target Folder again.

7. Confirm the output folder and Click Finish.

8. You should now see the Publish view where you can manage the project export settings.

PublishExampl...ndows: Publish + X

FolderProfile.pubxml - 3
olderProfile.pubxm 5 Publish
Folder

Connected Services

Publish

—+ New profile More actions =

‘ @ Ready to publish.

Settings

Target location . ABin\Windows\Release\win-x64 publishy, [T]
Configuration Release &

Target Runtime Portable &

Show all settings

9. Finally you can click publish and see your project in the output folder you selected at step 6

Optionally you can also include the .NET runtime in your exported game to reduce a dependancy on

the user.
Select Show all settings -> Deployment mode -> Self-contained -> Save

PublishExampl..ndows: Publish = X

X FolderProfile.pubxml - -
Connected Services %4 Publish
Folder

Publish

—+ Mew profile More actions ~

‘ @ Ready to publish.

Settings
Target location ABinWWindows\Releasetwin-xf PFOﬂ|e Sett\ngs
Configuration Release &

Target Runtime Portable &£ Profile name FolderProfile

Show all settings Configuration Release | Any CPU

Target framework net8.0-windows

Deployment mode |Framework-dependent

e

o Self-contained

Target location ABin\Windows\Release\win-x64\publish',

o File publish options

Cancel

239 /1211

(0 NOTE

You can only build for platforms you've added to your Stride project. For instructions about

how to do this, see Add or remove a platform.

To build for Android or iOS, you need Xamarin, which is included with Visual Studio licenses.
For instructions about how to install Xamarin with Visual Studio 2017, see this MSDN page®.

10. Under Build, select Publish Selection and click the Publish button.

0 Fie Edit View Git Project
H-& &

PublishExampl...ndows: Publish & X

Connected Services

Publish

Visual Studio creates a release build in your selected output folder.

@ TIP

You might want to rename the Release folder to something more descriptive (such as the title of

your game).

To build using terminal instead of Visual Studio

Build | Debug Test Analyze

I.'_il

Analysis on Solution

31 Build Publish

Batch Build...
Configuration Manager...
Settings
Target location
Configuration

Target Runtime

Extensions

F7

Ali+F11

Ctrl+B

ABint\Windows! Release\win-:

Releaze

Portable &

1. Ensure the relevant .NET SDK is installed (Stride 4.2 is on .NET 8)

2. Open the folder of your project where the *.Windows.csproj file sits.

=Windows ~ [>

PublishExample

Tﬁ:

240 /1211

https://docs.microsoft.com/en-us/visualstudio/cross-platform/setup-and-install
https://docs.microsoft.com/en-us/visualstudio/cross-platform/setup-and-install
https://docs.microsoft.com/en-us/visualstudio/cross-platform/setup-and-install

PublishExample *> PublishExample.Windows

Tl Sort ~ = View ~ ses

Name Date modified Type
i obj 2025-03-02 10:42 AM File folder
B Properties 2025-03-02 10:14 AM File folder
BB Resources 2025-03-02 10:10 AM File folder

0 app.manifest 2025-03-02 10:10 AM MANIFEST File

| PublishExample.Windows.csproj 2025-03-02 10:10 AM C# Project File

@ PublishExample.Windows.csproj.user 2025-03-02 10:17 AM Per-User Project Q...
B PublishExample.Windows.sdpkg 2025-03-02 10:10 AM SDPKG File

PublishExampleApp.cs 2025-03-02 10:10 AM C# Source File

3. Type cmd in the search bar to open the folder easily in terminal.

Tl Sort ~ = View ~
Mame Date modified Type

i ob; 2025-03-02 10:42 AM File folder

- Properties 2025-03-02 1(:14 AM File folder

B Resources 2025-03-02 1010 AM File folder

B 2pp.manifest 2025-03-02 10:10 AM MAMIFEST File
PublishExample.Windows.csproj 2025-03-02 10:10 AM C# Project File

@ PublishExample.Windows.csproj.user 2025-03-02 10:17 AM Per-User Project O...
B PublishExample.Windows.sdpkg 2025-03-02 10:10 AM SDPKEG File

PublishExamplefpp.cs 2025-03-02 10:10 AM C# Source File

4. Finally publish with the command

dotnet publish

or the below to include the .NET runtime with your game

dotnet publish -r win-x64 --self-contained true -- framework net8.0-windows

You can also append --output <YOUR_EXPORT_FOLDER> to specify where to export to.

241 /1211

2. Delete unnecessary files

In the release folder in your project bin folder (eg MyGame/Bin/MyPlatform/Release), you can delete the
following unnecessary files:

e .pdb files (debug information)
.xm1 files (APl documentation)
files that contain vshost in their filenames (eg MyGame5.vshost.exe and

MyGame5.vshost.exe.manifest)
folders other than the x64, x86, or data folders
other unnecessary files, such as custom configuration files (ie files not created with Stride)

3. Distribute your game

After you create a release build, how you distribute it is up to you.
To run games made with Stride on Windows, users need:

e _NET 8 Runtime (Unless you published with self-contained)

e DirectX11 (included with Windows 10 and later), OpenGL, or Vulkan

e Visual C++ 2015 runtimes (x86 and/or x64, depending on what you set in your project properties in
Visual Studio)

See also

e Add or remove a platform

e \ersion control

e Project structure
e Microsoft documentation

242 /1211

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-publish
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-publish

Game Studio

Game Studio is the central tool for game and application production in Stride. In Game Studio, you can:

create and arrange scenes

import assets, modify their parameters and see changes in real time in the preview window
e organize assets by folder, attach tags and get notifications from modified assets on the disk

build a game executable and run it directly

Game Studio is also integrated with your Visual Studio projects, so you can seamlessly sync and switch
between them.

Interface

File Edit Project View Help Debug
=N~ =])~ & b

Mainscene X = | Property grid

+ o, g 25 RO N i) o & T3] & Editor Procedural model Sphere

¥ (i) MainScene

lainScene. Groun: Ground Material Sphere Material Skybox texture

rors(0) Outpu 4 nsset preview Edithistory References

HElproperty Grid Elsolution Explorer E1 Asset View H Asset Preview

i Asset Editor

The asset editor (1) is used to edit assets and scenes. Some asset types, such as scenes, have dedicated
editors where you can make complex changes to the asset. To open a dedicated editor (when available),
double-click the asset or right-click it and select Edit asset.

The Property Grid (2) displays the properties of the asset or entity you select. You can edit the
properties here.

The Solution Explorer (3) displays the hierarchy of the elements of your project, such as assets, code
files, packages and dependencies. You can create folders and objects, rename them, and move them.

243 /1211

The Asset View (4) displays the project assets. You can create new assets using the New Asset button or
by dragging and dropping resource files into the Asset View. You can also drag and drop assets from the
Asset View to the different editors or the Property Grid to Create an instance of the asset or add a
reference to it. By default, the Asset View is in the bottom center.

The Asset Preview tab (5) displays a preview of the selected asset. The preview changes based on the
type of the asset you have selected. For example, you can play animations and sounds. This is a quick
way to check changes to an asset when editing it in the Property Grid. By default, the Asset Preview is in
the bottom right.

You can show and hide different parts of the Game Studio in the View menu. You can also resize and
move parts of the Ul.

In this section

e Scenes
o Create a scene

o Navigate in the Scene Editor

o Manage scenes

o Load scenes
Add entities
o Manage entities

(e}

Assets
o Create assets
o Use assets
o Archetypes
o Game settings

Prefabs
o Create a prefab

o Use prefabs
o Edit prefabs
o Nested prefabs

o Override prefab properties
World units

244 /1211

Scenes

Scenes are the levels in your game. A scene is composed of entities, the objects in your project.

The screenshot below shows a scene with a knight, a light, a background, and a camera entity:

Scenes are a type of asset. As they are complex assets, they have a dedicated editor, the Scene Editor.

In this section

Create and open a scene

Navigate in the Scene Editor

Manage scenes

Load scenes
Add entities
Manage entities

245/1211

Create and open a scene

When you create a new project, Game Studio creates an initial scene and populates it with basic entities
such as a light, a camera, and a skybox.

You can create scenes like any other asset. As they are complex assets, they have a dedicated editor, the
Scene Editor.

Create a scene

1. In the Asset View (by default in the bottom pane), click Add asset and select Scenes.

Scene with HDR pipeline

R An empty scene asset with a graphics compositor preconfigured for high
Animations dyna mFi:: range rendering. o i i ’

Audio

Scene with LDR pipeline

An empty scene asset with a graphics compositor preconfigured for low
Miscellanecus dynamic range rendering.

Models

Materials

Empty scene

Navigation An empty scene asset without preconfigured graphics compositor.
Physics

Prefabs

Scenes

Scripts

Sprite Studio

Spnites

Textures

1]

2. Select the appropriate scene template.

Template Result
Empty scene An empty scene with no entities or preconfigured rendering pipeline
Scene with HDR pipeline A scene containing basic entities and preconfigured for HDR rendering

Scene with LDR pipeline A scene containing basic entities and preconfigured for LDR rendering

246 /1211

Open a scene in the Scene Editor

In the Asset View:

Asset view

+ Add asset

- Effect Library ’;L‘Z'ular

efD0_1 EffectCompilelog Font GameSethings LevelBlocks mali_1
Material Effect Library Sprite Font Game Settings Scene Animation

e double-click the scene asset, or
e right-click the asset and select Edit asset, or
e select the asset and type Ctrl + Enter

@ TIP

You can have several scenes open simultaneously.

Use the Scene Editor

£ x
<% Ground
'\'} Sphere

n Selected scene n Entity tree n Scene Editor toolbar n Scene Editor main view H 2D gizmos

The Scene Editor tabs (A) display the open scenes. You can switch between open scenes using the tabs.
247 /1211

The Entity Tree (B) shows the hierarchy of the entities included in the scene. The same entity hierarchy is
applied at runtime. You can use the Entity Tree to browse, select, rename, and reorganize your entities.

You can use the tool bar (C) to modify entities and change the Scene Editor display.

The main window (D) shows a simplified representation of your scene, with your entities positioned
inside it. For entities that have no shape (E), Game Studio represents them with 2D gizmos; for example,
cameras are represented with camera icons.

See also

e Navigate in the Scene Editor

e Manage scenes

e |oad scenes
e Add entities
e Manage entities

248 /1211

Navigate in the Scene Editor

You can move around the scene and change the perspective of the editor camera. The XYZ axes in the
bottom left show your orientation in 3D space.

Move around in the scene

There are several ways to move the editor camera around the Scene Editor.

@ TIP

Holding the Shift key speeds up movement.

Fly

Hold the right mouse button and move the mouse to change the camera direction. Hold the right
mouse button and use the WASD keys to move. This is similar to the controls of many action games.

Pan

Hold the right mouse button and the center mouse button and move the mouse.

Dolly

249 /1211

To dolly (move the camera forward and backward), use the mouse wheel.

Orbit

Hold Alt and the left mouse button and move the mouse.

The point of rotation is always the center of the screen. To adjust the distance to the center, use the
mouse wheel.

250 /1211

0:00

Focus on an entity

251 /1211

After you select an entity, press the F key. This zooms in on the entity and centers it in the camera editor.

You can also focus by clicking the magnifying glass icon next to the entity in the Entity Tree.

b 7 CoinGold (2)

@ TIP

Focusing and then orbiting with Alt + left mouse button is useful for inspecting entities.

Controls
Action Control
Move Arrow keys + right mouse button
WASDQE keys + right mouse button
Look around Hold right mouse button + move mouse
Dolly Middle mouse button + right mouse button + move mouse
Orbit Alt key + left mouse button
Zoom Mouse wheel

Alt + Right mouse button + move mouse

252 /1211

Action Control
Pan Middle mouse button + move mouse

Focus F (with entity selected)

@ TIP

You can change the scene navigator controls in Edit > Settings under Scene Editor > Key
bindings.

X Settings

Environment - .)
: Center view on selection

External tools . .
Invert mouse panning axis
Interface
Move camera backward
Remaote

—a dit Move camera down
Scene editor

e e Move camera forward

Viewport settings Move camera left
Script editor Move camera right

W Test Move camera up
bt Snap selection to the grid

Values o :
Switch to next gizmeo mode

Tools
Switch to rotation mode
Switch to scale mode

Switch to translation mode

Save and close

Change camera editor perspective

You can change the camera editor perspective using the view camera gizmo in the top-right of the
Scene Editor.

253 /1211

Snap camera to position

To change the angle of the editor camera, click the corresponding face, edge, or corner of the view
camera gizmo.

Click Camera position

Face Faces the selected face

Edge Faces the two adjacent faces at a 45° angle
Corner Faces the three adjacent faces at a 45° angle

Camera options

(0 NOTE

This page explains how to use the Scene Editor camera. For information about how to use cameras
in your game, see Graphics — Cameras.

To display the Scene Editor camera options, click the camera icon in the top-right of the Scene Editor.

254 /1211

m« Editor

Projection

Perspective
* Orthographic
Mear plane:
Far plane:

Orthographic size:

Movement

Speed:

Orientation
Front
Top

| eft

Perspective and orthographic views

Perspective view is a "real-world" perspective of the objects in your scene. In this view, objects close to
the camera appear larger, and lines of identical lengths appear different due to foreshortening, as in
reality.

In orthographic view, objects are always the same size, no matter how far their distance from the
camera. Parallel lines never touch, and there's no vanishing point. It's easy to tell if objects are lined up
exactly in orthographic view.

Perspective Orthographic

255/1211

Perspective Orthographic

You can also switch between perspective and orthographic views by clicking the view camera gizmo as
it faces you.

0:00

Field of view

You can change the camera field of view. This changes the camera frustum, and has the effect of
zooming in and out of the scene. At high settings (90 and above), the field of view creates stretched
“fish-eye lens" views. The default setting is 45.

Near and far planes

The near and far planes determine where the camera's view begins and ends.

e The near plane is the closest point the camera can see. The default setting is 0.1. Objects before this
point aren't drawn.

e The far plane, also known as the draw distance, is the furthest point the camera can see. Objects
beyond this point aren't drawn. The default setting is 1000.

Game Studio renders the area between the near and far planes.

256 /1211

near plane

camera
position

Camera speed

The camera speed setting changes how quickly the camera moves in the editor.

See also

e Create and open a scene
e Load scenes

e Add entities

e Manage entities

far plane

257 /1211

Manage scenes

Scenes and entities are arranged in a hierarchy, with the root scene at the top. This hierarchy is
displayed in the Entity Tree in the Scene Editor on the left.

-+

Rootscene MainScene
@' Gamelogic
Child scene Scene
oins
] CoinGold (2)
Child entities

by CoinGold (3)

] CoinGald {4)
b O] CoinGold (5)

» Il GloballLights

» B LootCrates

b B Platform

P Y PlayerCharacter
<% Highlight

Scene 2

Scene_3

The root scene contains all the scenes and entities in your game
the other scenes and entities use, such as game logic scripts.

. It should

contain common entities that

258 /1211

)

Root scene

Scenes are kept in different folders. This means that different people can work on them without

overwriting each other's work.

(0 NOTE
When scenes load at runtime, their child scenes aren't automatically loaded too. You have to load
child scenes in code. For more information, see Load scenes.

Set parent and child scenes

The relationship between parent and child scenes is set on the child, not the parent. In other words, child
scenes know about their parent scenes, but parent scenes don't know about their child scenes.

There are several ways to make a scene a child of another scene:

25971211

¢ In the Scene Editor Entity Tree (left by default), drag the scene onto the scene you want to make its
parent.

e Drag the scene from the Asset View (bottom by default) onto the scene you want to make its
parent in the Entity Tree.

¢ In the scene Property Grid (on the right by default), next to Parent, specify the scene you want to
be the scene's parent.

Property grid

0 Mo selection

e

Main5cene

X

Set the default scene

The default scene is the scene Stride loads at runtime. You can set this in the Game Settings asset.

1. In the Solution Explorer (the bottom-left pane by default), select the Assets folder.

Solution explorer
2 Bk = G S8 S
w Solution 'FirstPersonShooter’
b E FirstPersonShooter
P B Assets
b E FirstPersonShooter.Game
'i' FirstPersonShooter Android

@ FirstPersonShooter.Windows

b E"E Dependencies

P External Packages

2. In the Asset View (the bottom pane by default), select the GameSettings asset.

260/ 1211

Asset view

+ Add asset

Effect Library /o‘ Skybox

Crosshair256 EffectCompileLog MainScene Skybax
Texture Effect Library Scene Shybox

3. In the Property Grid (the right-hand pane by default), next to Default Scene, click BN (Select an
asset).

Property grid

0 Game Settings GameSethngs

Default Scene MainScene

Graphics Compositor GraphicsCompositor

The Select an asset window opens.
4. Select the default scene and click OK.
Stride loads this scene at runtime.

For more information about the Game Settings asset, see Game Settings.

Set the active scene

The active scene is the scene entities are added to when you drop them in the Scene Editor. Game
Studio adds the entities as children to the active scene.

To set the active scene, Entity Tree (left by default), right-click the scene and select active scene.

26171211

-

Scene Create

@ Cone MNew folder

Empty entity
Models

Particle System

Audio

Mavigation
Action

Duplicate selected entities

Create prefab from selection

%, Cut

The active scene has no effect on runtime.

Lock scenes and entities

You can lock scenes and entities so they can't be selected in the main window. This is useful when you
have lots of things in your scene. You can still select scenes and entities in the Entity Tree.

To lock or unlock a scene or entity, in the Entity Tree, click the padlock icon.

-+

Al Main5cene
{@} Gamelogic
b Scene
b - Coins

» (1 CoinGold (2)

b £F) CoinGold (3)
b iF1 CoinGold (4)

¥ 7 CainGold (5)

262 /1211

@ TP

When you lock a scene, all its child scenes and entities are locked too. To lock an entity along with
its child entities, hold Ctrl and click the padlock icon.

Locked items have a gold locked padlock icon in the Entity Tree.

P ¥ CoinGold (2)

P (Y] CoinGold (3)

P ¥ CoinGold (4)
b 7 CoinGold (5)

Load and unload scenes in the Scene Editor

You can load and unload scenes (with all their child scenes and entities) in the Scene Editor. Unloading
scenes in the editor is useful if, for example, you want to remove clutter from your editing view, or
improve editor performance.

The screenshots below show a root scene with child scenes loaded and unloaded. The root scene
contains entities that all the scenes use, including the skybox, scripts, asteroids, and player character. The
child scenes are sections of level.

To load or unload a scene, in the Scene Editor, in the Entity Tree on the left, next to the scene you want
to load or unload, click the eye icon.

b Scene © =

Move a scene

As scenes aren't entities, they don't have transform components. However, you can move a scene using
its offset property.

263 /1211

Property grid

0 Mo selection

N
ﬁ Open this asset in editor

B

Levels/MainScene

X 655 B

To move a scene at runtime, use:
myScene.Offset = new Vector3(x, y, z);

Replace myScene with the name of the scene, and x,y, z with the XYZ coordinates you want to move the
scene to.

See also

e Create and open a scene

e Navigate in the Scene Editor

e |oad scenes
¢ Add entities
e Manage entities

264 /1211

Load and unload scenes at runtime
Loading scenes

You can use UrlReference<Scene> properties on your scripts to assign Scene assets then load the via
code:

public UrlReference<Scene> ChildSceneUrl { get; set; }

//...
var childScene = Content.Load(ChildSceneUrl);

parentScene.Children.Add(childScene);

Alternatively you can load scenes by name. The following code loads three scenes and adds them as
children:

var myChildScene® = Content.Load<Scene>(urle);
var myChildScenel = Content.Load<Scene>(urll);
var myChildScene2 = Content.Load<Scene>(url2);

myParentScene.Children.Add(myChildScene®);
myParentScene.Children.Add(myChildScenel);
myChildScenel.Add(myChildScene2);

(0 NOTE

If you are not using UrlReference make sure all the scenes you want to load are included in the
build as root assets (indicated with blue icons in the Asset View).

a4 4 é

myChild5cene0* myChildScene1* myChild5SceneZ*
Scene Scene Scene

To include a scene in the build, in the Asset View, right-click the scene asset and select Include in
build as root asset.

265/1211

For more information about including assets in the build, see Manage assets.

For more information about scene hierarchies, see Manage scenes.

Unloading scenes

Before a scene is unloaded remove it from the scene hierarchy:

parentScene.Children.Remove(childScene);

//Alternatively
childScene.Parent = null;

Once the scene asset is no longer required make sure to unload it:

Content.Unload(childScene);

Scene streaming script

Stride also includes a scene streaming script that uses a trigger to load scenes.

(0 NOTE

The scene streaming script is included as an example. It isn't always the most appropriate way to
load scenes. Feel free to modify it as much as you need.

Add a scene streaming script

To add a scene streaming script, in the Asset View (bottom pane by default), click Add asset and select
Scripts > Scene streaming.

266 /1211

First-person player controller

. A basic first-person player controller
Amimation

Font ~ i
Game profiler

Material)
In-game runtime profiler

Media
Miscellaneous
Model

Physics trigger key is pressed

Prefab instance
Procedurally spawns a timed instance from a source prefab when a

>cene Scene streamer
Seript Loads or unloads a scene when a collider enters or exits a trigger

Sprite
Texture
Ui

+ Add asset

Game Studio adds a scene streaming script to your project assets.

Use the scene streaming script

1. Create a trigger entity. When this is triggered at runtime, Stride loads the scene. For more
information about creating triggers, see Triggers.

How the entity is triggered is defined in the collider properties. For more information, see Colliders.
2. Create an entity and position it where you want the scene to load.

3. With the entity selected, in the Property Grid (on the righy by default), click Add component and
select the scene streaming script.

267 /1211

Game Studio adds the script to the entity as a component.

¥ L[] Scene Streaming

4. Under Url, specify the scene asset you want to load.

5. Under Trigger, specify the entity you created in step 1.

Animation
Audio
Lights
Miscellanecus
Model
Mavigation
Particles
Physics
Scripts
Sprites

Ul

Video

(0 NOTE

Load Depth

Pre Load Depth

Trigger

Urd

Pricrity

-+ Add component

LT AnimationController
LT EffectController

L FpsCamera

LF PlayerController

LT Playerinput

LI SceneStreaming

Ef " Wea ponScrpt

(No asset selected)

0

If the scene streaming script doesn't appear in the list of components, reload the assemblies.

At runtime, when the trigger you created in step 1 is triggered, Stride loads the scene you specified in

step 4.

Scene streaming script properties

268 /1211

W LJ Scene Streaming

Load Depth
Pre Load Depth

Trigger

Ur (Mo asset selected)

Priority 0

Property Description

Pre Load The point (in world units) at which the scene begins to load. For example, if 2.5, the
Depth scene begins to load when the player is 2.5 units into the trigger area

Load Depth The point (in world units) at which the game freezes to finish loading the scene if it
hasn't loaded already. For example, if 5, the game freezes when the player is 5 units into
the trigger area

Priority The script priority. For more information, see Scheduling_and priorities

See also

e Colliders
e Triggers
e Create and open a scene

e Navigate in the Scene Editor

e Manage scenes
e Add entities
e Manage entities

269 /1211

Add entities

After you create a scene, you need to add entities to your scene to build your level.

Create an entity from the Scene Editor
1. Above the Entity Tree, click the icon.

The Create menu opens:

+

Create
Mew folder
Empty entity
Models
Light
Camera

20

Particle System

Audio

Alternatively, right-click the Entity Tree or anywhere in the scene. If you create an entity in the
scene, Game Studio adds an entity in the location you click.

270 /1211

Create

Models
Light

Camera

20

Particle System
Audio

Action

2. Select Empty entity, or select an entity template.
Game Studio adds an entity to the active scene and displays it in the Entity Tree:

MainScene
+

Scene settings

'q} Sphere

'q} Ground

W Camera

.f Directional light

4§ Skybox

| B Entity s

@ TIP

The active scene is the scene entities are added to. To set the active scene, Entity Tree (left by
default), right-click the scene and select active scene.

271 /121

o Scene Create

'& Cone MNew folder
Empty entity
Models

Particle System
Audio
Mavigation

Action

Duplicate selected entities

Create prefab from selection

Cut
W Copy

The active scene has no effect on runtime.

Create an entity from an asset

You can add an entity by dragging and dropping an asset from the Asset View to the scene.

272 /121

Game Studio automatically creates an entity and adds the required component and reference based on
the asset you used. For example, if you drag a model asset to the scene, Game Studio creates an entity
with a model component with the model asset as its reference.

(i) NOTE

You can only create entities by dragging assets with corresponding components. For example,
model components use model assets, so can be dragged; animations have no corresponding
component, so can't be dragged.

Set up a component

Components add special properties to entities that define their purpose in your project. For example,
you add lights to your scene by adding Light components to entities, add models by adding model
components, and so on. An entity with no component has no purpose.

To add a component to an entity:
1. Select the entity.

2. In the Property Grid, click Add component, and add component you want.

273 /1211

Animation
Audio

Lights
Miscellanecus
Model

My Script Category
Mavigation
Particles
Physics
Scripts

Sprites

]

Video

-+ Add component

1 Background

m« Camera

Game Studio adds the component.

¥ [Transform
Position
Rotation

Scale

¥ v W Camera

Mame

Projection

Field Of View

Mear Clip Plane

Far Clip Plane
Custom Aspect Ratio

Slot

Add component

MainCameral

Perspective

0.1

1000

GraphicsCompositor > Main

3. Set the properties of your new component.

Duplicate an entity

You can duplicate an entity along with all its properties. Duplicating an entity and then modifying the

properties of the new entity is often faster than creating an entity from scratch.

1. Select the entity you want to duplicate.

274 /1211

2. Hold Ctrl and move the entity with the mouse.

The entity and all its properties are duplicated.

Alternatively, right-click the entity and select Duplicate selected entities.

275/1211

i

| Create

Empty entity
Models
Light
Camera
2D
Particle System

Audio

Create prefab from selection

% Cut

Rename an entity

1. Select the entity and press F2.
2. Type a name for the entity, and then press Enter.

Scene settings

W Camera

-§- Ambient light
<% knight

[=} Background
< Entity
P Knight

See also

e Manage scenes

276 /1211

Manage entities

Beginner Level designer

To build the levels of your game, you need to translate (move), rotate, and resize entities in your scene.

These are known as transformations.

Transformation gizmos

You can select the transformation gizmos from Scene Editor toolbar.

Alternatively, press Space to switch between gizmos.

There are three types of transformation gizmo:

27771211

Translation gizmo

To select the translation gizmo, click the icon in the Scene Editor toolbar or press W.

The translation gizmo moves (translates) entities in the scene along the axis you select.

e To move an entity along the X axis, drag it by the red arrow.
e To move an entity along the Y axis (up and down), drag it by the green arrow.

To move the entity along the Z axis, drag it by the blue arrow.

To move the entity in free 3D, drag it by the central sphere.

Rotation gizmo

To select the rotation gizmo, click the icon in the Scene Editor toolbar or press E.

The rotation gizmo rotates entities in the scene along the axis you select.

e To rotate an entity along the X axis (pitch), drag it by the red ring.
e To rotate an entity along the Y axis (yaw), drag it by the green ring.
e To rotate the entity along the Z axis (roll), drag it by the blue ring.

278 /1211

Scale gizmo

To select the scale gizmo, click the il icon in the Scene Editor toolbar or press R.

The scale gizmo resizes entities along a single axis ("stretching" or "squashing” them) or all axes (making
them larger or smaller without changing their proportions).

e To resize an entity along the X axis, drag it by the red ring.
e To resize an entity along the Y axis, drag it by the green ring.
To resize the entity along the Z axis, drag it by the blue ring.
To resize the entity in all axes, drag it by the central sphere.

279 /1211

(i) NOTE

The scale gizmo only works with the local coordinate system (see below). When you select the scale
gizmo, Game Studio switches to local coordinates.

Change gizmo coordinate system

You can change how the gizmo coordinates work.

1. Select the entity whose gizmo coordinates you want to change.
2. In the Scene Editor toolbar, select the coordinate system you want.

Coordinate
system Function

Uses world coordinates for transformations. The X, Y, and Z axes are the same for

every entity.
World

coordinates

Uses local coordinates for transformations. The axes are oriented in the same

direction as the selected entity.
Local

coordinates

280 /1211

Coordinate

system Function
T Uses the current camera coordinates for transformations. The axes are oriented in

the same direction as the editor camera.
Camera

coordinates

Snap transformations to grid

You can "snap" transformations to the grid. This means that the degree of transformation you apply to
entities is rounded to the closest multiple of the number you specify. For example, if you set the rotation
snap value to 10, entities rotate in multiples of 10 (0, 10, 20, 30, etc).

You can change the snap values for each gizmo in the scene view toolbar. Snap values apply to all
entities in the scene. For example:

Icon Function

Snap translation to multiple of 1

% 225 Snap rotation to multiple of 22.5
CHRR Snap scale to multiple of 1.1
See also

Create and open a scene
Navigate in the Scene Editor

e [oad scenes
Add entities

281 /1211

Assets

An asset is a representation of an element of your game inside Game Studio, such as a texture,
animation, or model.

Some assets require resource files. For example, texture assets need image files and audio assets need
audio files. Other types of assets (such as scenes, physics colliders, and game settings) don't use resource
files, and can be created entirely in Game Studio.

You can compile and optimize assets with a special compiler provided by Stride. Compiled assets are
packed together as reusable bundles.

knight hel0_normal_idle hel3_run knight Skeleton
Scene Model Animation Amimation Skeleton
Animation Animation

PESERENN Asset errors () Output

You can:

e create and browse assets in the Asset View

282 /1211

e edit assets in the property editor

Radius

Amount

Sigma Ratio

Distortion

Asset preview

@0 W Leelo

In this section

o (Create assets
e Manage assets
e Use assets

283 /1211

Create assets

There are two ways to create assets:

e Use the Add asset button in the Asset View
e Drag and drop resource files (such as image or audio files) to the Asset View tab

Use the Add asset button

1. In the Asset View, click [T EETa

2. Select the type of asset you want to create.

Asszet view

+ Add asset L0 J

materials and textures it references
Audio)
Prefab model

Fonts . ;
A static 30 model generated from a prefab

| [« 3D model
. “ A 30 model asset imported from a source file, You can also import
Amimation

Matenals
Miscellaneous

Capsule
Models

A procedurally-generated capsule
Physics
Scenes

Cone
Scripts ‘ A procedurally-generated cone

Sprites
Textures Cube
LI A procedurally-generated cube

Game Studio displays a list of asset templates. These are assets configured for a specific use.

3. Select the right template for your asset.

Game Studio adds the asset to the Asset View:

MamSceana” Ground ProceduralModel™ Sphere Ground Matenal Sphere Matenal
SCene Procedural Mo.... Procedural Mo... Procedural Mo... Material Material

284 /1211

(0 NOTE

Some assets, such as textures, require a resource file. When you add these assets, Game Studio
prompts you for a resource file.

Drag and drop resource files

You can drag compatible resource files directly into Game Studio to create assets from them. Game
Studio is compatible with common file formats.

(0 NOTE
e You can't use this method to create assets that don't use resource files (eg prefabs, materials, or
scenes).
Asset type Compatible resource file formats
Models, animations, skeletons .dae, .3ds, obj, .blend, .x, . md2, .md3, .dxf, .fbx
Sprites, textures, skyboxes .dds, jpg, jpeg, .png, .gif, .bmp, .tga, .psd, .tif, .tiff
Audio .wav, .mp3, .0gg, .aac, .aiff, .flac, . m4a, .wma, .mpc

To create an asset by dragging and dropping a resource file:

1. (Optional) If it isn't there already, move the resource file you want to use in the Resources folder of
your project. You don't have to do this, but it's good practice to keep resource files organized and
makes projects easier to share. For more information, see Project structure.

2. Drag the resource file from Explorer to the Asset View:

285/1211

2= MyGameS.sin - Xenko GameStudic 1.7.9-beta

File Edit

Es-7

+

*
& Ground
B Sphere

Solution explorer

Picure Tools Resources

Home | Share View Manage

, 2 ° - ™ B
IJ oh Cut < =] x @ @N:wwt:m \ﬂ ™ Open EH setectan
wsi Copy path £ easy access - [eat Select none
Move Copy Delete Rename Properties
e 5 s L History | 28 invert setection

Open Select

Fin to Quick Col Paste
e " [7] Paste shortcut

Clipboard Organize
« © 4 || « Documents » Xenko Projects » Raycasting » Raycasting » Resources v @] | Search Resources 2
media
@ OneDrive
O This PC
[Desktop
= terure;
[£ Documents 9
& Downloads
b Music
=] Pictures
B videos
‘i Windows (C)

= Recovery Image (D:)

e Network

M| titem 1item sclected 63.5KB

2 X Assetview

o Add asset

MainScene
Scene

(©) Output

6 items (0 selected)

Ul sprites

A sprite sheet built from a set of images, used to display Ul components

Color

A color texture asset imported from a source file. Can be in sRGE or linear
space. Assumes three (RGB} or four (RGBA) channels

Grayscale

A grayscale texture asset imported from a source file. Assumes linear color
space and a single channel

Normal map

A normal map texture asset imported from a source file. Assumes

space and two (RG) or three (RGB) channels

Raw asset

An asset containing binary or text data directly imported from a file

Game Studio adds the asset to the Asset View:

» X Property grid

oF 2

|

-

© © Noselection

References

FEfeienceesl| Referencers

Asset preview Action

(o]

286 /1211

Asset view

+ Add asset

MainScene® Ground Sphere Ground Material Sphere Material = GameSettings
Scene Procedural M... Procedural M... Material Material Game Settings

Game Studio automatically imports all dependencies in the resource files and creates corresponding
assets. For example, you can add a model or animation resource file and Game Studio handles
everything else.

@ TIP

You can drag multiple files simultaneously. If you drop multiple files of different types at the same
time, Game Studio only adds only files that match your template selection. For example, if you add
an image file and a sound file, then select the audio asset template, only the sound file is added.

See also

e Manage assets

e Use assets

287 /1211

Manage assets

Beginner

This page explains how to edit and manage your assets.

Edit assets in the Property Grid

You can edit most assets using the Property Grid. By default, this is in the top-right of Game Studio.
For example, to change the color of a material asset:

1. In the Asset View (in the bottom by default), select the material.

¥ cShading

¥ Diffuse /' Diffuse Map
B :#Frrrocsr
Lambeart

Metalnecs Map

* Specular Madel

Frecsnel

Ernissive
b Misc
Layers

Asset wiew L M Asset preview

+ Iewr azoet Lzlllrrpnﬂ &> | | -

@ — z
‘- - o -

“Sphere Materal Skybox Texture Skyba: GameSettings
Material Tescture '.xh:,-l.m-x Game Settings

Hecmbuneu| f=net errors |:|:I_I l:luf.pu'l Azt F-rm Acton history References

2. In the Property Grid, under Shading > Diffuse, next to Diffuse Map, click the colored box, which
displays the asset color (yellow in this example).

The color picker opens.

288 /1211

¥ Shading

¥ Diffuse « Diffuse Map

b Diffuse Map B zrrrroesr

Diffuse Model Color picker | Palette
¥ Specular _ I
Metalness Ma
¥ Specular Model
Fresnel
Visibility
MNormal Distrit

Emissive

Diffuse Map
100

3. Select a new color for the asset.

Material Sphere Material

|

Trrvert

¥ Shading

¥ Specular Melalness M:

Metalnees Map

F Specular Model Microfaget

ey ey

+ Mew asset E Imiport

sund Matenial m
Material Material

ESETARSAN Asset errors () Output FESEprEaeM Action history References

& items (1 zelected)

The Asset Preview (bottom right by default) displays asset changes in real time.

The Asset View indicates assets with unsaved changes with asterisks (*).
289 /1211

Asset view

+ Add asset

Graphics Compasitor

Graphics GameSettings Ground Ground Material MainScene®
Compositor Game Settings Procedural M... Material Scene
Graphics Com...

Edit assets using dedicated editors

Game Studio has dedicated editors for the following asset types:

prefabs
scenes
sprite sheets
Ul pages

Ul libraries
scripts

For example, you edit scenes in the Scene Editor.

FHCH (eitor M| @ B
Scene seftings

W Camera

“§- Ambient light
& knight

[=} Background
Bu

& knight (2)
& knight (3)
& knight (4)
& knight (5)
& knight (6)
P knight (7)
& knight (8)
& knight (9)
& knight (10)
& knight (11)
& knight (12)

To open the dedicated editor for these types of asset:

e double-click the asset, or

290 /1211

e right-click the asset and select Edit asset, or
e select the asset and type Ctrl + Enter

Organize assets

We recommend you organize your assets into subfolders by type. This makes projects much easier to
manage, especially as they become large.

Solution explorer
8 e S
¥ Solution 'AnimatedModel’
v B AnimatedModel
v B Assets
l Effects
l Environment
l Levels
] Props
b l Sounds
l Effects
l Musics
b H AnimatedModel.Game

AnimatedModel. Windows

b BE Dependencies

P External Packages

Ready

Assets are contained in the Assets folder of your project package. You can see the project in the
Solution Explorer (by default shown in the bottom left).

e To create a subfolder, right-click the parent folder and select Create subfolder.
e To move an asset, select one or more assets in the Asset View and drag and drop them to the
folder.

(0 NOTE

When you move an asset, Game Studio updates all references to other assets inside the asset.

291 /1211

@ TIP

To see the URL and type of an asset, move the mouse over the asset thumbnail.

Ur: ProceduralModel

Type: Procedural Madel

® Excluded from build
ProceduralModel™ SpTeTE Ground Material

Procedural Mo... Procedural Mo... Material

Include assets in the build

By default, Stride doesn't include every asset when you build the game. This is because you might not
need every asset at runtime — for example, if the asset is incomplete.

Stride only includes assets which:

e you've specifically marked for inclusion (root assets), or
¢ are referenced by a root asset

Game Studio indicates whether an asset is included with a colored icon in the top-left of the asset

thumbnail.
Color Status
Blue The asset is a root asset and included in the build.

Ground Material
Material

Green The asset is referenced by a root asset and included in the build.

292 /1211

Color Status

Ground Material
Material

The asset isn't included in the build.

Ground Material
Material

If you plan to load an asset at runtime using scripts, make it a root asset. To do this:
e click the gray dot in the top-left of the thumbnail, or

e right-click the asset and select Include in build as root asset

293 /1211

Asset
ﬁ? Edit asset... Cirl+Enter

&4 Cut Cirl+X
Copy Ctrd+C

Copy with dependencies Ctrl+5hift+C

Delete

Rename

Create subfolder
Add asset... Ctrl+|

Update selected assets from their source Ctrl+Shift+R

Asset View options

To change the Asset View options, click the eye icon in the Asset View toolbar.

Display
Assets in selected folder only
v Ascetc in selected folder and subfolder
Aszzets and folders in selected folder
Sort
Sort by asset name
Sort by type

Sort by unsaved changes

Sort by date modified

View
B Grid view
Asset view BH Tile view

+ Add asset ©

You can:

e display assets in the selected folder only, the selected folder and subfolder
e sort assets by name, type, unsaved changes, and modification date
e switch between tile view (default) and grid view

294 /1211

Filter assets

When browsing assets in the Asset View (in the bottom by default), you can filter by name, tag, type, or
a combination of all three.

The tag and name filters are "and" filters. For example, if you filter by tag:level and name:knight, the
Asset View only displays assets with the tag "level" and the name "knight".

Type filters are "or" filters. For example, if you filter by type:animation and type:texture, the Asset View
only displays assets that are animations or textures.

Add a filter
1. In the Asset View, type in the filter bar.

Game Studio displays a list of matching filters (name, type, or tag).

type: Additive Animation

t_'er'E: Anin‘lati':'rl match | HE- tl}rpcﬁ

type: Sprite Studic Animation

name: anim

tag: anim
2. To filter by name, press Enter.
To filter by a tag or type, select tag or type filters in the drop-down list.
Game Studio applies the filter and shows matching assets in the Asset View.

You can add multiple filters. Name filters are green, tag filters are blue, and type filters are orange.

© M knight x W1 x (Animation X

Toggle filters on and off

To toggle a filter on and off without removing it, click it. Disabled filters have darker colors.

Remove a filter

To remove a filter, click the X icon in the filter tag.

See also

295/1211

e (Create assets

e Manage assets
e Use assets

296 /1211

Use assets

There are four ways to use assets:

e reference them in entity components

o reference them in other assets

e |oad them from code as content

¢ |oad them from code as content using UrlReference

Reference assets in components

Many kinds of component use assets. For example, model components use model assets.

Components that use assets have asset docks in the property grid.

(Mo asset selected)

LI 4 W

To add an asset to an entity component, drag the asset to the asset dock in the component properties
(in the property grid). You can drop assets in the text field or the empty thumbnail.

¥ Shading
¥ Diffuse " Diffuse Map

P Diffuse Map i (Mo asset selected,

ase Model

Specular

* " X Asset preview

— -
- f==1

S

=

c100_body nm c100_weapon_cm c¢100_weapon_nm
Texture Texture Texture

297 /1211

Alternatively, click u (Select an asset).

x Asset picker

¥ Solution 'AnimatediModel’ + Add ascet
¥ 8 AnimatedModel*

=—nnnn

B Levels Effects Environment Levels Props

l Props Folder Folder Folder Folder

3 l Sounds
b E AnimatedModel.Game
l Properties
AnimatedModel Windows
» BE Dependencies

P External Packages Sounds c100_body_cm c100_body_nm
Folder Texture Texture

The Select an asset window opens.

(i NOTE

The Select an asset window only displays assets of types expected by the component. For example,
if the component is an audio listener, the window only displays audio assets.

After you add an asset to a component, the asset dock displays its name and a thumbnail image.

Models WallOx2x5

L 4

Reference assets in other assets

Assets can reference other assets. For example, a model asset might use material assets.

You can add asset references to assets the same way you add them to entity components (see above).

298 /1211

Clear a reference

To clear a reference to an asset, in the asset dock, click (Clear reference).

ModelsWallOx2x5

L 4

Examine references

You can see the references in a selected asset in the References tab. By default, this is in the bottom
right of Game Studio.

References

BEferencesy Referenced by L O]

c100_ c100_
WE3pOom_Cm WEAP.
Texture Texture

2 Textures

Asset preview Action history BRSISIEREES

e The References tab displays the assets referenced by the selected asset.
e The Referenced by tab displays the assets that reference the selected asset.

@ TIP

If you can't see the References tab, make sure it's displayed under View > References.

Load assets from code

When loading in assets at runtime we speak of "Content" rather than assets. The loaded content refers to
the asset and can then be used in your script.

// Load a model (replace URL with valid URL)
var model = Content.Load<Model>("AssetFolder/MyModel");

299 /1211

// Create a new entity to add to the scene

Entity entity = new Entity(position, "Entity Added by Script") { new ModelComponent { Model
= model } };

// Add a new entity to the scene
SceneSystem.SceneInstance.RootScene.Entities.Add(entity);

@ TIP

To find the asset URL, in Game Studio, move the mouse over the asset. Game Studio displays the
asset URL in a tooltip. URLs typically have the format AssetFolder/AssetName.

() WARNING

When loading assets from scripts, make sure you:

e include the asset in the build as described in Manage assets
e make sure you add the script as a component to an entity in the scene

Unload unneeded assets

When loading content from code, you should unload content when you don't need them any more. If
you don't, content stays in memory, wasting GPU.

To unload an asset, use Content.Unload(myAsset).

Load assets from code using UrlReference

UrlReference allows you to reference assets in your scripts the same way you would with normal assets
but they are loaded dynamically in code. Referencing an asset with a UrlReference causes the asset to be
included in the build.

You can reference assets in your scripts using properties/fields of type UrlReference or UrlReference<T>:

e UrlReference can be used to reference any asset. This is most useful for the "Raw asset".
e UrlReference<T> can be used to specify the desired type. i.e. UrlReference<Scenes. This gives Game
Studio a hint about what type of asset this UrlReference can be used for.

Examples
Loading a Scene

300/1211

Using UrlReference<Scene> to load the next scene.

using System.Threading.Tasks;

//Include the Stride.Core.Serialization namespace to use UrlReference
using Stride.Core.Serialization;

using Stride.Engine;

namespace Examples

{

public class UrlReferenceExample : AsyncScript

{

public UrlReference<Scene> NextSceneUrl { get; set; }

public override async Task Execute()

{
/...

private async Task LoadNextScene()

{

//Dynamically load next scene asynchronously
var nextScene = await Content.LoadAsync(NextSceneUrl);
SceneSystem.SceneIlnstance.RootScene = nextScene;

Load data from a Raw asset JSON file

Use a Raw asset to store data in a JSON file and load using Newtonsoft.Json@. To use Newtonsoft.Json

you also need to add the Newtonsoft.Json NuGet package to the project.

//Include the Newtonsoft.Json namespace.

using Newtonsoft.Json;

using System.IO;

using System.Threading.Tasks;

//Include the Stride.Core.Serialization namespace to use UrlReference
using Stride.Core.Serialization;

using Stride.Engine;

namespace Examples

{

public class UrlReferenceExample : AsyncScript

{
public UrlReference RawAssetUrl { get; set; }

301 /1211

https://www.newtonsoft.com/json
https://www.newtonsoft.com/json
https://www.newtonsoft.com/json

public override async Task Execute()

{
//...
}
private async Task<MyDataClass> LoadMyData()
{
//0Open a StreamReader to read the content
using (var stream = Content.OpenAsStream(RawAssetUrl))
using (var streamReader = new StreamReader(stream))
{
//read the raw asset content
string json = await streamReader.ReadToEndAsync();
//Deserialize the JSON to your custom MyDataClass Type.
return JsonConvert.DeserializeObject<MyDataClass>(json);
}
}
}
}
See also

e (Create assets
e Manage assets

302 /1211

Archetypes

An archetype is a master asset that controls the properties of assets you derive from it. Derived assets

are useful when you want to create a "remixed" version of an asset.

For example, imagine we have three sphere entities that share a material asset named Metal. The Metal

asset has properties including color, gloss, and so on.

If we change a property in the Metal asset, it applies to all three spheres.
the color property, all three spheres change color.

Displacement
Surface
¥ MicroSurface
Glossiness Map

Invert

¥ Shading
¥ Diffuse
P Diffuse Map
Diffuse Model
¥ Specular
Metalness Map
w Specular Model
Fresnel
Visibility
Normal Distribution
Emissive
¥ Misc
Occlusion
Transparency
P Overnides

Cull Mode

Layers

Glossiness Map

Diffuse Map
| s
Lambert

Metalness Map

Microfacet
Schlick
Schlick-GGX

GGX

Layer Overrides
Back

So, for example, if we change

Displacement
Surface
¥ MicroSurface
Glossiness Map

Invert

¥ Shading
¥ Diffuse
P Diffuse Map
Diffuse Model
~ Specular
Metalness Map
w Specular Model
Fresnel
Visibility
MNormal Distribution
Emissive
¥ Misc
Occlusion
Transparency
P Overrides

Cull Mode

Layers

Glossiness Map

Diffuse Map
W #rrrreioe
Lambert

Metalness Map

Microfacet
Schlick
Schlick-GGX
GGX

Layer Overrides

Back

303 /1211

Now imagine we want to change the color of only one sphere, but keep its other properties the same.
We could duplicate the material asset, change its color, and then apply the new asset to only one sphere.
But if we later want to change a different property across all the spheres, we have to modify both assets.
This is time-consuming and leaves room for mistakes.

The better approach is to derive a new asset from the archetype. The derived asset inherits properties
from the archetype and lets you override individual properties where you need them. For example, we
can derive the sphere's material asset and override its color. Then, if we change the gloss of the
archetype, the gloss of all three spheres changes.

File Edit Project View Help
E-"S B O S5C W~
InitialScene/Scene X ~ Property grid
™ N -2 : -) _
+ o= | o - d & ° Material FinalScene/Copper

i

Scene settings
FinalScene/Metal
W Camera

irectional light
.) ¥ Geometry
ctional light

'& ground
& Metal
& Gold

@ Copper

¥ Shading
v Diffuse Map
} Diffuse Map B =rrrocrco
ambe

1 X Assetview

on + Add asset " Microfacet
P Schlick

¥ Solution 'Matenial5"
= o]

¥ =2 Material5 - - S k-GGX

v [Assets”

B FinalScene*

Copper*
Material

P External Packages = _
- Asset wiew | Asset errors (0) Output

Ready 3 items (1 selected)

You can derive an asset from an archetype, then in turn derive another asset from that derived asset. This
way you can create different layers of assets to keep your project organized:

Archetype
Derived asset
Derived asset

Derive an asset from an archetype

304 /1211

In the Asset View, right-click the asset you want to derive an asset from and select Create derived
asset:

Cirl+X
OpY Cird+C

L
B Copy with dependencies Cirl+Shift+C
®

Delete

I Rename

B Create subfolder
4 Add asset.. Ctrl+l
[? Update selected assets from their source Ctrd+Shift+R

[

Explore
i Open with text editor
Open asset file
Open source file

Show in Explorer

Game Studio adds a new derived asset to the project. This asset derives its properties from the
archetype asset.

The derived asset properties display the archetype asset under Archetype:

305/1211

Property grid

© © Matesial FinalScene/Gold

1L

FinalScene/Metal

You can right-click the archetype asset in the Property Grid and select Select the referenced asset to
quickly select the archetype asset:

Property grid

© © Matesial FinalScene/Gold

FinalScene/Metal

¥ Pick an asset up

w & Clear this reference

Overridden properties
The Property Grid shows which properties of the derived asset differ from the archetype. Overridden

and unique properties are white, and inherited (identical) properties are gray.

In this screenshot, the Diffuse Map property is overridden. The other properties are inherited:

¥ Shading
b " Diffuse Map
b Diffuse Map B ererreioe
Lambert

Metalness Map

Microfacet

Schilick

Schllick-GGX

GGX

Reset a property to archetype value

306 /1211

You can reset overridden or unique properties of a derived asset to the values in the archetype. To do
this, right-click the overridden property and select Reset to base value.

¥ Shading
v + Diffuse Map

b Diffuse Map M #rerreios

W Copy
i
i

Schlick
Schlick-GGX

GGX

Clear an archetype

You can remove the link between the archetype and the derived asset. This means the derived asset no
longer inherits changes to the archetype; it becomes a completely independent.

To do this, in the Asset View, right-click the derived asset and select Clear archetype.

307 /1211

Cut Ctrl+X
Copy Ctrl+C

Copy with dependencies Ctrl+Shift+C

Delete

Rename

y Create subfolder
<= Add asset... Ctrl+
[? Update selected assets from their source Ctrl+Shift+R

Aszet view E.:I

Explore

Open with text editor
B Open asset file

B Open source file

Show in Explorer

See also

e Assets
e Prefabs

308 /1211

Prefabs

A prefab is a "master" version of an object that you can reuse wherever you need. When you change the
prefab, every instance of the prefab changes too.

For example, imagine we make a simple tree object by assembling several entities. The entities contain
components such as models, materials, physics colliders, and so on, which in turn reference assets.

Now imagine we want to place several trees around the scene. We could simply duplicate the tree, but if
we want to modify it later, we have to edit each one individually. This is time-consuming and leaves
room for mistakes.

The better approach is to make the a tree prefab. Then we can place as many trees as we like, and when
we modify the prefab, every tree is instantly updated to match. This saves lots of time.

T st o o . e, e S0 i Py 1 v

e CRL R ™=

BE F= ssiel oo +

Prefab Edito.r

Create Prefabs

S S

The most common use for prefabs is to create a small piece of your scene — like a car, NPC, or item of
furniture — and duplicate it as many times as you need. When you need to modify it — for example, if
you want to change its model — you can change it in one place and apply the change everywhere at
once.

You can make any entity or combination of entities of a prefab; they can be as simple or as complex as
you need. Prefabs can even contain other prefabs (known as nested prefabs).

309 /1211

You can override specific properties in each prefab instance.

See also

Create a prefab

Use prefabs
Edit prefabs
Nested prefabs

Override prefab properties

Prefab models

Archetypes

310/1211

Create a prefab

In the Asset View, click Add asset and select Prefabs > Prefab.

Asset view

+ Add asset

| Prefab

R An empty prefab asset.
Amimations

Audio
Matenals
Miscellaneous
Models
Mavigaticn
Physics
Prefabs
Scenes
Scripts

Spnte Studio
Sprites
Textures

Ul

Game Studio creates an empty prefab asset with the default name Prefab. Double-click the asset to open
the Prefab Editor and add entities.

Create a prefab from an entity

You can also create a prefab from an existing entity or entities.

1. In the Scene Editor, select the entity or entities you want to create a prefab from.

@ TIP

Hold Ctrl to select multiple items.

2. Right-click the selection and select Create prefab from selection:

311 /1211

-+ b of

Scene settings

b B Environment

<% pillar

§- Spot light

'@ Column

Game Studio creates a prefab asset from the entity or entities you selected. You can access the new
prefab from the Asset View.

a

GameSettings MainScene® Lamppost prefab® Column
Game Settings Scene Prefab Model

312/1211

(0 NOTE

After you create a prefab from a selection, the original selection itself becomes a prefab.

Create a prefab from an existing modified prefab

You can create new prefabs from modified prefabs. For example, you can instantiate a prefab, override

one of its properties, then use this modified prefab instance to create a new prefab.

See also

e Prefab index
e Use prefabs
e Edit prefabs
e Nested prefabs

e Override prefab properties

e Prefab models

313/1211

Use prefabs

To instantiate a prefab, drag and drop it from the Asset View to the scene.
You can re-arrange entities in the prefab instance just like you do with other entities:

e create child and parent entities
e drag entities to add them to the prefab instance
e drag entities from the prefab instance to make them independent entities

Manage prefab parent entities

By default, Game Studio creates an empty parent entity with the prefab's entities as its children. The
Entity Tree displays the prefab parent name in green next to the child entities.

Scene settings

+ [Ervironment
WM Camera
':'i:' Directional light

i' Skybox

'& Ground
¥ 7] Lamppost prefab
'& Pillar (Prefab: Lamppost prefab)

i' Spot light (Prefab: Lamppost prefab)

'& Column (Prefab: Lamppost prefab)

This is useful because you can manage the prefab entities as a group and maintain their relative
positions. For example, imagine you have a car prefab assembled from several entities (a body, seats,
four wheels, etc). You want its component entities to stay grouped together as you move the car around
the scene. You can do this by moving the prefab parent entity.

If you don't want to create a parent entity with the prefab, hold Alt when you drop the prefab into the

scene. This is useful if you don't care about the relative positions of the prefab's entities and don't need
to move them together as a group. For example, imagine you have a prefab composed of several crate
entities arranged in a random fashion. It's not important that the crates maintain their relative position

after you place them; in fact, several identical stacks of "randomly" arranged crates looks artificial.

In this case, a parent entity is unnecessary. Instead, you can create several instances of the prefab, then
re-arrange their individual crate entities to create the effect you need.

314 /1211

Relative positions maintained Relative positions ignored

Break link to prefab

After you add a prefab instance, you can break the link between the prefab and any of its child entities.
This means the child entity is no longer affected by changes you make to the prefab.

To do this, in the Scene Editor, right-click a child entity or entities and select Break link to prefab.

315/1211

-+ b of

Scene settings

b B Environment
w [T Lamppost prefab
&% Pillar (Prefab: Lamppost prefab)

-@- Spot light (Prefab: Lamppost prefab)

'q} Column (Prefab: Lamppost prefab)

Instantiate and add prefabs at runtime

To use prefabs at runtime, you need to instantiate them and then add them to the scene in code.

public class SpawnPrefabOnStart : StartupScript

{
public Prefab MyPrefab { get; init; } // init here prevents other scripts from changing
this property

public override void Start()
{
// A prefab may contain multiple entities
var entities = MyPrefab.Instantiate();
// Adding them to the scene this entity is on
Entity.Scene.Entities.AddRange(entities);

316 /1211

(0 NOTE

Instantiate() by itself isn't enough to add a prefab instance to the scene. You also need to Add() or
AddRange () them to a scene . For example, if your prefab contains a model, the model is invisible
until you add the prefab instance. Likewise, if your prefab contains a script, the script won't work
until you add the prefab instance.

If you have a prefab named MyBulletPrefab in the root folder of your project, you can instantiate and add
it with the following code:

private void InstantiateBulletPrefab()

{
// Note that "MyBulletPrefab" refers to the name and location of your prefab asset
var myBulletPrefab = Content.Load<Prefab>("MyBulletPrefab");
// Instantiate a prefab
var instance = myBulletPrefab.Instantiate();
var bullet = instance[0];
// Change the X coordinate
bullet.Transform.Position.X = 20.0f;
// Adding just the bullet to the root scene
SceneSystem.SceneInstance.RootScene.Entities.Add(bullet);

}

(0 NOTE

At runtime, changes made to prefabs (myBulletPrefab in the above example) don't affect existing
prefab instances (bullet in the above example). Subsequent calls to Instantiate(Prefab) include
new changes. For example, imagine you have a tree prefab that contains a script to change the tree
color from green to red at runtime. The script won't affect existing instances of the prefab; it can
only change the color of future instances. This means prefabs instantiated after the code runs will
have the new color, but existing prefabs won't.

See also

317 /1211

Prefab index
Create a prefab

Edit prefabs
Nested prefabs

Override prefab properties

Prefab models

318/1211

Edit prefabs

Beginner Designer

You can edit prefabs in the Prefab Editor.

Open the Prefab Editor

To open the Prefab Editor from the Asset View:

e Right-click the prefab you want to edit and select Edit asset:

Sphere Material

Material

To open the Prefab Editor from the Scene Editor, right-click any child of a prefab instance and select Open prefab in editor.

319/1211

Create

New folder

Empty entity

Models
Light

Camera

Audic

Action
Duplicate selected entities
Break link to prefab

Create prefab fron

Rename

Delete selection

Use the Prefab Editor

The Prefab Editor works similarly to the Scene Editor. For example, you can:

e add and delete entities

e use transformation gizmos to translate, rotate and scale entities

e create parent-child relations between entities

e add and modify entity components (scripts, materials, models, animations, etc)

For more information about managing entities, see Populate a scene.

320 /1211

When you edit a prefab in the Prefab Editor, the changes are applied to the instances of the prefab in the scene in real time.

This video demonstrates what happens when we make changes to the prefab. The Scene Editor is on the left, and the Prefab Editor on the right:

321 /1211

;#:": PrefabDemo.sIn - Xenko GameStudio 1.9.1-beta
File Edit
Sm-7" B 5

+

Project View Help

Scene settings

» M Environment
b Il Props

Solution explarer -
8§ R = e oo ez
¥ Solution 'PrefabDemo’
i E PrefabDemo™
¥ Assets®
v ' Materials
l Box
B ceis
. Column
l Crane
l Generator
B oiPump
B Fillar
B rails

B Sateliite

See also

Prefab index

Create a prefa

Use prefabs

Nested prefabs

Override prefab properties
Prefab models

¥ Windows

-ﬁ I~ o Editor

=

——
-

o X Assetview

+ Add asset

Materials
Folder

GameSettings
Game Settings

MalnScent*
Scene

-
Dillari Railc Satallita

(AssefvieW | Asset errors (0) Output

N\

@ Column
<% Pillarl

13 itemns (0 selected)

322 /1211

Nested prefabs

You can add prefabs to other prefabs. These are called nested prefabs.

For example, imagine you have a table prefab, a chair prefab, and a television prefab. Then you create a
living room prefab, which in turn contains the table, chair, and television prefabs. You might then create
a house prefab, which in turn contains the living room prefab, which in turn contains the table, chair, and
television prefabs. There's no limit to how many prefabs you can nest.

If you modify a nested prefab, all the dependent prefabs inherit the change automatically. For example, if
you change the shape of the table prefab, it changes in the living room and house prefabs too.

This video demonstrates an example of nested prefabs:

In the center pane, we already have a prefab named Lamp. In the right pane, we create a new prefab
named Boxes, comprising several box entities positioned together. We add the Boxes prefab to the
Lamp prefab. Changes made to the Boxes prefab are reflected in the Lamp prefab. These are in turn
reflected in the instances of the Lamp prefab in the scene (left pane).

See also

e Prefab index
e (Create a prefab

323 /1211

Use prefabs
Edit prefabs
Override prefab properties

Prefab models

324 /1211

Override prefab properties

If you modify a property in a prefab instance, the instance no longer inherits changes from the prefab for
that property. This is called an override.

Create two Override properties Modify Prefab:
Prefab Instances in one Instance 1. Identical properties inherit changes.
2. Overridden properties not affected.

£ rw

In the following video, the Lamp prefab contains several box entities that belong to the Boxes parent.
When we delete the boxes from the instance, only that instance is affected. The prefab (shown on the

right) is unchanged.

If we add another box to the Boxes parent in the prefab, it doesn't appear in the overridden instance.
That's because we deleted the Boxes parent from that instance.

325/1211

View overridden properties

In the Property Grid, you can see which properties of the prefab instance differ from the base values

n
the prefab.

e Overridden and unique properties are white and bold:

v v & Model

W Matenals

Material d Sphere Matenal-Dernved -

LI 4

¢ Identical properties are gray:

326 /1211

w v &p Model

W Matenals

Material r Sphere Material-Derived

v e

Reset a property to the prefab value
To reset an overridden property to the value in the parent prefab, right-click the property and click Reset
to base value.

W Materials

Material v Sphere Matenal-Derved R B

ve

Example

In this example, we have a prefab of a futuristic lamppost.

327 /1211

The lamppost prefab is composed of three entities: a column, a pillar, and a spot light. These are listed in
the Entity Tree in the Prefab Editor.

'@ Column

<P Pillar1

-9 Spot light

Let's add five instances of the lamppost prefab to our scene.

328 /1211

r

Now we'll modify one of the instances. In the Scene Editor, we select one spot light entity and, in the
spot light component properties, change its color to red. The Property Grid displays the modified Color
property in bold white. This means it's overriding the prefab property.

329 /1211

Property grid

© © Entity Spot light

B
Spot light

Group0

Add component

¥ 7 Transform

¥ V ¥ Light
b Spot

#FHOFE9

Change values...

We can see this in the scene view.

330/1211

Now let's see what happens when we go back to the Prefab Editor and change the color of the spot light
in the prefab to green.

¥ v f Light
w Light
Color
Range
Angle Inner
Angle Outer
P Shadow

Intensity

Culling Mask Change values..

Four of the lampposts now have a green light. The fifth is still red, as overridden properties don't change
when you modify the prefab.

331 /1211

r

See also

e Prefab index

e Create a prefab

e Use prefabs
e Edit prefabs
e Nested prefabs

e Prefab models

332/1211

Prefab models

Prefab models convert prefabs to single drawcalls. This is useful for optimization, as Stride only renders
the final model instead of the separate entities in the prefab. When you make changes to the prefab,
Game Studio regenerates the prefab model.

Drawbacks

Prefab models don't inherit elements such as lights, colliders, or other components — they're only
models, and have to be used just like other models. For example, if you have a prefab comprising two
models with physics components, the prefab model creates a single model from the two models and
ignores the physics components. If you need to add components to a prefab model, add them to the
prefab model itself.

Prefab models don't expose materials. This means you can't view or edit them in the prefab model asset,
or in model components that use the prefab model.

Create a prefab model

1. In the Asset View, select Add asset > Model > Prefab model.

©

materials and textures it references
Audio
Prefab model

Font
f A static 30 model generated from a prefab

[« 3D model
. “ A 30 medel asset imported from a source file, You can also import
Amimation

Matenal
Miscellaneous

Capsule
Model

A procedurally-generated capsule
Physics
Scene

Cone
Seript A procedurally-generated cone

Sprite
Texture Cube
LI A procedurally-generated cube

2. In the Property Grid (on the right by default), next to Prefab, click (Select asset).

333 /1211

Property grid

© ' prefab model PrefabModel

(No as=et selected)

K 4 W

The Select an asset window opens.
X Select an asset

¥ Solution 'PrefabDemo’
b E PrefabDemo™
v B Assets*
b B Materials
A E PrefabDiemo.Game

N

W
i

B Properties

@ PrefabDemo Windows Materials Lamppost prefab
- Folder Prefab
P E= Dependencies

P External packages

3. Select the prefab you want to create a model from and click OK.

Game Studio adds the prefab model to the Asset View.

334 /1211

Asset view

+ Add asset

n

Materials GameSettings
Folder

Column Crane_v2
Model Model

See also

e Create a prefab

e Use prefabs

e Edit prefabs

e Nested prefabs

e Override prefab properties

e Archetypes

3

Graphics
Compaositor

Graphics com...

Generator
Model

MainScena®
Scene

ﬁaf{'

OilPump Pillar
Model Model

Box stack

Prefab

Lamppost prefab
Prefab

Satellite
Model

335/1211

Game settings

You can configure the global settings of your game in the Game Settings asset. By default, the Game
Settings asset is stored in your project's Assets folder.

Edit game settings
1. In the Solution Explorer (the bottom-left pane by default), select the Assets folder.
Solution explorer

[b [1 E E
(=2 l B S S S

w Solution 'FirstPersonShooter’

w E FirstPersonShooter

P B Assets
4 E FirstPersonShooter.Game
'a' FirstPersonShooter.Android
2 FirstPersonShooter.Windows

P B2 Dependencies

P External Packages

2. In the Asset View (the bottom pane by default), select the GameSettings asset.

Ascet view

+ Add asset

Effect Library 6 Skybox

Crosshair2 56 EffectCompilelLog i MainScene Skybox
Tewture Effect Library i Skybox

3. In the Property Grid (the right-hand pane by default), edit the Game Settings properties.

336 /1211

Property grid

Game settings GameSettings

Default Scene MainScenes
Graphics Compositor GraphicsCompositor
Audio

Editor

Mavigation

Physics
Rendering
v Streaming
Textures
Overrides
P Platform Filters

P Splash screen

Default scene

You can have multiple scenes in your project. The default scene is the scene Stride loads at runtime.
To set the default scene:
1. In the GameSettings properties, next to Default Scene, click §"R (Select an asset).
Property grid

0' Game Settings GameSettings

Default Scene MainScene

Graphics Compositor GraphicsCompositor

The Select an asset window opens.
2. Select the default scene and click OK.

For more information about scenes, see Manage scenes.

337 /1211

Graphics compositor

You can have multiple graphics compositors in your project, but you can only use one at a time.
To set the graphics compositor:
1. In the GameSettings properties, next to Graphics compositor, click u (Select an asset).

Property grid

0 Mo selection

Default Scene MainScene

Graphics Compositor GraphicsCompositor

The Select an asset window opens.
2. Select the graphics compositor and click OK.

For more information, see Graphics compositor.

Audio

w Audio

HRTF (if available)

Property Description
HRTF Enable HRTF audio. Note that only audio emitters with HRTF enabled will produce HRTF
support audio. For more details, see HRTF.

For more details about audio, see Audio.

Editor

The editor settings control how Game Studio displays entities in the Scene Editor. These settings have

no effect on your game.

(i) NOTE

How Game Studio displays entities is also affected by the Color space setting under Rendering.

338 /1211

W Editor

Rendering Mode High Dynamic Range

Animation Frame Rate 30

Property Description

Rendering mode How Game Studio renders thumbnails and Asset Previews

Animation The framerate of animations shown in Game Studio. This doesn't affect
framerate animation data.
Navigation

¥ Navigation
¥ Dynamic navigation mesh

Enabled
Included Collision Gro... Change values..

P Build Settings MavigationMeshBuildSettings

P Groups List - 1 item

Dynamic navigation mesh properties
Property Description

Enabled Enable dynamic navigation on navigation components that have no assigned
navigation mesh

Included collision Set which collision groups dynamically-generated navigation meshes use. By
groups default, meshes use all collision groups

Build settings Advanced settings for dynamically-generated navigation meshes
For more details, see Dynamic navigation.
Navigation group properties

Property Description

ltem The name of the group.

339 /1211

Property Description

Height The height of the entities in this group. Entities can't enter areas with ceilings
lower than this value.

Maximum climb ~ The maximum height that entities in this group can climb.
height

Maximum slope The maximum incline (in degrees) that entities in this group can climb. Entities
can't go up or down slopes higher than this value.

Radius The larger this value, the larger the area of the navigation mesh entities use.
Entities can't pass through gaps of less than twice the radius.

For more details, see Navigation.

Physics

¥ Physics

Flags Change values..

Max Sub Steps 1

Fixed Time Step 0.016667

Property Description

Flags CollisionsOnly disables physics except for collisions. For example, if this is enabled,
objects aren't moved by gravity, but will still collide if you move them manually.
ContinuousCollisionDetection prevents fast-moving entities erroneously moving
through other entities. Note: other flags listed here currently aren't enabled in Stride.

Max sub The maximum number of simulations the physics engine can run in a frame to
steps compensate for slowdown.

Fixed time The length in seconds of a physics simulation frame. The default is 0.016667 (one sixtieth
step of a second).

Rendering

340 /1211

¥ Rendering

1280

Default Back Buffer Wi...
Default Back Buffer He... 720
Adapt Back Buffer To 5...

Default Graphics Profile Direct3D 10.0 / OpenGL ES 3.0

Color Space

Display Crientation

Target graphics platform

Property

Default back
buffer width

Default back
buffer height

Adapt back buffer
to screen

Default graphics
profile

Color space

Display
orientation

Target graphics
platform

@ TIP

Linear
Landscape Right

Default

Description

This might be overridden depending on the ratio and/or resolution of the device.
On Windows, this is the window size. On Android/iOS, this is the off-screen target
resolution.

This might be overridden depending on the ratio and/or resolution of the device.
On Windows, this is the window size. On Android/iOS, this is the off-screen target
resolution.

Adapt the ratio of the back buffer to fit the screen ratio

The graphics feature level required by the project

The color space (gamma or linear) used for rendering. This affects the game at
runtime and how elements are displayed in Game Studio.

The display orientation of the game (default, portrait, left landscape, or right
landscape).

The target platform Stride builds the project for. If you set this to Default, Stride
chooses the most appropriate platform. For more information, see Set the
graphics platform.

To check which default platform your project uses, add a break point to your code (eg in a script),

run the project, and check the value of the GraphicsDevice.Platform variable.

341 /1211

Streaming

¥ < Streaming

Update interval 0.033
Max resources per update
Resource timeout {ms)

Memory budget (in ME)

Property Description
Streaming Enable streaming

Update interval How frequently Stride updates the streaming. Smaller intervals mean the streaming
system reacts faster, but use more CPU and cause more memory fluctuations.

Max resources The maximum number of textures loaded or unloaded per streaming update.

per update Higher numbers reduce pop-in but might slow down the framerate.
Resource How long resources stay loaded after they're no longer used (when the memory
timeout (ms) budget is exceeded)

Memory budget When the memory used by streaming exceeds this budget, Stride unloads unused
(in MB) textures. You can increase this to keep more textures loaded when you have
memory to spare, and vice versa.

(0 NOTE

Currently, only textures can be streamed.

For more details, see Streaming.

Textures

¥ Textures

Texture Quality

Property Description

Texture The texture quality when encoding textures. Fast uses the least CPU, but has the lowest
quality quality. Higher settings might result in slower builds, depending on the target platform.

342 /1211

Overrides

You can override settings for particular platforms, graphics APIs, and so on. For example, you can set
different texture qualities for different platforms.

1. With the GameSettings asset selected, in the Property Grid, under Overrides, click B (Add).

Property grid

Game settings GameSettings

Default Scene MainScens
Graphics Compositor GraphicsCompositor
Splash screen
Rendering
Editor
Textures
Physics

Audio

Navigation

v Streaming
Overrides

p Platform Filters

Game Studio adds an override.

2. In the new override, next to Platforms, select the platforms you want the override to apply to. You

can select as many as you need.

343 /1211

¥ Ovemrmide 0

Platforms

Specific Filter

Configuration

Add to Overrides

P Platform Filters

3. Optional: If you want this override to apply only to a specific GPU platform, choose it from the
Specific filter drop-down list.

W (Owverrides

¥ Owvemde 0
Platforms

Specific Filter
PowerVR 5GX 54[0-9]

Configuration)
Adreno Y(ThMY) 2[0-9][0-9]

Add to Overrides ! Adreno (TM) 320
Adreno (TMW) 330
P Platform Filters adreno \(TMy 470-9110-9]
NVIDIA Tegra
Intel(R) HD Graphics
AMali-4

AMali-To
AMali-T7

You can add GPU platforms to this list under Platform filters (see Add a platform filter below).

4. In the Configuration drop-down menu, select the kind of setting you want to override (Editor,
Texture, Rendering or Physics).

344 /1211

¥ (Overrides

¥ Ovemde 0

Platforms

Specific Filter

Configuration
MNone
Editor Settings
P Platform Filters Texture Settings
Rendering Settings
Configuration Physics Settings

Add to Overrides

5. Set the options you want to override.

Add a platform filter

You can choose items in the Platform Filters list as a specific platform filter when you set an override

(see above).

¥ (Owverrides

¥ Owvemde 0
Platforms

Specific Filter
PowerVR SGX 54[0-9]
Adreno YWThY) 2[0-9][0-9]
Add to Overrides ! Adreno (TM) 320
Adreno (TM) 330
P Platform Filters adreno \(TMY) 4[0-9][0-9]
MNVIDIA Tegra
Intel(R) HD Graphics
AMalit-4

Configuration

AMal\-T7

1. With the GameSettings asset selected, in the Property Grid, expand Platform Filters.

The Property Grid displays a list of platform filters you can use.

345 /1211

¥ (Overrides

W Override 0
Platforms
Specific Filter
Configuration
Add to Overrides
¥ Platform Filters
[tem O PowerVR SGX 54[0-9]
= Adreno YThY) 2[0-9][0-9]
[tem 2 Adreno (Th) 320
[tem 3 Adreno (Th) 330
[tem 4 Adreno YThY) 4[0-9][0-9]
ltem 5 MNVIDIA Tegra

[tem & Intel(R) HD Graphics

A Mali\-4
AMal)\-T6
AMal\-T7

Add to Platform Fi...

2. At the bottom of the list, click Add to Platform Filters.
Game Studio adds a new empty item.

3. In the item field, type the GPU filter you want to add.

346 /1211

¥ Platform Filters

[tem O PowerVR 5GX 54[0-9]
= Adreno \(ThY) 2[0-9][0-9]
[tem Adreno [TM) 320

[tem 3 Adreno (TM) 330

[tem 4 Adreno \(ThY) 4[0-9][0-9]
ltem 5 MVIDIA Tegra

[tem 6 Intel(R) HD Graphics

ltem 7 AMaln-4

ltem & AMal-Th

[tem 9 AMaln-T7

ltem 10 MyGPU

Add to Platform Fi...

After you add a platform filter, you can select it under Override > Specific filter.

¥ Ovemrmde 0
Platforms

Specific Filter
PowerVR 5GX 54[0-9]
Adreno YWTh) 2[0-9][0-9]
Add to Overrides < Adreno (TM) 320
Adreno (Th) 330
¥ Platform Filters pgreno vy 410-9110-9]
MNVIDIA Tegra
Intel(R) HD Graphics
ltem 1 AMalit-4
AMali-To
AMali-T7
MyGPU

Configuration

[tem O

[tem 4 Adreno YThY) 4[0-9][0-9]

ltem 5 MNVIDIA Tegra

[N I [T L T] -

(0 NOTE

If the new filter isn't listed, remove the override and re-add it.

Splash screen

347 /1211

The splash screen is displayed when your game starts. The default is the Stride splash screen.

(0 NOTE

The splash screen is only displayed when the game is built in release mode.

¥ Splash screen

Texture KenkoDefaultSplashScreen

N Hw=Fio

#FFO00000

Property Description

Texture The image (eg company logo) displayed as the splash screen. By default, this is
StrideDefaultSplashScreen.

Color The color the splash screen fades in on top of. By default, this is black (#FF000000).

For more information, see Splash screen.

See also

e Assets

348 /1211

Splash screen

The splash screen is the image (usually a logo) displayed when your game starts. It fades in over the
color you specify, then fades out.

(i) NOTE

The splash screen is only displayed when the game is built in release mode.

The default splash screen is the Stride logo.

Foweredd by

s Xc NK O

You can only specify one splash screen in Game Settings. If you want to add more, you need to
implement them manually.

Edit the splash screen

The splash screen settings are part of the Game settings asset.

1. In the solution explorer (the bottom-left pane by default), select the Assets folder.

349 /1211

Solution explorer

2=k &

¥ Solution 'FirstPersonShooter

] E E
S D P

b E FirstPersonShooter

P = Assets
4 E FirstPersonShooter.Game
'a' FirstPersonShooter.Android
2 FirstPersonShooterWindows
» BE Dependencies

P External Packages

2. In the asset view (the bottom pane by default), select the GameSettings asset.

Asset view

+ Add asset

Effect Library

EffectCompilelLog
Effect Library

Crosshair256
Texture

¥ Splash screen

XenkoDefaultSplashScreen

LK 4

Texture

EFFOO0000

Splash screen properties

Property Description

GameSethngs
Game Settings Scene

Skybox

a

MainScene Skybox

Skybox

Texture The image (eg company logo) displayed as the splash screen. By default, this is
StrideDefaultSplashScreen.
Color The color the splash screen fades in on top of. By default, this is black (#FF000000).

350 /1211

@ TIP

Additionally, you might want to disable streaming on the properties of the splash screen texture

itself. This makes sure the texture is always loaded and displayed at the highest quality. For more
information, see Textures > Streaming.

See also

e Assets
e Textures

351 /1211

World units

In Stride, one unit is one meter. This is used by the physics and rendering engines.

Game Studio displays units as a grid.

See also
e Physics

352 /1211

Graphics

This section explains how to use Game Studio and the Stride API for graphics and rendering.

Shaders

Shaders are authored in the Stride's shading language, an extension of HLSL. They provide true

composition of modular shaders through the use of inheritance, shader mixins, and automatic weaving

of shader in-out attributes.

Effects

Effects in Stride use C#-like syntax to combine shaders. They provide conditional composition of shaders

to generate effect permutations.

Target everything

Stride shaders are converted automatically to the target graphics platform, either plain HLSL for
Direct3D, GLsL for OpenGL, or sPIR-V for Vulkan platforms.

Advanced graphics

The graphics module provides a set of methods to display the game. Although Stride is available on
multiple platforms, the whole system behaves like Direct3D 11 from the user perspective. You need a
basic knowledge of the rendering pipeline to use it.

In this section

e Cameras
e Materials
e Textures
e Lights and shadows

e Post effects

e Graphics compositor
e Effects and shaders

e Low-level API
e Rendering_pipeline

e Sprite fonts
e Voxel Cone Tracing Gl

e Graphics API

353 /1211

Cameras

Cameras capture your scene and display it to the player. Without cameras, you can't see anything in
your game.

You can have an unlimited number of cameras in your scene.

Create a camera in Game Studio

In the Scene Editor, right-click and select Camera, then choose the kind of camera you want to create
(perspective or orthographic).

Create
Empty entity
Models

Perspective camera
Orthographic camera
Particle System

Audio

Mavigation

Action

Duplicate selected entities

Create prefab from selection

&% Cut
W Copy
Delete

Game Studio creates an entity with a camera component attached.

Alternatively, select the entity you want to be a camera, and in the Property Grid, click Add component
and select Camera.

354 /1211

Property grid

0 Mo selection

Mame Entity

Add component

ﬁ' AnimationController

! Animations

W3 Audio Emitter

"E.' Audio Listener

[=} Background

{@'} BasicCameraController
W« Camera

:-ﬂ Character

R Light

Eﬁ] Light Probe

£ Light Shaft

Eff] Light Shaft Bounding Volume
< Model

<& Model Node Link

7] Navigation

Eff] Mawvigation bounding box
6 Particle System

Camera properties
¥ v W Camera
Projection Perspective
Field Of View

Mear Clip Plane 7

Far Clip Plane 1000

Custom Aspect Ratio

Slot GraphicsCompositor = Main

Property Description

Projection The type of projection used by the camera (perspective or orthographic)
Field of view The vertical field of view used for perspective projection

(degrees)

355/1211

Property

Orthographic
size

Near clip plane
Far clip plane

Custom aspect
ratio

Custom aspect
ratio

Slot

Description

The height of the orthographic projection (the orthographic width is automatically
calculated based on the target ratio). This has the effect of zooming in and out

The nearest point the camera can see
The furthest point the camera can see

Use a custom aspect ratio you specify. Otherwise, automatically adjust the aspect
ratio to the render target ratio

The aspect ratio for the camera (when the Custom aspect ratio option is
selected)

The camera slot used in the graphics compositor. For more information, see
Camera slots

Perspective and orthographic cameras

Perspective cameras provide a "real-world" perspective of the objects in your scene. In this view,
objects close to the camera appear larger, and lines of identical lengths appear different due to
foreshortening, as in reality. Perspective cameras are most used for games that require a realistic

perspective, such as third-person and first-person games.

With orthographic cameras, objects are always the same size, no matter their distance from the camera.
Parallel lines never touch, and there's no vanishing point. Orthographic cameras are most used for
games with isometric perspectives, such as some strategy, 4X, or role-playing games.

356 /1211

Perspective Orthographic

Perspective Orthographic

Field of view (perspective mode only)

When the camera is set to perspective mode, the field of view changes the camera frustum, and has
the effect of zooming in and out of the scene. At high settings (90 and above), the field of view creates

stretched "fish-eye lens" views. The default setting is 45.

357 /1211

Field of view: 45 (default) Field of view: 90

Orthographic size (orthographic mode only)

When the camera is set to orthographic mode, the orthographic size has the effect of zooming in and
out.

Orthographic size: 10 (default) Orthographic size: 50

Near and far planes

The near and far planes determine where the camera's view begins and ends.

e The near plane is the closest point the camera can see. The default setting is 0.1. Objects before this
point aren't drawn.

e The far plane, also known as the draw distance, is the furthest point the camera can see. Objects
beyond this point aren't drawn. The default setting is 1000.

Stride renders the area between the near and far planes.

358 /1211

render area

near plane far plane
camera
position
Near plane 0.1 (default); far plane: 50 Near plane: 7; far plane 1000 (default)

With a low far plane value, objects in the near With a high near plane value, objects close to
distance aren't drawn. the camera aren't drawn.

Camera scripts

You can control cameras using camera scripts. Stride includes three camera script templates: an FPS
camera script, a side-scrolling camera script, and a basic camera controller script.

Add a camera script in Game Studio

1. In the Asset View (in the bottom by default), click Add asset > Scripts and choose the camera

script you want to add.

359 /1211

Asset view

+ Add asset

Camera: basic controller

. Moves and rotates an entity using keyboard, mouse or touch input
Amimation .

Audio
Camera: FPS

Fonts Sy :
A basic first-person shooter camera script

Matenals

Camera: side-scrolling
A basic side-scrolling camera script

Debug physics shapes
Shows and hides physics debug shapes at runtime with a keyboard
chorteut

Textures Event broadcaster
0] Broadcasts an event when a key is pressed, or at regular intervals

2. In the Scene Editor, select the entity with the camera you want to control.

3. In the Property Grid (on the right by default), click Add component and select the camera script
you want to use.

360 /1211

Property grid

0 Entity Camera

Mame

Add component

ﬁ' AnimationController

! Animations

W3 Audio Emitter

"E.' Audio Listener

[=} Background

']@'} BasicCameraController
| Character

9 Light

) Light Probe

] Light Shaft

Eff] Light Shaft Bounding Velume
& Model

< Model Node Link

Eﬁ] Mavigation

Eff] Mawvigation bounding box
6 Particle System

ﬁ' PlayerController

46} Dizvarlnrt

Game Studio adds the camera script to the entity.

For more information about how to create and use scripts, see Scripts.

Camera slots

Camera slots link the graphics compositor to the cameras in your scene. You bind each camera to a slot,

then define which slot the compositor uses. This means you can change the root scene or graphics
compositor without having to assign new cameras each time.

For more information, see Camera slots.

Render a camera to a texture

You can send a camera's view to a texture and use the texture on objects in your scene. For example, you
can use this to display part of your scene on a TV screen in the same scene, such as security camera
footage. For more information, see Render textures.

See also

361 /1211

e Camera slots
e Animate a camera

e Graphics compositor

362 /1211

Camera slots

Camera slots link the graphics compositor to the cameras in your scene. You bind each camera to a slot,

then define which slot the compositor uses. This means you can change the root scene or graphics
compositor without having to assign new cameras each time.

You don't have to create a different camera slot for each camera. Instead, you can just change which
cameras use each slot. The best practice is to disable the camera components on cameras you don't
need.

(0 NOTE

Each camera slot must have a camera assigned to it. If you have an unused camera slot, delete it.

You can't assign a single camera to more than one slot. If you need to do this, duplicate the camera
entity and assign it to a different slot.

If multiple enabled cameras in your scene use the same camera slot, the result is undefined.

Create a camera slot

1. In the Asset View (in the bottom pane by default), double-click the Graphics Compositor asset.

a

GameSettings Graphics Ground Ground Matenal MainScene
Game Settings Compositor® Procedural M... Material Scene
Graphics Com...

The graphics compositor editor opens.

363 /1211

sioom

/ Light Streak

Entry Points
e At ForwardRenderer

PostProcessingEffects
Editor’ Antialiasing @

* Lens Flare

¥ Color Transfo

For more information about the graphics compositor, see the Graphics compositor page.

2. In the graphics compositor editor, on the left, under Camera slots, click B (Add).

File Edit Project View
S E-" =B

MainScene

Render Stages:

Opaque

Transparent
ShadowMapCaster
ShadowMapCasterParaboloid
ShadowMapCasterCubeMap
GBuffer

Render Features:

MeshRenderFeature

SpnteRenderfeature

BackgroundRenderFeature
UlRenderFeature

ParticleEmitterRenderFeature

Camenra slots:

Game Studio adds a new camera slot to the list:

364 /1211

Render Stages:

Opaque
Transparent

ShadowMapCaster

Render Features:

MeshRenderFeature

SpriteRenderFeature

BackgroundRenderFeature

UIRenderFeature

ParticleEmitterRenderfFeature

Camera slots:

Cameraslot

@ TIP

To name a camera slot, double-click it in the list and type a new name.

Bind a camera to a camera slot

1. In your scene, select the entity with the camera component you want to bind.

2. In the Property Grid (on the right by default), in the Camera component properties, under Slot,
select the slot you want to bind the camera to.

(0 NOTE
The drop-down menu lists camera slots from the graphics compositor selected in the game
settings.

365 /1211

v v WHCamera

Mame

Projection Perspective
Field Of View

Mear Clip Plane 0.1

Far Clip Plane 1000

Custom Aspect Ratio

Slot MNone E
MNone

GraphicsCompeositor = Main

GraphicsCompeositor > TextureCamera

The graphics compositor matches enabled cameras to their appropriate slots each frame.

Create a camera and assign a camera slot from a script

Use:

var camera = new CameraComponent();
camera.Slot = SceneSystem.GraphicsCompositor.Cameras[0].ToSlotId();

To change the camera at runtime, toggle the Enabled property.

(0 NOTE

Make sure you:
e always have at least one enabled camera

e don't have multiple cameras enabled and assigned to the same slot at the same time

See also

e Cameras
e Graphics compositor

e Game Studio — Game settings

e Game Studio — Manage scenes

366 /1211

Animate a camera with a model file

Like other entities, you can animate cameras using animations imported from 3D model files such as
.3ds, .fbx, and .obj.

(0 NOTE

To animate a camera using a model file, you first need to bake the animation using your modeling
tool (eg Maya, 3ds Max or Blender). Stride doesn't support cameras animated using target cameras.

If the camera moves independently, the simplest method is to export the camera animation as a
separate file, enable the root motion option on the animation, then add the camera, animation, and
animation script to the same entity. If the animations include FOV or near or far plane animations, the
Stride camera updates accordingly. With this method, you don't need a model or a skeleton.

If you want the camera to move in tandem with another animation — for example, if the camera is held

by a cameraman character with its own model, skeleton and animation — use a model node link
component to link the camera entity to the cameraman's movements.

Animate a camera independently
To do this, you need the following assets in your project:
e a camera entity, the camera to be animated

e an animation, to animate the camera (exported separately in your modeling tool)
e an animation script, to play the animation

1. In the Asset View, select the animation asset you want to use to animate the camera.

+ Add asset

e

S

GameSettings Graphics MainScene Ground
Game settings Compositor Scene Procedural m...
Graphics com...

367 /1211

(0 NOTE

For instructions about how import animations, see Import animations.

2. In the Property Grid, enable Root motion.

Property grid

0 Animation MyCamera

Source C\Users...Downloads' My Camera.fbx
Clip duration Clip duration

Pivot Position X a

Scale Import 1

Repeat made hint Loop

Type Animation Clip

Skeleton (Mo asset selected)

Root Motion v

Preview Model (Mo as=et selected)

When root motion is enabled, Stride applies the root node animation to the TransformComponent
of the entity you add the animation to, instead of applying it to the skeleton.

(0 NOTE

If there is no skeleton specified in Skeleton, Stride always applies the animation to Transform
Component, even if root motion is disabled.

3. In the Scene Editor, select the entity that contains the camera you want to animate.

(i NOTE

For instructions about how add cameras, see Cameras.

4. In the Property Grid, click Add component and select Animations.

368 /1211

Property grid

0 Entity Camera

I Anmimations

W3 Audic emitter

12.' Audio listener

=} Background

@' BasicCameraController

Game Studio adds an animation component to the entity.
Property grid

Q Entity Camera

Mame

Add component

w [yl Transform
Fosition
Rotation
Scale

w HB Animations

Animations Dictionary - 0 items

5. Next to Animations, click Bl (Add) and type a name.

v HB Animations

Animations Dicticnary - 0 items

Kf_l-':,r name: Arimation 1|

Game Studio adds an animation to the list.

369 /1211

w HB Animations

¥ Animations Dictionary - 1 item

Animation 1 (Mo asset selected)

LI 4

6. Next to the animation you added, click (Select an asset).
The Select an asset window opens.
x Select an asset
¥ Solution ‘camera amimation 3° + Add asset

v B camera animation 3*

B Assets*

¥ B camera_animation_2.Game
B Properties

camera_animation_3.Windows

P EZ Dependencies

b External packages

7. Select the animation you want to use to animate the camera and click OK.

8. Click Add component and select the animation script you want to use to animate the camera.

370 /1211

Property grid

0 Entity MyCamera

Mame MyCamera

Add component

) Audio emitter

'-E-' Audio listener

[=} Background

{@} BasicCameraController
W Camera

:-ﬂ Character

9" Light

Ff Light probe

Ly Light shaft

Ff] Light shaft bounding volume
& Model

7" Model node link

'I'-"':} MyAnimaticnScript

Game Studio adds the script to the entity as a component.

(i) NOTE

For instructions about how to add animation scripts, see Animation scripts.

9. Under the script component, next to Animations, click Bl (Add).

v @' AnimationStart

Amimations List - O itemi(s)

Priority 0

10. Next to Clip, click (Select an asset).

The Select an asset window opens.

Add a new item to the list

371 /1211

o o
. Select an asset

— = T 1 e ot :
Solution 'camera amimation 3 + Add asset

a - -
¥ B camera animation 3*
L
B Assets®
. _
v E camera_amimation_3.Game
] Properties
@ camera_animation_3.Windows
- .
F E= Dependencies

b External packages

11. Select the animation asset you want to use to animate the camera and click OK.

At runtime, the camera uses the animation. If the animation includes FOV or near or far plane
animations, the Stride camera updates accordingly.

Attach the camera to a node on another model

To move a camera in tandem with another model, create a separate entity for the camera, then use a
model node link component to link the entity to the correct node.

To do this, you need the following assets in your project:

e a camera entity, the camera you want to animate
e a model, to attach the camera to

e a skeleton that matches the model

e an animation, to animate the model

e an animation script, to play the animation

372 /1211

(0 NOTE

FOV and near or far plane animations are ignored if you use this method.

1. In the Asset View, select the model you want to link the camera to. Next to Skeleton, make sure a
skeleton is specified that matches the model.

2. Make sure the entity you want to attach the camera to has the model, animation clip, and animation
script components needed to animate it.

(0 NOTE

For instructions about how to add these, see Animation.

3. With the camera entity selected, in the Property Grid, click Add component and select Model
node link.

373 /1211

Property grid

O © Entity SwordModel

B

Mame SwordModel

Group Groupd

Add component

! Animations
o) Audio Emitter

'-E-' Audio Listener
[= Background
{E','} BasicCameraController

W Camera
:-ﬂ Character

™ Child scene

& Model Node Link
Eff] Mavigation

6 Particle System
#¥| Rigidbody

2 Skybox

@' Spawnlrail

W Spnte

b ¢ Sprite Studio

A4 Snrita Shidin Mada link

(i) NOTE

The TransformComponent applies an offset to the model node position. If you don't want to
add an offset, make sure the TransformComponent is set to 0,0, e.

Game Studio adds a model link component to the entity.

¥ < Model node link

Mode Name

Target (Parent if not set)

4. Next to Target, click B"R and select the entity that has the model you want to link the camera to.

374 /1211

x Select an entity

Select an entity that has a Model compenent.

» I Ground ModelComponent (Index: 1)
v - ShootTheCubes
@ BoxE
<% BoxF
@ BoxA
< BoxE S
& BoxE L
& BoxF S
< BoxF L
& BoxA S
& BoxA L
hd ;ﬂ PlayerCharacter
* @i Camera

v @ Hands
@Gun

@ MagazineModel

Alternatively, leave the Target field blank. In the Entity Tree, drag the camera entity you want to
animate to the entity that contains the model. Stride links the entity to the model on the parent
entity.

-+

Main5cene

“§- Directional light

':'i:' Skybox

@ Ground

@ Sphere

o L‘"f] Camera holder
W Camera
5. In Node name, select the node you want to link the camera to.

¥ <~ Model node link

Mode Mame

Target (Parent if not set) il s s
ExportCamera

375 /1211

(0 NOTE

The entity you link to must have a model with a skeleton, even if the model isn't visible at
runtime.

At runtime, the camera uses the animation.

See also

e Cameras
Model node links

Animation

Animation scripts

376 /1211

Materials

Materials define the appearance of 3D model surfaces and how they react to light. Without materials,
models are simply shapes, blank canvases.

Materials can affect both the geometry of a model (vertex shading) and its colors (pixel shading).

You can use multiple material layers to build more complex materials.

In practice, materials generate partial definitions of shaders integrated as part of the shading of models
(lights and shadows).

In this section

e Material maps
e Material attributes

o Geometry attributes
o Shading_attributes
o Misc attributes
m Clear-coating_shading

e Material layers

e Material slots
e Materials for developers

377 /1211

Material maps

Material maps calculate how materials are rendered. They can use two kinds of values: color (RGB)
values or scalar (single float) values.

You can use material maps for several purposes, including gloss maps, diffuse maps, or blend maps (for
combining material layers)

Material maps can fetch values using one of several providers:

e Vertex stream: a value taken from mesh attributes

e Binary operator: a combination of any other two providers

¢ Float4 / Float: a constant value

e Color: a hex color value

e Shader: a value provided by a ComputeColor shader. This lets you use procedural values
e Texture: a value sampled from a texture

To choose the provider, click bl (Replace) and select it from the drop-down menu:

MNone

Binary Operator
Float
Texture

Vertex stream

This provider takes a value from an attribute of the mesh of the model you apply the material to.

It has two modes: Color Vertex Stream and Custom Vertex Stream. To switch between them, with
Vertex Stream selected as the provider, click B (Replace) and choose the mode you want to use.

378 /1211

¥ Layers

¥ mm|ayer() (Mo asset selected)

K 4

¥ Elend Map Color Vertex Stream

Index Color Vertex Stream

Customn Vertex Stream
Channel R
P Overrides Layer Chvermmides

Add to Layers

Color vertex stream

Takes a color value from the mesh.

Property Description
Index The index in the named stream
Channel The channel (RGBA) to sample from the stream

Custom vertex stream

Takes a value from the mesh channel you specify.

Property Description
Name Semantic name of the channel to read data from
Channel The channel (RGBA) to sample from the stream

Binary operator

Perform a binary operation from two color/scalar value providers. You can nest as many material maps
inside binary operators as you need (including further binary operators).

To choose how the operation works, click (Replace) and select from the drop-down menu. The
operations are similar to options when blending layers in Photoshop.

379/1211

¥ layers

v mm|ayer) Maternals, wood_glo:

K 4

¥ Blend Map Add
Add
Average
Right Color
ColorBumn
ColorDodge
Add to Layers : Darken

Left

P Overrides

Desaturate
Blend Map Difference
The blend map specifying ho 1 Divide
layer. Exclusion
HardLight
Hard Mix
Hue
lluminate
In
Lighten
LinearBurn
LinearDodge
Maszk
Multiphy
Out
Ower

Result = LeftColor <operator> RightColor

Add

metal_dif

P Right #FFD54A31

Property Description

Operator A binary operator (eg add, multiply, etc)
Left The left color/scalar used in the operation
Right The right color/scalar used in the operation

Float4 / Float

Provided directly as a constant value over the whole material.

380 /1211

In the case of RGB values, you control the RGBA value with the X, Y, Z and W values (Float4).

¥ Shading

¥ Diffuse ~ Diffuse Map

Diffuse Map X 0 B8 0

Diffuse Model ¥ Lambert
In the case of scalar values, you control the value with a slider (Float).

¥ layers

v mm|ayer() Materials/wood_non

ve

Blend Map

Color

A value provided from a color hex value. This is only available for material maps that use RGB values.

¥ Shading

¥ Diffuse ¥ Diffuse Map
P Diffuse Map B zrrrreioe
Diffuse Model + Color picker | Palette

Specular _ .
Specular Model

Emissive

¥ Misc

Occlusion

Transparency

P Overrides

Cull Mode

¥ Layers

Shader

A value provided by a ComputeColor shader. This lets you use procedural values.

For an example of a ComputeColor shader, see the Particle materials tutorial.

Texture

381 /1211

Sample the color/scalar from a texture.

For example, the images below demonstrate how the texture changes the way Stride blends materials.

|
b=
.ﬂ'
-
Original material Blended material Blend map Result
Original material Blended material Blend map Result

metall_dif

Texcoord Index TexcoordQ
Filtering Linear

Address Mode U Wrap

Address Mode V Wrap

Scale
Offzet

Key

Property Description

Texture A reference to a texture

382 /1211

Property Description

Channel The channel (R, G, B, A) used to extract the scalar value. Only valid for scalar textures
Texcoord The texture coordinates (u,v) to use from the mesh with this texture

Index

Filtering The sampling method (eg Linear, Point, Anisotropic, etc)

Address Mode
u/v Defines how (u,v) coordinates are addressed

Wrap: Tiles (u,v) at integer junctions. For example, if u ranges from 0.0 to 3.0, the
texture repeats three times on the U axis

Mirror: Flips (u,v) at integer junctions. For example, if u ranges from 0.0 to 1.0, the
texture is displayed as expected; but from 1.0 to 2.0, the texture is mirrored

Clamp: Clamps (u,v) to the range (0.0, 1.0)

Scale A scale applied to (u,v)
Offset An offset applied to (u,v)
See also

Material attributes

Material layers

Material slots

Materials for developers

383 /1211

Material attributes

Material attributes define the core characteristics of a material, such as its diffuse color, diffuse shading
model, and so on. Attributes are organized into geometry, shading, and misc.

¥ Geometry
Tessellation
Displacement
Surface

MicroSurface

¥ Shading

Diffuse

Diffuse Model
Specular
Specular Model

Emissive

¥ Misc
Occlusion
Transparency
P Overrides Layer Cvermides

Cull Mode MNone

There are two types of attribute:

e attributes used as input values for a shading model (for example, the Diffuse attribute provides only
color used by the diffuse shading model)

e attributes that can change the shading model (for example, diffuse shading models, such as the
lambert model, interprets the diffuse attribute color)

Attributes contribute to a layer of a material. If a material is directly used as a model material, all its root
attributes are considered part of the first layer.

You can also write custom shaders to use in material attributes.

In this section

e Geometry attributes

384 /1211

e Shading_ attributes

e Misc attributes

o Clear coat shading

See also

e Material maps
e Material layers

e Material slots
e Materials for developers

e Custom shaders

385/1211

Geometry attributes

The material geometry attributes define the shape of a material.

¥ Geometry

Tessellation
Displacement
W Surface Normal Map

P Normal Map stoned_nml

Scale & Bias
Mormal xy
¥ MicroSurface Glossiness Map

P Glossiness Map stoned _gls

Imvert

Tessellation

Real-time tessellation uses a HW feature of the GPU to massively subdivide triangles. This increases the
realism and potential of deformations of the surface geometry.

You can choose none, flat tessellation, or point normal tessellation.

No tessellation Flat tessellation Point normal tessellation

386 /1211

Flat tessellation

This option tessellates the mesh uniformly.

* Tessellation Flat Tessellation

Trangle Size

In the images below, notice how the flat tessellation adds extra triangles, but doesn't take the curve into

account:
No tessellation Flat tessellation
‘A \
¥ <y -) \:“ :
-rf...::l .‘."i. FEI-‘
L S ARy .bl_‘:'l'.

, - deral)) G‘%i
i e e AN
oA RIS VA DS 14

Property Description

Triangle size The size of a tessellated triangle in screen-space units

Adjacent edges average Adjust the triangle size values from the average of adjacent edges values

Point normal tessellation

This option tessellates the mesh using the curvature provided by the mesh normals.

¥ Tessellation Point Mormal Tessellation

Trangle Size

Adjacent Edges Average

The images below show how point normal tessellation adds extra triangles while taking the curvature of
the mesh into account:

387 /1211

No tessellation Point normal tessellation

b,

Property Description

Triangle size The size of a tessellated triangle in screen-space units

Adjacent edge Adjust the triangle size and normal curvature values from the average of
average adjacent edge values

Displacement

Under the Displacement properties, you can specify displacement map. This displaces the geometry of

the mesh.

¥ Displacement Displacement Map

P Displacement Map noise

F Intensity

Scale & Bias

Depending on the stage at which the displacement is applied, the results can be very different:

388 /1211

Displacement with vertex shader Tessellation with displacement

Property Description

Displacement The displacement texture as a material color provider

Map

Intensity The amount of displacement

Scale & Bias When enabled, the value coming from the texture is considered a positive value

ranging from 6.0 to 1.0 and the shader applies a scale to get the range -1.0to 1.0

Shader Stage Specify which shader stage the displacement map should be applied to: vertex
shader or domain shader (used with tessellation)

Surface

¥ Surface Normal Map

P Normal Map wire

Scale & Bias

Mormal xy

Under the Surface properties, you can define a Normal maps to define macro surface normals. The
normal map provides per-pixel normal perturbation of the normal of the mesh. Normal maps create the

389 /1211

appearance of bumps and indents in the mesh:

Flat Using a normal map

Property Description
Normal map The normal map color provider

Scale and Interpret values from the texture as positive values ranging from 0.0 to 1.0. The shader
offset applies a scale to get the range -1.0to 1.e.

Reconstruct If there's no Z component in the texture, reconstruct it from the X and Y components.

Z This assumes that X2 + Y2 + Z? = 1 and that Z is always positive, so no normal vector
can point to the back side of the surface. We recommend you enable this option, as
Stride might remove the Z component when you compress normal maps.

For more information about normal maps, see the normal maps page.

Micro surface

Under the Micro surface setting, you can provide a gloss map to provide per-pixel information for
gloss.

390 /1211

¥ MicroSurface Glossiness Map

P Glossiness Map metalll_gls

Imvert

If you select Float:

e avalue of 1.0 means the surface is highly glossy (the coarse normal isn't perturbed)
e avalue of 8.8 means the surface is very rough (the coarse normal is highly perturbed in several
directions)

The screenshots below show different levels of gloss on a material:

e Diffuse = #848484, Lambert
e Specular Metalness = 1.0, GGX

Gloss = 0.0 0.25 0.5 0.8 1.0

Property Description

Gloss The gloss map color provider
map
Invert Inverts the gloss value (eg a value of 1.0 produces zero gloss instead of maximum). This

effectively turns the gloss value into a roughness value, as used in other game engines

If you have local reflections enabled, the scene is reflected in materials with a gloss map value higher
than the threshold you specify in the local reflections properties. For more information, see Local
reflections.

See also

e Material maps
e Material attributes
o Shading_attributes

391 /1211

o Misc attributes
o (lear-coat shading

Clear-coating_shading

Material layers
Material slots

Materials for developers

Custom shaders

392 /1211

Shading attributes

The material shading attributes define the color characteristics of the material and how it reacts to light.

¥ Shading

¥ Diffuse Diffuse Map
b Diffuse Map staned_dif

Diffuse Model Lambert
W Specular Metalness Map
P Metalness Map
¥ Specular Model Microfacet
Fresnel Schlick
Visibility Schlick-GGX
MNormal Distrnbution GGX

Emissive

(0 NOTE

To display a material, you need to select at least one shading model (diffuse, specular or emissive
model) in the model attributes.

Diffuse

The diffuse is the basic color of the material. A pure diffuse material is completely non-reflective and
"flat" in appearance.

393 /1211

The final diffuse contribution is calculated like this:

¢ the diffuse defines the color used by the diffuse model
¢ the diffuse model defines which shading model is used for rendering the diffuse component (see
below)

Currently, the diffuse attribute supports only a diffuse map.

¥ Diffuse Diffuse Map
b Diffuse Map #FFB48484

Diffuse Model Lambert

Diffuse model

The diffuse model determines how the diffuse material reacts to light. You can use the Lambert or cel-
shading.

Lambert model

Under the Lambert model, light is reflected equally in all directions with an intensity following a cosine
angular distribution (angle between the normal and the light):
394 /1211

(0 NOTE

A pure Lambertian material doesn't exist in reality. A material always has a little specular reflection.

This effect is more visible at grazing angles (a mostly diffuse surface becomes shiny at grazing
angle).

Property Description

Diffuse map The diffuse map color provider

Diffuse model The shading model for diffuse lighting
Specular

A specular is a point of light reflected in a material.

395/1211

The specular color can be defined using a metalness map (which uses the diffuse color as a base color),
or a specular map (the specular color is defined separately from the diffuse color).

Metalness map

The metalness map simplifies parametrization between the diffuse and specular color.

By taking into into account the fact that almost all materials always have some "metalness"/reflectance in
them, using the metalness map provides realistic materials with minimal parametrization.

The final specular color is calculated by mixing a fixed low-reflection color and the diffuse color.

e With the metalness color at 0.9, the effective specular color is equal to 0.2, while the diffuse color
is unchanged. The material is not metal but exhibits some reflectance and is sensitive to the Fresnel
effect.

e With the metalness color at 1.9, the effective specular color is equal to the diffuse color, and the
diffuse color is set to @. The material is considered a pure metal.

W Specular Metalness Map

P Metalness Map

The screenshots below show the result of the metalness factor on a material with the following
attributes:

e Gloss =0.8
e Diffuse = #848484, Lambert
e Specular GGX

396 /1211

Pure diffuse (no metalness) Metalness = 0.0 Metalness = 1.0

- The diffuse color is dominant - The diffuse color is dominant - The diffuse color isn't visible
- The specular color isn't visible - The specular color is visible - The specular color is visible
(0.02)

Specular map
The specular map provides more control over the actual specular color, but requires you to modify the

diffuse color accordingly.

Unlike the metalness workflow, this lets you have a different specular color from the diffuse color even in
low-reflection scenarios, allowing for materials with special behavior.

(0 NOTE

You can combine metalness and specular workflows in the same material by adding separate layers.

Specular model

A pure specular surface produces a highlight of a light in a mirror direction. In practice, a broad range of
specular materials, not entirely smooth, can reflect light in multiple directions. Stride simulates this using
the microfacet model, also known as Cook-Torrance (academic paper).

¥ Specular Model Microfacet

Fresnel Schiick

Visibility Schlick-GGX

Mormal Distnbution GX

The microfacet is defined by the following formula, where Rs is the resulting specular reflectance:
397 /1211

http://www.cs.columbia.edu/%7Ebelhumeur/courses/appearance/cook-torrance.pdf
http://www.cs.columbia.edu/%7Ebelhumeur/courses/appearance/cook-torrance.pdf
http://www.cs.columbia.edu/%7Ebelhumeur/courses/appearance/cook-torrance.pdf

B (F XD X G)
T m(n-D(n-v)

Rs

Property Description
Fresnel Defines the amount of light that is reflected and transmitted. The models supported
are:

Schlick: An approximation of the Fresnel effect (default)
Thin glass: A simulation of light passing through glass
None: The material as-is with no Fresnel effect

Visibility Defines the visibility between of the microfacets between (0, 1). Also known as the
geometry attenuation - Shadowing and Masking - in the original Cook-Torrance.
Stride simplifies the formula to use the visibility term instead:

G

V= (n-D(n-v)
and
F xDXV
Rs:()
T

Schlick GGX (default)

Implicit: The microsurface is always visible and generates no shadowing or masking
Cook-Torrance

Kelemen

Neumann

Smith-Beckmann

Smith-GGX correlated

Schlick-Beckmann

Normal Defines how the normal is distributed. The gloss attribute is used by this part of the
Distribution function to modify the distribution of the normal.
GGX (default)
Beckmann
Blinn-Phong
Emissive

An emissive material is a surface that emits light.

398 /1211

P Emis

P Intensity

Use Alpha

With HDR, a Bloom and a Bright filter post-processing effects, we can see the influence of an emissive
material:

Property Description

Emissive The emissive map color provider
map
Intensity The factor to multiply by the color of the color provider

Use alpha Use the alpha of the emissive map as the main alpha color of the material (instead of
using the alpha of the diffuse map by default)

See also

399 /1211

Geometry attributes
Misc attributes

Material maps
Material layers

Materials for developers
Custom shaders

400/ 1211

Misc attributes

¥ Misc

F Occlusion Occlusion Map

Transparency

P Overrides Layer Overmides

Occlusion

Under the Occlusion properties, you can set an occlusion map. This is the default occlusion attribute.
The occlusion map use geometry occlusion information baked into a texture to modulate the ambient
and direct lighting.

¥ Occlusion Occlusion Map

F Occlusion Map robot/robot_ac

P Direct Lighting Influence

P Cavity Map CommonTexture/bolt_cav

P Diffuse Cavity

Specular Cavity

The screenshots below demonstrate the use of occlusion maps and cavity maps:

Occlusion Map Cavity Map Final Composition

401 /1211

Occlusion Map Cavity Map Final Composition

Coarse occlusion of the Fine-grained occlusion of Result

ambient light direct light

Property Description

Occlusion The occlusion map scalar provider that determines how much ambient light is

Map accessible on the material. A value of 1.0 means that the material is fully lit by
ambient lighting. A value of 0.0 means that the material is not lighted by the ambient
lighting

Direct Applies to Occlusion Map and influences direct lighting

Lighting

Influence

Cavity Map The cavity map scalar provider is multiplied with direct lighting. It lets you define very
fine grained cavity where direct light can't enter. The cavity map is usually defined for
thin concave cavity

Diffuse Cavity A factor for diffuse lighting influence of the cavity map. A value of 1.0 means the
cavity map fully influences the diffuse lighting

Specular A factor for specular lighting influence of the cavity map. A value of 1.0 means the
Cavity cavity map fully influences the specular lighting
Transparency

Under the Transparency properties, you can specify values that change the transparency of the material.
You can coose Blend, Additive, or Cutoff.

Additive
The additive transparency takes into account the diffuse and diffuse/emissive alpha.

¥ Transparency Additive

} Alpha

b Tint B erereerer

¢ |f the Alpha property is less than 0.5, only the specular highlights are visible. The material itself is
completely invisible.

402 /1211

Alpha = 0.25 Alpha = 0.5

We only see the specular highlight in additive Transparency is fully additive. Specular highlights
mode at maximum

e |f the Alpha <= 1.0, the material is semi-opaque with the diffuse/emissive component. If the diffuse
component has an alpha, it's transparent.

Alpha = 0.75 Alpha = 1.0

Specular highlights, diffuse with alpha and Specular highlights, diffuse with alpha and

semi-opaque diffuse opaque diffuse

Property Description

Alpha The alpha value is interpreted like this:

Alpha <= 0.5, the material is rendered in additive mode without the diffuse component
(only specular highlights)

403 /1211

Property Description

Alpha <= 1.0, the material is rendered in semi-opaque mode with the diffuse/emissive
component. If the diffuse component has an alpha, it's displayed as transparent

Tint Apply a color tint to the transparency layer

Cuttoff

Renders a material when the current alpha color is above the threshold you specify with the Alpha slider.

¥ Transparency

P Alpha

The following screenshots show the influence of the cutoff Alpha value.

Alpha = 0.01 Alpha = 0.5 Alpha = 1.0

Clear coat

Clear-coat shading uses physically-based rendering to simulate vehicle paint.

404 /1211

For details, see clear-coat shading.

See also

e Geometry attributes
e Shading attributes
e (Clear-coat shading

e Material maps

e Material layers

e Material slots

e Materials for developers

e Custom shaders

40571211

Clear-coat shading

Intermediate Artist Programmer

Clear-coat shading uses physically-based rendering to simulate vehicle paint.

Real vehicles typically have three layers of paint applied to the body, as in the diagram below:

406/ 1211

Paint Layers

Deep paint Paint Clear coat

scratch scratch scratch Oxidator Stains
I L

Clear coat

Primer

To keep the shading simple, Stride only simulates the base coat (including optional metal flakes) and
clear coat layers. Stride blends the layers depending on how far the camera is from the material. This
reduces visual artifacts caused by the metal flake normal map (which becomes more visible as the
camera moves away from the material).

Clear-coat shading has several advantages over creating the effect manually with material layers:

e layers are blended based on distance
¢ increased performance
e improved visualization

Add a clear-coat material

Stride includes a clear-coat material template. To add it, in the Asset View, click Add asset and select
Material > PBR material: clear coat.

407 /1211

Asset view

+ Add asset

| . PBR matenal: clear coat

. A realistic clear coat matenal for physically-based rendering
Amimation .

Audio

PBR material: metalness
. A material asset with a diffuse map, metalness map, and glossiness map
Material for physically-based rendering

Font

Miscellaneous

PBR material: specular
Model

A material asset with a diffuse map, specular map, and glossiness map
for physically-based renderning

PBR material: thin glass
A thin glass material for physically-based rendering

Texture Diffuse material
Ul A simple material with a diffuse map

Alternatively, to set clear-coat properties yourself:
1. Select the material you want to use clear-coat shading.

2. In the Property Grid, under the Misc properties, next to Clear coat, click kl (Replace) and choose
Clear coat.

¥ Misc
Occlusion
Transparency
P Overrides Layer Ovemides

Cull Mode Back

¥ Clear Coat ¥ Clear Coat | I
MNone
W Base Paint Clear Coat

(i) NOTE

For clear-coat shading to work correctly, make sure you enable Diffuse, Specular and Specular
model under the material Shading properties.

408 /1211

¥ Shading

¥ Diffuse " Diffuse Map
P Diffuse Map #FF0000
Diffuse Model Lambert
¥ Specular " Metalness Mag
Metalness Map 0

¥ Specular Model " Microfacet

Properties

You can access the clear-coat shader properties under Misc > Clear coat. They're split into three parts:
the base paint and optional metal flake properties simulate the base coat, and the clear coat

properties simulate the clear coat.

The metal flake properties simulate a metallic paint effect. To disable the effect, remove the metal flake

normal map.

409 /1211

¥ Misc
Occlusion
Transparency

b COwverrides Layer Ovemdes
Cull Mode Back

¥ (Clear Coat « Clear coat
W Base paint
P Base paint diffuse map #FFO07854
P Base paint glossiness map Multiphy
Invert glossiness
W Metal flakes
} Metal flake diffuse map #FFO02EAT

P Metal flake glossiness map Multiphy Base coat
Invert glossiness (bottom Iayer)

Metal flake metalness map

Metal flake normal map " ¥enkoClearCoathetalFlakeshi

Scale and offset
Reconstruct £

W Clear coat
Clear coat glossiness map
Invert glossiness

Clear coat metalness map

Orange peel nomal map » XenkoClearCoatOrangePeelNM CIear coat
LK 4
(top layer)
Scale and offset
Reconstruct £

Layer transition distance

Property Description

Base paint The diffuse map used by the base paint layer (the lowest layer). This determines the
diffuse map color of the layer.

Base paint The gloss map used by the base paint layer. For a coherent result, use the metal flake
gloss map normal map as a mask.

410/1211

Property

Metal flakes
diffuse map

Metal flakes
gloss map

Metal flakes
metalness
map

Metal flake
normal map

Coat gloss
map

Clear coat
metalness
map

Orange peel
normal map

Layer
transition
distance

Description

The diffuse map used by the metal flake layer (the layer above the base paint). For a
coherent result, use a value close to the base paint value.

The gloss map used by the metal flake layer. For a coherent result, use the metal flake
normal map as a mask.

The metalness map used by the metal flake layer. For best results, use high values.

The normal map used by the metal flake layer. This shapes the flake geometry. A metal
flake normal map (StrideClearCoatMetalFlakesNM) is included in the Stride assets
package. If the texture has a high UV scale, enable Use random texture coordinates
below to reduce tiling effects. To disable the metal flakes effect, remove the normal
map.

The gloss map used by the clear coat layer. Change this value to simulate different
kinds of paint (eg matte).

The metalness map used by the clear coat layer

The normal map used by the clear coat layer to create an "orange peel” effect. This
reflects light in different angles, simulating paint imperfections whereby the texture
appears bumpy, like the skin of an orange. An orange peel normal map
(StrideClearCoatOrangePeelNM) is included in the Stride assets package.

The distance (in meters) at which the base paint layer transitions to the metal flake
layer. This helps fight visual artifacts caused by the metal flake normal map (which
becomes more visible as the camera moves away from the material).

Reduce tiling and artifacts

Properties that use binary operators should use normalized values (ie between 0.0 and 1.0). For

example, in the screenshot below, the left operator uses a value of @.5.

41171211

W Base Paint

P Base Paint Diffuse Map #FFDAT
¥ Base Paint Glossiness Map
Left
P Right

Values over 1.0 might produce tiling artifacts, as in the image below (note the grid pattern):

StrideClearCoatMetalFlakesNM

The metal flakes in the metal flake normal map included in the Stride assets package

(StrideClearCoatMetalFlakesNM) are quite large. For this reason, we recommend you:

e use a high UV scale factor which tiles the texture (thereby shrinking the flakes)

41271211

e enable Use random texture coordinates, preventing an obvious tiling effect

¥ hetal flake normal map ¢ XenkoClearCoatMetalFlak Ngrs

Ve

Swizzle

Fallback Value . #FFFFFFFF
Texcoord Index TexcoordD
Filtering Linear

Address Mode U Wrap

Address Mode V Wrap

Scale

Offset

Use random texture coordinates

(0 NOTE

The Use random texture coordinates option is costly, so we don't recommend you use it for
mobile platforms.

Alternatively, use a normal map with a higher density of smaller metal flakes.

See also

e Material maps

Material attributes

o Geometry attributes

o Shading_attributes

o Misc attributes
Material layers

Material slots

Materials for developers

41371211

Material layers

Intermediate Artist Programmer

You can combine layers of materials to build more complex materials. For example, this screenshot
shows the blending of a rust material (left) with a gold material (right):

This diagram shows the definition of the materials blended in the screenshot above:

41471211

Material Gold
Attributes

Gloss Map 1

Diffuse Map 1

o

e

SpecularMap 1)
Material Complex

Diffuse Model

Layer 1

Layer 2

Specular Model

Viaterial Rust

Attributes BlendMap1 "4 ¥
o

Gloss Map 2

Diffuse Map 2
SpecularMap 2

Diffuse Model

Specular Model

Blend maps

Blend maps are material maps that determine how Game Studio blends layers. For example, you can use

a texture as a blend map:

41571211

|
b=
F’
-
Original material Blended material Blend map Result
Original material Blended material Blend map Result

Note how the blend map texture corresponds to the patterning on the result.

Blend maps work the same way as any other kind of material map. For more information, see Material
maps.

Shading models

Stride blends materials differently depending on whether their shading models (eg diffuse models,
specular models, etc) are different.

If you blend materials that have identical shading models, Stride collects the attributes of the materials,
then applies the shading models to all of them. This saves GPU.

If the materials have different shading models, Stride applies each material's shading models to that
material's attributes, then blends the results. This uses more GPU.

Add a layer
1. Select the material you want to add a layer to.

2. In the Property Grid (on the right by default), next to Layers, click B (Add).

416 /1211

Property grid

0 Material Materials/gold/Matenal

e

¥ Shading
¥ Diffuse

P Diffuse Map

Diffuse Model
W Specular
Metalness Map
¥ Specular Model
Fresnel
Visibility
Mormal Distnbution
Emissive
¥ Misc
Occlusion
Transparency
b Overrides

Cull Mode

Layers

Diffuse Map

Lambert

Metalness Map

Microfacet
Schiick
Schlick-GGX

GGX

Layer Ovemdes

Back

Game Studio adds a layer to the material.

¥ Layers

v 1= [ayer ()

P EBlend Map v

¥ Owverndes

UV Scale

Add to Layers

3. Next to the layer, click (Select an asset).

(Mo asset selected)

(Mo asse

Layer Ovemdes

X 1

417 /1211

The Select an asset window opens.
= Asset picker

W Solution 'MyGame9' + Add asset L'? 3)
v 8 MyGame9*
¥ 8 Assets*
v B Materials*
B bricke

B gold
B ion ircn iron_paint iron_paint
Material Material Material

e L]

B iron blend

iron_paint
] P []

] iron_paint_blend
l iron_rust
l iron_rust_blend

B marble

l iren_paint_blend iron_rust iron_rust iron_rust_blend
rock Material Material Material Material

B rooftile

l silver

] wood_gloss

l wood_nongloss
v B MyGame9.Game

B Properties - -
rooftile silver wood_nongloss

MyGame9. Windows Material Material Material
} BE# Dependencies

P External Packages

4. Specify a material you want to add as a layer and click OK.

Game Studio adds the material as a layer.

Matenalsfiron_rust_t

L 4

b EBlend Map] (Mo asset selected)
L 4 W

P Overrides Layer Overrides

Add to Layers

5. Next to Blend Map, click B (Replace) and select the type of blend map you want to use to blend

the layers. For more information about blend maps, see Material maps.

418 /1211

¥ lLayers

v o i |ayer(

¥ Blend Map

Fallback Value
Channel
Texcoord Index
Filtering
Address Mode U

Address Mode V

Offzet
P Overrides

Add to Layers

Matenals/iron_rust_t

K 4

(Mo asset selected)

v &

R
TexcoordD
Linear
Wrap
Wrap

X 1
X 0

Layer Ovemdes

W

MNone

Vertex Stream
Binary Operator
Float

Shader

Game Studio blends the material layers using the blend map you specified. You can add as many layers

as you need.

Layer properties

Property Description
Material The material blended in this layer
Blend Map The blend map used to blend this layer with the layer above
Layer UV Scale: A UV scale applied to all textures UV of the material of the layer (excluding
Overrides the occlusion map)
See also

e Material maps
e Material attributes

e Material slots

e Materials for developers

41971211

Material slots

Models can use multiple materials. You can set the materials in the model's material slots.

Property grid

0 Entity CharacterModel

Mame CharacterfModel

Add component

P 5 Transform
p HB Animations

v v € Model

Model Models/mannequinMeodel

Render group Group0

Cast shadows «
¥ Matenals

gloss MT Materials/Body¥hite

glow MT Materials/Emissive

Material slots
(defined in
model source
file)

semi Gloss MT Matenals/BodyGray

upper Matte MT Materials/MattBlackUpper

lower Matte MT Matenals/MattElacklower

lambert Matenals/LamberthdT

420/1211

For example, the second material slot in this model specifies the material for the visor and the shoulder

and chest plate stripes. By changing the material in this slot, we change the material used in these parts
of the model.

The material slots themselves — their number and position — are defined in the model source file (eg
.fbx, .obj, etc). You can't edit material slots in Game Studio; you can only change which materials are
used in each slot.

Set materials on a model

You can change the materials a model uses in two places:

e Under the Materials properties of the model itself:

42171211

Property grid

0 Model Medels/mannequinModel

Source CilUsers\.. \Models\mannequinModel.fbx
Skeleton Models/mannequinMadel Skeleton

Merge Meshes

¥ Materials

F gloss MT Materials/Body¥White
o W

glow MT Materials/Emissive

v e
semi Gloss MT Materials/BodyGray
upper Matte MT Materials/MattBlackUpper

lower Matte MT Matenals/MattElacklLower

lambert MatenalsfLamberthT

(0 NOTE

This affects every instance of this model.

¢ |n the model component of an entity or prefab:

422 /1211

Property grid

0 Entity CharacterModel

Mame CharacterfModel

Add component

P) Transform
p HE Animations
¥ v < Model

Model Models/manneguinMeodel

Render group Group0

Cast shadows +

W Materials

gloss MT Materials/BodyYyYhite
glow MT Materials/Emissive

semi Gloss MT Materials/BodyGray

upper Matte MT Materials/MattBlackUpper

lower Matte MT Materials/MattBlackLower

lambert MatenalsfLamberthT

This only affects this instance or prefab.

Meshes and material slots

423 /1211

Models imported from modeling software can contain meshes. Meshes can share materials via material
slots.

Model definition (in source file) Game Studio

Mesh1l | /‘ Material slot 1 I I MyMateriaIlJ

Mesh 2 /

Mesh 3 N | Material slot 2 I I MVMateriaIZJ

AT / .,

Mesh 4 \
Mesh 5 \I Material slot 3 I I MyMateriaBJ

The association between a mesh and a material slot is defined in the model source file. You can't change

these associations in Game Studio, but you can change them in code at runtime.

To change the association between a mesh and a material, use:
MyModelComponent.Model.Meshes[submeshIndex].MaterialIndex = materialIndex;
To change or add a material to the list of materials:

MyModelComponent.Materials[ExistingOrNewMaterialIndex] = myMaterial;

Merging meshes

When Stride draws a model with meshes, it performs one GPU draw call for each mesh. By default, to
improve performance, at build time, Stride merges meshes that share materials.

42471211

Before merging meshes After merging

1 f)
Mesh 1 . 1 Material slot 1 Mesh 1 e el s |

. (merged) | . /

/N Mesh 2 / ~_

Mesh 3 | Material slot 2 —_— \/\

i

Material slot 2

Mesh 3 T~

(merged)
SR

Material slot 3

d
!

Mesh 5 1 Material slot 3

1111

!

In the example above, there are five meshes and five draw calls. After merging, there are three meshes
and three draw calls.

(0 NOTE

When Stride merges meshes, it merges the vertex and index buffers. This means you can't draw the
meshes separately at runtime, and you can't change the original mesh position (transformation
matrix). The meshes become a single mesh with a single material and a single transformation matrix
(relative to the model).

(0 NOTE

When Stride merges meshes, it changes the draw order of elements. In the case of transparent
materials, this can produce different results.

(i) NOTE

When you create a physics collider from a model, Stride builds separate convex hulls for each mesh

in the model. If the meshes are merged, only one mesh remains per material, so convex hulls are
also built from merged meshes.

Disable mesh merging

42571211

You might want to disable mesh merging if you want to:
e animate a mesh
e change the material of a mesh at runtime
To disable mesh merging on a model:
1. Select the model you want to disable mesh merging for.
2. In the Property Grid, disable Merge meshes.

Property grid

0 Model Models/mannequinModel

Source Chlsers\..\ModelsimannequinModel.fhe
Skeleton Models/mannequinModel Skeleton

Merge Meshes

Disable merging for specific meshes

To disable merging only for specific meshes, enable their corresponding nodes.
1. Select the model that contains the meshes.
2. In the Property Grid, under Skeleton, make sure the model has a skeleton associated with it.
Property grid

0 Model Medels/mannequinModel

Source CAlUsersh.. \ModelsimannequiniModel.fbx

Skeleton Models/mannequinMadel Skeleton

Merge Meshes o

For more information about skeletons, see Animation.

3. In the Asset View, select the skeleton.

426 /1211

Aszet view

manneaguin
Model Meodel Skeleton
Skeleton

mannequinModel

Assetview | Asset errors (0) Output
4. In the Property Grid, under Nodes, select the nodes that correspond to the meshes you don't want

to merge.

Property grid
0 Skeleton Models/mannequinModel Skeleton

ChUsersh..\Moadels\mannequinModel.fhx

Source
Pivot Position X 0 ¥ 0 7

Scale Import 1

¥ Nodes

oot Mode

mannequin Model

upper
lower
arm
hand

CAT Rig HubO01

@ TIP

To see which nodes correspond to which mesh, open the model source file in a modeling

application such as Maya.

427 /1211

(0 NOTE

Make sure you don't disable nodes that are animated at runtime.

See also

e Material maps
e Material attributes

e Material slots

428 /1211

Materials for developers

This diagram shows the Material interfaces and implementation classes:

429/1211

IMaterialShaderGenerator %

Interface

IMaterialFeature

Interface

=+ [MsterialShaderGenerator

IMaterialAttributes o
Interface
= IMaterislFeature

? IMaterialAttributes

MaterialAttributes

- 1 B Attributes

IMaterialDescriptor

Interface

~+ INMsterizlShaderGenarstor

¥ IMaterialLayers ¥
Interface

? IMaterialDescriptor

Class

MicroSurface

F Displacement

F Tessellation

F Diffuse

F Specular

F# DiffuseMadel

Class

f MaterialDescriptor

Class

MaterialBlendLayers

+ List<MaterizlBlend Layer>

+ IMsterialFesture

IMateriallayers

L

IMaterialShaderGenerator

MaterialBlendLayer ¥

Class

£ Material

B Overrides
MaterialOverrides ¥
Class
F Surtace | |MaterialSurfaceFeature ¥
Interface

=+ IMzterialFeature

IMaterialSurfaceFeature
IMaterialStreamProvider

MaterialNormalMapFeature ¥

Class

IMaterialMicroSurfaceFeature %
Interface
+ IMaterizlFesture

IMaterialMicroSurfaceFeature
IMaterialStreamProvider

MaterialGlossinessMapFeature %

Clasz

IMaterialDisplacementFeature ¥
Interface
+ IMaterizlFesture

? IMaterialDisplacementFeature

MaterialDisplacementMapFeature
Class

¥

IMaterialTessellationFeature ¥
Interface
= IMsterisiFesturs

? IMaterialTessellationFeature

Abstract Class

| MaterilTessellationBaseFeature %

MaterialTessellationFlatFeature ¥

Class

~ MaterizlTessellstionBaseFeature

Class

MaterialTessellationPNFeature ¥

~+ MateriaTessellstionBaseFeature

IMaterialDiffuse Feature ¥
Interface
b IMsterialFesture

IMaterial DiffuseFeature
IMaterialStreamProvider

MaterialDiffuseMapFeature ¥

Class

IMaterialSpecularFeature ¥
Interface
=+ IMzterialFeature

IMaterialSpecularFeature
IMaterialStreamProvider

? IMaterialSpecularFeature

MaterialSpecularMapFeature ¥

Class

MaterialMetalnessMapFeature ¥
Class

|

IMaterialShadingModelFeature
Interface

=+ IMaterizlFeature

= [Equatable<IMzteriziShadingModelFeature >

? IMaterial DiffuseModelFeature

IMaterialDiffuseModelFeature ¥
Interface
~+ IMaterialShadingModelFeature

MaterialDiffuseLambertModelFeature ¥

Clasz

Material
Class

430/1211

IMaterialEmissiveFeature

IMaterialStreamProvider

| MaterialEmissiveMapFeature ¥ |
Class

F Emissive | IMaterialEmissiveFeature ¥ |
-] Interface

b IMaterialShadingModelFeature

F Speculariodel | IMaterialSpecularModelFeature ¥ |
- Interface
~+ IMaterialShadingModelFeature

e
[. 3 |
F Occlusion | |MaterialOcclusionFeature ¥ T IMaterialOcclusionFeature

= Interface IMaterialStreamProvider

+ IMaterizlFesture

- _
| MaterialOcclusionMapFeature ¥
Class

¢ \
i = \
K Transparency IMaterialTransparencyFeature %
= | (=i (? IMaterialTransparencyFeature Cl) IMaterialTransparencyFeature
b IMaterialFeature p N \
MaterialTransparencyAdditiveFeature ¥ ‘ MaterialTransparencyCutoffFeature v ‘
Class Class

e The interface IMaterialDescriptor is the root interface for a material description.
e The [MaterialShaderGenerator is the main interface used to generate a material shader of the

material.
e Each attribute and layer implements this interface to modify the final material shader.
e The MaterialDescriptor is the editor-time description of the material before being compiled into a

material shader.
e The Material class is the runtime material shader generated from the MaterialDescriptor

Modifying parameters at runtime

The file MaterialKeys contains most material keys you might need to use, have a look through it to figure
out which one you might need to get to modify the parameter you are interested in.

Let's say you have this fairly simple material:

43171211

¥ Geometry
Tessellation
Displacement
Surface

Micro Surface

Shading

Diffuse ¥ Diffuse Map

» Diffuse Map Bl zrreereer

Diffuse Model + Lambert
Specular
Specular model
Emissive
Subsurface Scattering
Misc
Occlusion
Transparency
Owernides Layer Owermides
Cull Mode
Depth Function

Clear Coat

Layers

And you want to clone that material, but change its color to red at runtime. Searching through the
different keys contained in MaterialKeys you would find MaterialKeys.DiffuseValue and use it as the key
to set the new color value you want:

var clone = SerializerExtensions.Clone(MyMaterial);
clone.Passes[@].Parameters.Set(MaterialKeys.DiffuseValue, new Color4(l, 0, 90));

If you aren't too sure which parameter keys your material uses, the best way to figure it out would be to
inspect the material's variables with a debugger. Here's an example of that through Rider's Threads &
Variables window:

43271211

imeterCollection: 1 Value(s), 6 Permutation(s)

onCounter =

T o

E T

See also

e Material maps

e Material attributes
e Material layers

e Material slots

433 /1211

Textures

Textures are images mainly used in materials. Stride maps textures to the surfaces the material covers.

Textures can add color information to a material — for example, to add a brick pattern to a wall or a
wood pattern to a table. The values of the pixels in a texture (texels) can also be used for other
calculations, such as in specular maps, metalness maps, or normal maps.

Materials typically contain multiple textures; for example, a material might contain a color texture, a
normal map texture, and a roughness texture.

Textures can also be used outside materials; for example, you can draw them directly to the Ul, or use
them in sprites.

Supported file types

You can use the following file types as textures:

® .dds
* .Jjpg
® .Jpeg
¢ .png
e . gif
® .bmp
® .tga
® .psd
e _tif
e _tiff
(0 NOTE

e Stride only imports the first frame of animated image files, such as animated gifs or PNGs. They
don't animate in Stride; they appear as static images.
e Stride currently doesn't support movie files.

Add a texture

In the Asset View, click Add asset > Texture, then select a template for the texture (color, grayscale or
normal map):

43471211

Asszet view

+ Add asset

| Color
A color texture asset imported from a source file. Can be in sRGE or linear

ol space. Assumes three [RGB} or four (RGBA) channels

Audio
Fonts Grayscale

on A grayscale texture asset imported from a source file, Assumes linear color
Materials space and a single channel

Miscellanecus

Models

Normal map
A normal map texture asset imported from a source file. Assumes linear
Physics i space and two (RG) or three (RGE) channels

St Render target

Scripts A render target asset you can render to, or use as an input texture
Sprites

Textures

LI

(i) NOTE

Render targets are a different kind of texture, and don't use images. Instead, they render the output
from a camera. For more information, see Render targets.

Alternatively, drag the texture file from Explorer to the Asset View:

43571211

= MyGame5.sin - Xenke GameStudio 1.7.9-beta
File Edit Project View Help
S m-" B S5 R CIL @ Windows
MainScene » X Property grid
@ - & i it
+ B (o T F | edior

¥ . © © noselection
Scene settings

W Garera . H
4 Directional light » PictureTools Resources

4 Skybox
< Ground

- I P M Gpen = F setectan
P Sphere » o x =
y * E et -

Manage

T Easyaccess - [Edit Selectnone
Delete Rename New Propertie:

older @History g invert setection

New
> Raycasting > Raycasting > Resources 3

media

This asset is not editable.

& OneDrive
=

This PC
[Desktop

~ texturejpg
[£] Documents

=] Pictures
B vids
& Win
Rec

¥ Netwe

M item 1item select

References

) RS Referencers Lo]
v R x

Solution explarer v & X Assetview

ER & o Add asset

¥ Solution 'MyGame5"
v B MyGame5
e, Al
» B MyGame5Game o
@ WyGame5Windows

b B8 Dependencies MainScene Ground Sphere Ground Material Sphere Material GameSettings

Scene Procedural M... Procedural M... Material Material Game Settings
» External Packages

PASSERNEM Asset errors (0) Output Asset preview Action history |SIIEREES
6 items (0 selected)

2D sprites
A sprite sheet built from a set of images, used to display 2D sprites

Ul sprites
A sprite sheet built from a set of images, used to display Ul components

Color

A color texture asset imported from a source file. Can be in sRGE or linear
space. Assumes three (RGB} or four (RGBA) channels

Grayscale

A grayscale texture asset imported from a source file, Assumes linear color
space and a single channel

Normal map

A normal map texture asset imported from a source file. Assumes linear
space and two (RG) or three (RGE) channels

Raw asset

An asset containing binary or text data directly imported from a file

Game Studio adds the texture to the Asset View:

436 /1211

Asset view

+ Add asset

A @

MainScene* Ground Sphere Ground Material Sphere Material GameSettings
Scene Procedural M... Procedural M... Material Material Game Settings

Texture properties

The following properties are common to all textures.

Property grid

0 Texture Textures/CheckerGnd1x1

Source Ch.\CheckerGrid1x1.png L]
¥ Size

Width

Height

Use percentages
¥ Format
w Type

s RGE sampling

2 Transparency

Generate mipmaps
Compress

Stream

Property Description

Width The width of the texture in-game

Height The height of the texture in-game

Use Use percentages for width and height instead of actual pixel size

percentages

Type Use Color for textures you want to display as images, Normal map for normal maps,

and Grayscale to provide values for other things (eg specular maps, metalness maps,

437 /1211

Property Description

roughness maps). Color textures and normal maps have additional properties (see

below).
Generate Generate different versions of the texture at different resolutions to be displayed at
mipmaps different distances. Improves performance, removes visual artifacts, and reduces pop-

in when using streaming, but uses more memory. Unnecessary for textures always at
the same distance from the camera (such as Uls).

Compress Compress the final texture to a format based on the target platform and usage. The
final texture is a multiple of 4. For more information, see Texture compression.

Stream Stream the texture dynamically at runtime. This improves performance and scene
loading times. Not recommended for important textures you always want to be
loaded, such as splash screens. For more information, see Streaming.

Color texture properties

The following properties apply if you set the texture type to color.

¥ Format
¥ Type
s RGE sampling
W Transparency
Color key
Color key color #FFFFOOFF

Alpha Auto

Premultiply alpha v

Generate mipmaps
Compress

Stream

Property Description

sRGB Store the texture in sRGB format and convert to linear space when sampled.
sampling Recommended for all color textures, unless they're explicitly in linear space.
Color key Use the color set in the Color key color property for transparency at runtime. If
enabled disabled, the project uses transparent areas of the texture instead

438 /1211

Property Description

Color key The color used for transparency at runtime. Only applied if Color key enabled is
color selected.

Alpha The texture alpha format (None, Mask, Explicit, Interpolated, or Auto)
Premultiply Premultiply all color components of the images by their alpha component

alpha

Normal map properties

The following property applies if you set the texture type to normal map.

¥ Format

w Type Normal Map

Invert ¥
Generate Mipmaps

Compress

Property Description

InvertY Have positive Y-component (green) face up in tangent space. This depends on the tools
you use to create normal maps.

For more information about normal maps, see the Normal maps page.

Grayscale textures
Grayscale texture use only the R channel of the image (finalRGBA = originalRRRR).

(0 NOTE

If you add a texture to a scene (as a sprite component), and set the texture type to grayscale, it
appears red, not monochrome. This is because the image uses the R (red) channel.

To make the channel monochrome, in the Sprite component properties, set the Type as Grayscale.
For more information about the sprite component properties, see Use sprites.

43971211

You can use grayscale textures to provide values in material maps. For example, you can use a texture as
a blend map to blend two material layers:

|
b=
.ﬂ'
-
Original material Blended material Blend map Result
Original material Blended material Blend map Result

Note how the blend map texture corresponds to the patterning on the result.

For more information, see Material maps.

Global texture settings

For instructions about how to access the global texture settings, see the Game Settings page.

¥ Textures

Texture Quality

Property Description

Texture The texture quality when encoding textures. Fast uses the least CPU, but has the lowest
quality quality. Higher settings might result in slower builds, depending on the target platform.

440/1211

See also

e Normal maps
e Texture compression

e Texture streaming

e Materials
e Sprites
e Render textures

e Skyboxes and backgrounds

44171211

Normal maps

Normal maps are textures that add the appearance of surface detail, such as cracks and bumps, without
changing the actual geometry of a model. They contain information about how meshes should reflect
light, creating the illusion of much more complex geometry. This saves lots of processing power.

No normal map With a normal map

442 /1211

Simplified mesh and normal
Original mesh Simplified mesh map

4m triangles 500 triangles 500 triangles

(Images courtesy of Paolo Cignoni, shared under Attribution-ShareAlike 1.0 Generic (CC BY-SA 1.0)&7

Normal maps usually represent small changes of the normal vector (the vector which points away from
the surface). Stride uses the most common convention: the X and Y components follow the tangent and
the bitangent of the surface, and the Z component follows the normal vector of the surface. This means
that a value of (@, @, 1) coincides with the normal vector and represents no change, while a value of
(-1, o, 0) tilts to the "left" (ie negative X value in the tangent (local) space).

443 /1211

https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/
https://creativecommons.org/licenses/by-sa/1.0/

L/

Micro Surface

Surface

Use a normal map

1. In the Asset View, select the texture you want to use as a normal map.

Solution explore » 0 X Assetview

ﬁ ! CHET +A-:II:I asset
¥ Solution "VRSandbox' :
v B VRSandbox
¥ B Assets ! h')
B Animations 1]‘;." e 1

1

B Materials ' T foh ek R
B Modeks normalmapUpper wood_table_tex_ wood_table_tex_ wood_table_tex_ wood_table_tex_
. Texture Col ColB_2 Nml_2 Spe_2

B Textures Texture Texture Texture Texture

EpEnt Cies s A
Dependencies e s
b External Packages
xenko_box_mask cenko_box_ xenko_box_ xenko_coin_c_ xenko_coin_c_

Texture normals occlusion nomals occlusion
Texture Texture Texture Texture

2. In the Property Grid, make sure the type is set to normal map.

44471211

Property grid

0 Texture Textures/normalmapUpper

Source C:.normalmapUpperpng M
¥ Size

Width

Height

Use percentages
¥ Format
* Type Normal Map

Invert ¥ v

Generate mipmaps

o
Compress v
o

Stream

This means Stride assumes the texture is in linear color space and converts it to a format suited for
normal maps.

3. In the Asset View, select the material you want to use the normal map.

Solution explorer = [¥ Assetview
ER &= on Ok +.-'-\|:||:I asset
¥ Solution 'VRSandbox! _
w 8 VRSandbox
¥ [Assets 4
l Animations
' Matenals

B Models board1 board1B BodyGray BodyWhite
) Material Material Material Material

' Textures
» B vRSandbox.Game

35

% VRSandbox.Windows 0
b BE Dependencies " A)

b External Packages

MaterialA MatenalB
Material Material

4. In the Property Grid, under the material Geometry properties, expand Surface.

44571211

¥ Geometry
Tessellation
Displacement
W Surface " Normal Map

F MNormal Map J (Mo asse

Ve

v
Reconstruct 7 ,,r"
* Micro Surface " Glossiness Map

Glossiness Map

Imvert

5. Next to Normal map, click B (Replace) and make sure Texture is selected.

6. Next to Normal map, click (Select an asset).

446 /1211

K Asset picker

¥ Solution "VRSandbox'
v B VRSandbox*
v B Assets*
l Animations
l Matenals*
l Models

B Textures normalmaplpper wood_table_tex_ wood _table tex_
Texture ColB_2
b B VRSandbox.Game
l Core
B riayer
B Properties
2 VRSandbox.Windows
P BE Dependencies

wood_table tex wood_table_tex_
b External Packages Nml_2 B
Texture Texture

xenko_box_
normals
Texture

xenko_box_

xenko_coin_c_
occlusion

normals
Texture Texture

7. Select the normal map texture and click OK.

For more information about materials, see Materials.

Normal map properties

Normal map textures have two properties in addition to the common texture properties.

¥ Format

w Type Normal Map
Invert ¥ v
Generate Mipmaps v

Compress v

447 /1211

Property Description

InvertY Have positive Y components (green pixels) face up in tangent space. This option depends
on the tools you use to create normal maps.

For information about normal map properties in materials, see Materials — Geometry attributes.

See also

o Textures
e Materials
e Normal mapping_on Wikipedia®

448 /1211

http://en.wikipedia.org/wiki/Normal_mapping
http://en.wikipedia.org/wiki/Normal_mapping
http://en.wikipedia.org/wiki/Normal_mapping

Texture compression

Compressed textures use up to 50% less space and are faster to load. Compression produces results
similar to JPEG compression. The animation below was recorded with the camera positioned extremely
close to the texture; at normal distances, the difference isn't noticable.

For color textures, compression is best used for visually busy images, where the effects are less
noticeable. You probably don't want to compress textures with fine edges, such as logos used in splash

screens.

Compression converts the texture to a multiple of 4. If the texture isn't already a multiple of 4, Stride
expands it.

Compression removes data from the image based on the texture type:

Texture
type Compression
Color Compresses all RGBA channels. If the Alpha property is set to None in the texture

properties, the alpha channel is removed
Grayscale Removes all RGBA channels except red

Normal Removes the blue and alpha channels (alpha isn't used in normal maps anyway). The
map blue channel is reconstructed from the red and green channels (assuming a pixel has a
vector length of 1)

e Textures index

449 /1211

Normal maps
Materials
Sprites

Render textures

450/ 1211

Streaming

When you stream textures, Stride only loads them when they're needed. This significantly decreases the
time it takes to load a game or scene, uses less memory, and makes your game easier to scale.

(0 NOTE

Currently, only textures can be streamed.

How Stride streams textures

Instead of loading a texture when Stride loads the scene (with all its mipmaps), Stride only loads it when
it's used (eg a model using the texture is onscreen).

When the texture is no longer needed (ie no objects that use the texture are onscreen), Stride unloads it.

Currently, there's no loading priority for textures. For example, Stride doesn't load textures based on
distance; instead, Stride loads them all in sequence.
Using streaming with mipmaps

If mipmaps (different-resolution versions of textures displayed at different distances) are enabled in the
texture properties, the lower-resolution mipmaps load first, as they're smaller in size. The gif below

shows this process happening in slow motion.

In most situations, the process is very quick. We recommend you enable mipmaps for streaming as it
means lower-resolution versions of textures act as placeholders until the higher-quality versions can

45171211

load, reducing pop-in.

When not to use streaming

Streaming is enabled by default for all textures. You might want to disable streaming on important
textures you always want to display immediately and in high quality, such as:

e splash screens

e textures on player models

e textures used in particles (particles often have a short lifespan, so might disappear before the

texture loads)

Enable or disable streaming on a texture

1. In the Asset View, select the texture.

Asset view

+.ﬁ.dda==ct
B i s e ks
L E EREEE ERE
R EE R

CheckerGrid1x1 ChedkerGnd 10x a" FIR0O01 il normalmaplUpper

10 Texture

SMO001 SMO001_3 Smoke02 xenko_box_mask xenko_box_ xenko_box_

Texture Texture Texture Texture normals occlusion
Texture Texture

2. In the Property Grid, under Format, use the Stream check box.

452 /1211

Property grid

0 Texture Textures/CheckerGnd1x1

Source Ch.\CheckerGnid1x1.png L]
¥ Size

Width

Height

Use percentages
¥ Format
¥ Type

s RGE sampling

2 Transparency

Generate mipmaps

Compress

Stream

Global streaming settings

You can access the global streaming settings in the Game Settings asset. These settings apply to all
textures that have streaming enabled.

For instructions about how to access the global streaming settings, see the Game Settings page.

Properties
¥ v Streaming

Update interval 0.033

Max resources per update

Resource timeout (ms)

Memory budget {in MEB)

Property Description
Streaming Enable streaming

Update interval How frequently Stride updates the streaming. Smaller intervals mean the streaming
system reacts faster, but use more CPU and cause more memory fluctuations.

453 /1211

Property Description

Max resources The maximum number of textures loaded or unloaded per streaming update.

per update Higher numbers reduce pop-in but might slow down the framerate.
Resource How long resources stay loaded after they're no longer used (when the memory
timeout (ms) budget is exceeded)

Memory budget When the memory used by streaming exceeds this budget, Stride unloads unused
(in MB) textures. You can increase this to keep more textures loaded when you have
memory to spare, and vice versa.

Access the streaming manager in code

Use Streaming.

For example, to disable streaming globally, use:
Streaming.EnableStreaming = false;

To start streaming a texture:
Streaming.StreamResources(myTexture);

To disable streaming at load time:

var texture = Content.Load<Texture>("myTexture",
ContentManagerlLoaderSettings.StreamingDisabled);

Options

There are three StreamingOptions:

e The KeepLoaded option keeps the texture in memory even when the memory budget is exceeded.

e |f mipmaps are enabled, the ForceHighestQuality option loads only the highest-quality version of
the texture.

e The KeepLoaded option keeps the texture in memory even when it's not used.

For example:

454 /1211

var myOptions = new StreamingOptions() { KeepLoaded = true };
Streaming.StreamResources(myTexture, myOptions);

To change the streamingOptions at runtime, use SetResourceStreamingOptions. For example:

var myNewOptions = new StreamingOptions() { KeepLoaded = false };
Streaming.SetResourceStreamingOptions(myTexture, myNewOptions);

See also

e StreamingManager API

e Textures index

e Texture compression

e Game Settings

45571211

Skyboxes and backgrounds

Skyboxes are backgrounds that create the illusion of space and distance. Typical skybox backgrounds
include skies, clouds, mountains, and other scenery. As skyboxes are prerendered, they require little GPU
and CPU.

You can use cubemaps or 360° panoramic textures as skyboxes. You can also use them to light the

scene.

(0 NOTE

Currently, Stride doesn't support skydomes or local skyboxes.

Alternatively, you can display a 2D background, which is often useful for 2D games.

Cubemaps

A cubemap is a six-sided texture. When these textures are assembled in a cube around the scene, the

cubemap simulates spacious 3D surroundings.

456 /1211

Currently, Game Studio can't convert image files to cubemaps (.dds files). Use another application to
create a cubemap from separate image files, such as:

e Nvidia conversion tool#

e ATl conversion tool#

Create a cubemap in Game Studio

You can capture a cubemap from a position in your scene.

1. In the scene editor, position the camera at the point where you want to capture the cubemap. The
direction the camera faces doesn't matter, only the position.

Typically, you should capture cubemaps at the center of your scene to create the best all-round
view.

2. In the scene editor toolbar, open the Lighting options menu.
* ' F_E?ﬂ' ":::':E
Light probes

Bounces: 1

s s Compute e oy Reset

Cubemap

@ Capture

457 /1211

https://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop
https://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop
https://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop
http://developer.amd.com/tools-and-sdks/archive/games-cgi/cubemapgen
http://developer.amd.com/tools-and-sdks/archive/games-cgi/cubemapgen
http://developer.amd.com/tools-and-sdks/archive/games-cgi/cubemapgen

3. Under Cubemap, click Generate.

4. Browse to the location on disk you want to save the cubemap, specify a name, and click Save.

@ TIP

We recommend you save the cubemap in your project Resources folder. For more information, see
Organize your files in version control.

Game Studio creates a cubemap .dds file in the location you specified.

360° panoramic textures

Instead of using a cubemap, you can use a 360° panoramic texture as a 3D background.

360° panorama Appearance in game

—

Image courtesy of Texturify =

(0 NOTE

Remember that post effects affect the appearance of your skybox. If it doesn't look how you expect,
try changing your post effect settings.

Add a cubemap or 360° panoramic texture to the project

You add these like other color textures.

e |n the Asset View, click + IRl select Textures > Color texture, and browse to the file.

458 /1211

http://texturify.com/
http://texturify.com/
http://texturify.com/

Asset view

+ Add asset
|

Animations
Audio
Matenals
Miscellanecus
Models
Mavigation
Physics
Prefabs

Scenes

Color texture
A color texture asset imported from a source file. Can be in sRGE or linear
space. Assumes three [RGB} or four (RGBA) channels.

Grayscale texture
A grayscale texture asset imported from a source file, Assumes linear color
space and a single channel.

Normal map texture
A normal map texture asset imported from a source file. Assumes linear
space and two (RG) or three (RGE) channels.

Render Target

A render target asset that can be rendered to and also used as an input

Scripts texture,

Spnte Studio
Sprites
Textures

Ui

e Alternatively, drag and drop the file from Windows Explorer to the Asset View, then select Color

texture.

Asset view A1 I [= | Resources P...

+Add asset Home Share View Manage [7]

® . - - o ._‘%'I __I 9:3 IR X - + BH

Pinto Cuick Copy Paste - ER3 Lﬁ New Open Select
S Graphics Compositor ’ [=] - i

GameSettings Graphics Ground Ground Material
Game Settings Compositor Procedural M... Material
Graphics Com...

access
Clipboard Crganize

« v A | |« MyG.. » Resources v @ | SearchRe..

skybow_texture_h
dr.dds

v

Titem 1item selected 1.00 MB

Create a skybox

To create a skybox, add a cubemap or 360° panoramic texture to a background component.

Stride includes an entity with a background component in the project by default. Only one background
can be active in a scene at a time. If there are multiple backgrounds, Stride only loads the first.

You can add background components to as many entities as you need. You might want to include more
than one background, for example, if you want to switch skyboxes at runtime.

459 /1211

Add a background entity

1. In the Scene view, select the entity you want to add the component to.
This can be an empty entity. Its position in the scene doesn't matter.
2. In the Property Grid (on the right by default), click Add component and select Background.

0 Mo selection

B

MName Skybox

Add component

i Anmimations
) Audio Emitter

E.- Audio Listener

[Background

WM Camera

/| Character

£ Light Probe

[Light Shaft

Eff] Light Shaft Bounding Volume
& Model

< Model Node Link

fY) Navigation

6 Particle System

3. Under Texture, select the cubemap or 360° panoramic texture you want to use in the skybox.

¥ [® Background
Texture (Mo asset selected)

¥l & .

Pick an asset up
Intensity I

Render Group Group(

Use a skybox as a light source

You can use a skybox to light the scene. Stride analyzes the skybox texture and generates lighting using
image-based lighting (Wikipedia)#. For more information, see Skybox lights.

Change the skybox at runtime

The following code changes the cubemap in a background:

460/ 1211

https://en.wikipedia.org/wiki/Image-based_lighting
https://en.wikipedia.org/wiki/Image-based_lighting
https://en.wikipedia.org/wiki/Image-based_lighting

public Texture cubemapTexture;
public void ChangeBackgroundParameters()

{

// Get the background component from an entity
var background = directionallLight.Get<BackgroundComponent>();

// Replace the existing background
background.Texture = cubemapTexture;

// Change the background intensity
background.Intensity = 1.5f;

Convert cubemaps to panoramas and vice versa

Various tools exist to convert a panoramas to cubemaps and vice versa, including:

e Panorama Converter

e Panorama to Cubemap®

e Convert Cubemap to Equirectangular

Set a 2D background

Instead of using a 3D skybox, you can display the texture as a static background. This displays the
texture as a flat image that stays static no matter how you move the camera. This is often useful for 2D
games.

To do this, in the Background component properties, select 2D background.

¥ [® Background

Texture MyPanorama

Intensity
Render group Groupd

2D background v

If you enable this with a cubemap, Stride uses the first face of the cubemap as the background.

Use a video as a skybox

For details, see Videos - Use a video as a skybox.

461 /1211

http://gonchar.me/blog/goncharposts/2150
http://gonchar.me/blog/goncharposts/2150
http://gonchar.me/blog/goncharposts/2150
https://jaxry.github.io/panorama-to-cubemap/
https://jaxry.github.io/panorama-to-cubemap/
https://jaxry.github.io/panorama-to-cubemap/
https://www.360toolkit.co/convert-cubemap-to-spherical-equirectangular.html
https://www.360toolkit.co/convert-cubemap-to-spherical-equirectangular.html
https://www.360toolkit.co/convert-cubemap-to-spherical-equirectangular.html

See also

e Skybox lights
e Lights and shadows

462 /1211

Lights and shadows

Lights in Stride are provided by light components. There are several kinds of light.

In this section

e Add a light

e Point lights

e Ambient lights
e D